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Abstract – A conventional automatic speech recognizer does not perform well in the presence

of multiple sound sources, while human listeners are able to segregate and recognize a signal of

interest through auditory scene analysis. We present a computational auditory scene analysis

system for separating and recognizing target speech in the presence of competing speech or

noise. We estimate, in two stages, the ideal binary time-frequency (T-F) mask which retains

the mixture in a local T-F unit if and only if the target is stronger than the interference within

the unit. In the first stage, we use harmonicity to segregate the voiced portions of individual

sources in each time frame based on multipitch tracking. Additionally, unvoiced portions

are segmented based on an onset/offset analysis. In the second stage, speaker characteristics

are used to group the T-F units across time frames. The resulting masks are used in an

uncertainty decoding framework for automatic speech recognition. We evaluate our system

on a speech separation challenge and show that our system yields substantial improvement

over the baseline performance.

Index Terms – speech segregation, computational auditory scene analysis, binary time-frequency

mask, robust speech recognition, uncertainty decoding
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1 Introduction

In everyday listening conditions, the acoustic input reaching our ears is often a mixture of

multiple concurrent sound sources. While human listeners are able to segregate and recognize a

target signal under such conditions, robust automatic speech recognition remains a challenging

problem (Huang et al., 2001). Automatic speech recognizers (ASRs) are typically trained on

clean speech and face the mismatch problem when tested in the presence of interference. In

this paper, we address the problem of recognizing speech from a target speaker in the presence

of either another speech source or noise.

To mitigate the effect of interference on recognition, speech mixtures can be preprocessed

by speech separation algorithms. Under monaural conditions, systems typically depend on

modeling the various sources in the mixture to achieve separation (Ephraim, 1992; Jang and

Lee, 2003; Kristjansson et al., 2004; Roweis, 2005; Raj et al., 2005). An alternate approach

to employing speech separation prior to recognition involves the joint decoding of the speech

mixture based on knowledge of all the sources present in the mixture (Varga and Moore,

1990; Gales and Young, 1996; Deoras and Hasegawa-Johnson, 2004). These model-based

systems rely heavily on the use of a priori information of sound sources. Such approaches are

fundamentally limited in their ability to handle novel interference (Allen, 2005). For example,

systems that assume and model the presence of multiple speech sources only, do not lend

themselves easily to handling speech in (non-speech) noise conditions.

In contrast to the above model-based systems, we present a primarily feature-based com-

putational auditory scene analysis (CASA) system that makes weak assumptions about the

various sound sources in the mixture. It is believed that the human ability to function well

in everyday acoustic environments is due to a process termed auditory scene analysis (ASA),

which produces a subjective perceptual representation of different sources in an acoustic mix-

ture (Bregman, 1990). In other words, listeners organize the mixture into streams that corre-

spond to different sound sources in the mixture. According to Bregman (1990), organization

in ASA takes place in two main steps: segmentation and grouping. Segmentation (Wang and

Brown, 1999) decomposes the auditory scene into groups of contiguous time-frequency (T-F)

units or segments, each of which originates from a single sound source. A T-F unit denotes the

signal at a particular time and frequency. Grouping involves combining the segments that are

likely to arise from the same source together into a single stream (Bregman, 1990). Grouping

itself is comprised of simultaneous and sequential organizations. Simultaneous organization

involves grouping of segments across frequency, and sequential organization refers to grouping

across time.

From an information processing perspective, the notion of an ideal binary T-F mask has

been proposed as the computational goal of CASA by Wang (2005). Such a mask can be

constructed from the a priori knowledge of target and interference; specifically a value of 1 in

the mask indicates that the target is stronger than the interference within a particular T-F

unit and 0 indicates otherwise. The use of ideal binary masks is motivated by the auditory

masking phenomenon in which a weaker signal is masked by a stronger one within a critical

band (Moore, 2003). Additionally, previous studies have shown that such masks can provide
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Figure 1: Schematic diagram of the proposed two-stage CASA system and its application to ASR. The audi-
tory front-end decomposes input signal into a T-F representation called a cochleagram (see Section 2). In the
segmentation stage, our system generates both voiced segments and unvoiced segments. Then in the the group-
ing stage, the system first uses periodicity similarity to group voiced components by a simultaneous grouping
process. Subsequently, a sequential grouping algorithm organizes the simultaneous segments and the unvoiced
segments across time. The resulting binary T-F masks are used by an uncertainty decoder and a target selection
mechanism to recognize the target utterance.

robust recognition results (Cooke et al., 2001; Roman et al., 2003; Srinivasan et al., 2006;

Srinivasan and Wang, 2007). Hence, we propose a CASA system that estimates this mask

to facilitate the recognition of target speech in the presence of interference. When multiple

sources are of interest, the system can produce ideal binary masks for each source by treating

one source as target and the rest as interference.

In this paper, we present a two-stage monaural CASA system that follows the ASA account

of auditory organization as shown in Figure 1. The input to the system is a mixture of target

and interference. The input mixture is analyzed by an auditory filterbank in successive time

frames. The system then generates segments based on periodicity and a multi-scale onset

and offset analysis (Hu and Wang, 2006). In the simultaneous grouping stage, the system

estimates pitch tracks of individual sources in the mixture and within each time frame, voiced

components of individual sound sources are segregated based on periodicity similarity. This

is followed by a sequential grouping stage that utilizes speaker characteristics to group the

resulting simultaneous segments across time. Specifically, we first sequentially group the

segregated voiced portions. Unvoiced segments are then grouped with the corresponding

voiced “streams”. The output of our CASA system are estimates of the ideal binary masks

corresponding to the underlying sources. The masks are then used in an uncertainty decoding

approach to robust speech recognition (Srinivasan and Wang, 2007). Finally, in the case

of multiple speech sources, a target selection process is employed for identifying the target

speech.

The rest of the paper is organized as follows. Sections 2-5 provide a detailed presentation

of the various components of our proposed system. The system is systematically evaluated

on a speech separation challenge (SSC) task that involves the recognition of a target speech

utterance in the presence of either a competing speaker or speech-shaped noise (Cooke and

Lee, 2006). The evaluation results are presented in Section 6. Finally, conclusions and future

work are given in Section 7.
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Figure 2: Cochleagram of a two-talker utterance mixed at 0dB signal-to-noise ratio (SNR). Darker color
indicates stronger energy within the corresponding time-frequency unit.

2 Auditory Based Front-End

Our system first models auditory filtering by decomposing an input signal into the time-

frequency domain using a bank of Gammatone filters. Gammatone filters are derived from

psychophysical observations of the auditory periphery and this filterbank is a standard model

of cochlear filtering (Patterson et al., 1992). The impulse response of a Gammatone filter

centered at frequency f is:

g(f, t) =

{

ta−1e−2πbt cos(2πft), t ≥ 0.

0, else,
(1)

t refers to time; a = 4 is the order of the filter; b is the rectangular bandwidth which increases

with the center frequency f . We use a bank of 128 filters whose center frequency f ranges from

50 Hz to 8000 Hz. These center frequencies are equally distributed on the ERB scale (Moore,

2003) and the filters with higher center frequencies respond to wider frequency ranges.

Since the filter output retains original sampling frequency, we down-sample the 128 channel

outputs to 100 Hz along the time dimension. This yields a corresponding frame rate of 10 ms,

which is used in many short-term speech feature extraction algorithms (Huang et al., 2001).

The magnitudes of the down-sampled outputs are then loudness-compressed by a cubic root

operation. The resulting responses compose a matrix, representing a T-F decomposition of

the input. We call this T-F representation a cochleagram, analogous to the widely used

spectrogram. Please note that unlike the linear frequency resolution of a spectrogram, a

cochleagram provides a much higher frequency resolution at low frequencies than at high

frequencies. We base our subsequent processing on this T-F representation. Figure 2 shows a

cochleagram of a two-talker mixture utterance. The signals from these two talkers are mixed

at 0dB signal-to-noise ratio (SNR).
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We call a time frame of the above cochleagram a Gammatone feature (GF). Hence, a GF

vector comprises 128 frequency components. Note that the dimension of a GF vector is much

larger than that of feature vectors used in a typical speech recognition system. Additionally,

because of overlap among neighboring filter channels, the Gammatone features are largely

correlated with each other. Here, we apply a discrete cosine transform (DCT) (Oppenheim

et al., 1999) to a GF in order to reduce its dimensionality and de-correlate its components.

The resulting coefficients are called Gammatone frequency cepstral coefficients (GFCC) (Shao

et al., 2007).

Rigorously speaking, the newly derived features are not cepstral coefficients because a cep-

stral analysis requires a log operation between the first and the second frequency analysis for

the deconvolution purpose (Oppenheim et al., 1999). Here we regard these features as cepstral

coefficients because of the functional similarities between the above transformation and that

of a typical cepstral analysis. Figure 3 illustrates a GFCC transformed GF and a cochleagram.

The top plot shows a comparison of a GF frame at 1 sec in Figure 2 and the resynthesized

GF from its 30 GFCCs. The bottom plot presents the resynthesized cochleagram from Figure

2 using 30 GFCCs. As can be seen from Figure 2, the lowest 30-order GFCCs retain the

majority information in a 128-dimensional GF. This is due to the “energy compaction” prop-

erty of DCT (Oppenheim et al., 1999). Hence we use the 30-dimensional GFCCs as feature

vectors in our study. Besides the static features, dynamic features such as delta coefficients

are calculated to incorporate temporal information for ASR (Young et al., 2000).

3 Segmentation

With the T-F representation of a cochleagram, our goal here is to determine how the T-F units

are segregated into “streams” so that the units in a stream are only produced by one source

and the units that belong to different streams are produced by different sources. One could

estimate this separation by directly grouping individual T-F units. However, a local unit is

too small for robust global grouping. On the other hand, one could utilize local information

to combine neighboring units into segments that allow for the use of more global information

such as spectral envelope that is missing from an individual T-F unit. This information could

provide robust foundations for grouping.

3.1 Voiced segmentation

The periodic nature of voiced speech provides useful cues for segmentation by CASA systems.

For example, a harmonic usually activates a number of adjacent auditory channels because the

pass-bands of adjacent filters have significant overlap, which leads to a high cross-channel cor-

relation. Additionally, the periodic signal usually lasts for some time, within which it has good

temporal continuity. Thus, we perform segmentation of voiced portions by merging T-F units

using cross-channel correlation and temporal continuity based on the Hu and Wang (2006)

system. Specifically, neighboring T-F units with sufficiently high cross-channel correlation in a

correlogram response are merged to form segments in the low frequency range. A correlogram
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(b)

Figure 3: Illustrations of energy compaction by GFCCs. Plot (a) shows a GF frame at time 1 sec in Figure
2. The original GF is plotted as the solid line and the resynthesized GF by 30 GFCCs is plotted as the dashed
line. Plot (b) presents the resynthesized Cochleagram from Figure 2 using 30 GFCCs.

is a periodicity representation, consisting of autocorrelations of filter responses across all the

filter channels (Wang and Brown, 1999). In the high frequency range, where a Gammatone

filter responds to multiple harmonics, we merge the T-F units on the basis of cross-channel

correlation of response envelopes. Along the time dimension, we employ the temporal conti-

nuity to merge neighboring units if they show high cross-channel correlations (Hu and Wang,

2006). Figure 4 illustrates voiced segments obtained from the signal in Figure 2.

3.2 Unvoiced segmentation

This section describes how our system generates unvoiced segments. In a speech utterance,

unvoiced speech constitutes a smaller portion of overall energy than voiced speech but it

contains important phonetic information for speech recognition.

Unvoiced speech lacks the harmonic structure, and as a result is more difficult to segment.

Here we employ an onset/offset based segmentation method by Hu and Wang (2007). This

method has three processing stages: Smoothing, onset/offset detection, and multiscale in-

tegration. In the first stage, the system smoothes the Gammatone filter responses using a

Gaussian smoothing process. In the second stage, the system detects onsets and offsets in

each filter channel and then merges simultaneous onsets and offsets from adjacent channels

into onset and offset fronts, which are defined as vertical contours connecting onset and offset
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Figure 4: Estimated voiced segments of the two-talker mixture in Figure 2. White color shows the background.
The dark regions represent the voiced segments.

candidates across frequency. Segments are generated by matching individual onset and offset

fronts. The smoothing operation may blur event onsets and offsets of small T-F regions at a

coarse scale, resulting in misses of some true onsets and offset. On the other hand, the de-

tection process may be sensitive to insignificant intensity fluctuations within events at a fine

scale. Thus, a cochleagram may be under-segmented or over-segmented because of detection

errors. Hence, it is difficult to produce satisfactory segmentation on a single scale. Therefore,

a final set of segments are produced by integrating over 4 different scales (for further details

see, Hu and Wang (2007)).

Since onsets and offsets correspond to sudden intensity increases and decreases which could

be introduced by voiced speech or unvoiced speech, the obtained segments usually contain both

speech types. Additionally, unlike natural conversations, the case of blind mixing of sources

leads to blurring and merging of onset-offset fronts. Thus, matching onset and offset fronts

creates segments that are not source homogeneous. Here, we extract the unvoiced segments

from the onset/offset segments by removing those portions that are overlapped with the voiced

segments.

4 Grouping

The voiced and unvoiced segments are separated in both frequency and time. The goal of the

grouping process is to assign these segments into corresponding streams. Since voiced speech

exhibits consistent periodicity across frequency channels at a particular time, we first group

the voiced segments across frequency, namely simultaneous grouping. The resulting simulta-

neous segments are further grouped across time to form homogeneous streams in sequential

grouping. The unvoiced segments are then merged with the streams to generate the final

grouped outputs.
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4.1 Simultaneous grouping

Since pitch is a useful cue for simultaneous grouping (Bregman, 1990; Wang and Brown, 1999),

we employ the Hu and Wang (2006) system to estimate pitch periods and then use them to

group the voiced segments across frequency. The outputs of the system are pitch contours and

their corresponding simultaneous segments. These segments are represented in the form of

binary T-F masks, with 1 labeling a T-F unit belonging to a segment and 0 labeling everything

else. These masks are actually estimates of the ideal binary masks corresponding to individual

sources in the mixture (Hu and Wang, 2006) but separated in time.

The system first produces an initial estimate of pitch contours for up to two sources for the

entire utterance based on the aforementioned correlogram. Then, T-F units are labeled accord-

ing to their consistency of periodicity with the pitch estimates. Specifically, for low-frequency

channels where harmonics are resolved, if a unit shows similar response at an estimated pitch

period, the corresponding T-F unit is labeled consistent with the pitch estimate; it is labeled

inconsistent otherwise. For high-frequency channels that respond to several harmonics, an am-

plitude modulation model is used to determine whether a unit response shows beating at the

pitch period and thus pitch-consistent (Hu and Wang, 2006). Subsequently, a voiced segment

is grouped into a simultaneous segment if more than half of its units are labeled consistent

with the pitch estimate. The segments are further expanded by absorbing neighboring units

that have the same label.

We regard a set of grouped voiced segments as a simultaneous segment, represented by

a binary mask with the T-F units labeled as foreground (target-dominant or 1) if they are

consistent with the pitch estimates and others as background (interference-dominant or 0).

Figure 5 shows a collection of simultaneously grouped segments obtained from the signal

in Figure 2. The background is shown in white, and the different gray regions represent

different simultaneous segments. Note that some voiced segments have been dropped from

Figure 4 because they are not consistent with detected pitch. The simultaneous segments

have expanded to include more high-frequency units than the voiced segments by absorbing

the neighboring units with similar periodicity.

4.2 Sequential grouping

The simultaneous segments are still separated in time and inter-mingled with segments from

other speakers when multiple speakers are present. Thus, a CASA system requires a sequential

grouping process to organize these segments into corresponding streams. For this purpose,

we adapt and employ the sequential organization algorithm by Shao and Wang (2006). This

algorithm performs sequential organization based on speaker characteristics, which are mod-

eled as text-independent models in a typical speaker recognition system (Furui, 2001). The

algorithm searches for the optimal segment assignment by maximizing the posterior proba-

bility of an assignment given the simultaneous segments. As a by-product, it also detects

the two underlying speakers from the input mixture. Specifically, for each possible pair of

speakers, it searches for the best assignment using speaker identification (SID) scores of a

segment belonging to a speaker model. Finally, the optimal segment assignment is chosen by

9
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Figure 5: Estimated simultaneous segments of the two-talker mixture in Figure 2. White color shows the back-
ground. Different gray-colored segments indicate that the voiced segments have been grouped across frequency
but still separated in time.

the speaker pair that yields the highest aggregated SID score (Shao and Wang, 2006).

The goal of SID is to find the speaker model that maximizes the posterior probability

for an observation sequence O given a set of K speakers Λ = {λ1, λ2, . . . , λK} (Furui, 2001).

Assuming an input signal comprises two sources (two-talker) from the speaker set, we establish

our computational goal of sequential grouping as,

ĝ, λ̂I, λ̂II = arg max
λI,λII∈Λ,g∈G

P (λI, λII, g|S) (2)

S = {S1, S2, . . . , Si, . . . , SN} is the set of N simultaneous segments Si derived from preced-

ing CASA processing. g is a segment labeling vector and its components take binary values of

0 or 1, referring to up to two speaker streams. G is the assignment space. By combining a g

and a segment set S, we know how the individual segments are assigned to two streams. Please

note that g does not represent speaker identities but only denote that the segments marked

with the same label are from the same speaker. Thus, our objective of sequential grouping

may be stated as finding a segment assignment ĝ that maximizes the posterior probability.

As a side-product, the underlying speaker identities are also detected.

The posterior probability in (2) can be rewritten as

P (λI, λII, g|S) =
P (λI, λII, g, S)

P (S)
= P (S|g, λI, λII)P (g|λI, λII)

P (λI, λII)

P (S)
(3)

Since a two-talker mixture may be blindly mixed, the assignment is independent of specific

models. Thus, P (g|λI, λII) becomes P (g) which may depend on the SNR level of a mixture

because an extremely high or low SNR might lead to a bias of either 0 or 1 in g. Without

prior knowledge, we assume it to be uniformly distributed.

Assuming independence of speaker models and applying the same assumption from speaker

10
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identification studies that prior probabilities of speaker models are the same, we insert equation

(3) into (2) and remove the constant terms. The objective then becomes finding an assignment

and two speakers that have the maximum probability of assigned simultaneous segments given

the corresponding speaker models as follows.

ĝ, λ̂I, λ̂II = arg max
λI,λII∈Λ,g∈G

P (S|g, λI, λII) (4)

The conditional probability on the right-hand-side of the equation is essentially a joint SID

score of assigned segments.

Given a labeling g, we denote S0 as the subset of segments labeled 0, and S1 the subset

labeled 1. Since S0 and S1 are complementary, the probability term in (4) can be written as

follows,

P (S|g, λI, λII) = P (S0, S1|λI, λII) (5)

Here, the g term is dropped for simplification because the two subsets already incorporate the

labeling information.

Assuming that any two segments, Si and Sj , are independent of each other given the models

and that segments with different labels are produced by different speakers, the conditional

probability in (5) can be written as

P (S0, S1|λI, λII) = P (S0|λI, λII)P (S1|λI, λII)

=
∏

Si∈S0

P (Si|λI)
∏

Sj∈S1

P (Sj|λII) (6)

Thus, the goal of sequential grouping leads to a search of the speaker and the label space

for a specific label (grouping) and a pair of speakers that maximizes the joint probability of

assigned segments given a speaker pair. This search requires evaluations of SID scores of a

segment given a speaker model. In our recent study, we have found that incorporating our

novel Gammatone frequency cepstral coefficients (GFCCs) with binary masks and uncertainty

decoding yields substantially better SID performance than the state-of-the-art robust features

(Shao et al., 2007). Here, we calculate the likelihood score of a segment using this method.

Studies have shown that voiced speech plays a dominant role in sequential grouping and

speaker recognition, e.g. Shao and Wang (2006). Therefore, we first apply the above sequen-

tial grouping algorithm to organize the simultaneous segments, producing two binary masks

(streams) and corresponding speaker identities. Secondly, the unvoiced segments are grouped

with the two streams using the above sequential grouping algorithm except that the system

uses the detected speaker pair associated with the masks. We find that the unvoiced segments

are typically much smaller than simultaneous segments, resulting in poor likelihood estima-

tion by uncertainty decoding. Therefore likelihoods are calculated by a missing data method

of marginalization which ignores the missing T-F units (Shao and Wang, 2006). Figure 6

presents the separated speaker streams after grouping simultaneous segments and unvoiced

segments. The two speaker streams are shown in two different gray colors.

We find that the onset/offset analysis does not capture all the speech segments. Therefore,
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Figure 6: The estimated speaker streams after sequential grouping of simultaneous segments and unvoiced
segments. White color shows the background. The two gray-colored regions represent two separated speaker
streams.

to refine the binary masks, we apply a watershed algorithm (Vincent and Soille, 1991) to

the cochleagram of the mixture and extract fragments that comprise T-F units with similar

energy values. A resulting segment is absorbed by either of the aforementioned masks if it

is largely (greater than two-thirds) overlapped with them. This step assumes that a small

segment of connected T-F units with close energy values is produced by the same speaker.

Subsequently, if a segment has not been merged, its overlapped portions, if any, are removed

from itself. Finally, the remaining segments are grouped with the refined masks using the

sequential grouping algorithm and the detected speaker pair.

5 Uncertainty Decoding

After processing a two-talker mixture by our CASA system, we have obtained two binary T-F

masks. How do we use these masks for speech recognition? One solution is to use a miss-

ing data ASR recognizer of Cooke et al. (2001). This recognizer treats the noise-dominant

T-F units as missing or unreliable and marginalizes them during recognition. However, this

constrains the recognition to be performed in the T-F domain instead of the cepstral do-

main. Additionally, mask estimation errors degrade the recognition performance. Estimation

of these errors would enable their use in an uncertainty decoder (Deng et al., 2005) for im-

proved recognition results. Hence, we propose the use of our novel auditory cepstral feature,

GFCC, in conjunction with the uncertainty decoder for speech recognition. Specifically, GFs

are reconstructed from the estimated binary masks by utilizing the statistical information

contained in a speech prior. At the same time reconstruction uncertainties are also estimated.

These GFs and uncertainties are transformed into the GFCC domain as described in Section

2. Finally the resulting GFCCs and the uncertainties are fed into an uncertainty decoder for

recognition.

12



OSU Dept. of Computer Science and Engineering Technical Report #62, 2007

Given a binary T-F mask, a noisy spectral vector Y at a particular time frame is partitioned

into reliable and unreliable constituents as Yr and Yu, where Y = Yr ∪ Yu. The reliable

features are the T-F units labeled 1 (target-dominant) in the binary mask while the unreliable

features are the ones labeled 0 (interference-dominant). Assuming that the reliable features

Yr approximate well the true ones Xr, a Bayesian decision is then employed to estimate the

remaining components Xu given the reliable ones and a prior speech model. As proposed

by Raj et al. (2004) and Srinivasan and Wang (2007), we model the speech prior as a mixture

of Gaussians,

p(X) =

M
∑

k=1

p(k)p(X|k), (7)

where M = 2048 is the number of mixture components, k is the mixture index, p(k) is the

mixture weight, and p(X|k) = N(X; µk, Σk). The binary mask is also used to partition the

mean and covariance of each mixture into their reliable and unreliable components as:

µk =

[

µr,k

µu,k

]

, Σk =

[

Σrr,k Σru,k

Σur,k Σuu,k

]

. (8)

Note that Σru,k and Σur,k denote the cross-covariance between the reliable and unreliable

components.

We first estimate the unreliable components given the reliable ones as

EXu|Xr
(Xu) =

M
∑

k=1

p(k|Xr)X̂u,k, (9)

where p(k|Xr) is the a posteriori probability of the k’th mixture given the reliable data and

X̂u,k is the expected value of Xu given the k’th mixture. p(k|Xr) is estimated using the

Bayesian rule and the marginal distribution p(Xr|k) = N(Xr; µr,k, Σrr,k) (Srinivasan and

Wang, 2007). The expected value in the unreliable T-F units corresponding to the k’th

mixture is computed as

X̂u,k = µu,k + Σur,kΣ
−1

rr,k(Xr − µr,k). (10)

Besides estimating the unreliable T-F units, we are also interested in computing the un-

certainty in our estimates. The variance associated with the reconstructed vector X̂ can also

be computed in a similar fashion to the computation of the mean in (9) as:

Σ̂X̂ =

M
∑

k=1

p(k|Xr)

{

([

Xr

X̂u,k

]

− µk

)

×

([

Xr

X̂u,k

]

− µk

)T

+

[

0 0

0 Σ̂u,k

]

}

, (11)

where

Σ̂u,k = Σuu,k − Σur,kΣ
−1

rr,kΣru,k. (12)

The observation density in each state of a hidden Markov model (HMM) based ASR is

13
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usually modeled as a mixture of Gaussian densities. Therefore,

p(z|k, q) = N(z; µk,q, Σk,q) (13)

is the likelihood of observing a speech frame z given state q and mixture component k; µk,q

and Σk,q are the mean and the variance of the Gaussian mixture component. When noisy

speech is processed by unbiased speech enhancement algorithms, it is shown by Deng et al.

(2005) that the observation likelihood should be computed as

∫ ∞

−∞

p(z|k, q)p(ẑ|z)dz = N(ẑ; µk,q, Σk,q + Σẑ). (14)

It can be seen in (14) that the uncertainty decoder increases the variance of individual Gaussian

mixture components to account for the mask estimation errors (Deng et al., 2005; Srinivasan

and Wang, 2007). Here, the reconstructed GF feature X̂ and its uncertainty Σ̂X̂ are trans-

formed into the GFCC domain as ẑ and Σ̂ẑ and then used in the uncertainty decoder. Σ̂ẑ is

the estimate of Σẑ in (14).

6 Experimental Results

We evaluate our system on the speech separation task (Cooke and Lee, 2006). This task aims

to recognize speech from a target talker in the presence of another competing speaker (two-

talker) or speech-shaped noise (SSN). The signals are sampled at 25 kHz and every utterance

follows a sentence grammar of

$command $color $preposition $letter $number $adverb.

There are 4 choices each for $command, $color, $preposition and $adverb, 25 choices for $letter

(A-Z except W), and 10 choices for $number (1-9 and zero). For example, a valid utterance

could be “Place blue at F 2 now”. The possible choices in each position are roughly uniformly

distributed in the corpus. The two-talker task is to identify the letter and the number spoken

by the talker who said the keyword color, “white”. The SSN task is to identify the color, the

letter and the number.

The training data is drawn from a closed set of 34 talkers and consists of 17,000 utterances.

The two-talker test data contains pairs of sentences mixed at 6 different target-to-masker

ratios (TMRs): −9, −6, −3, 0, 3 and 6 dB. One third of this data consists of same talker

(ST) mixtures, another third comprises of mixtures of different talkers of the same gender

(SG), and the remaining third consists of different gender (DG) mixtures. The SSN test set

is generated by mixing clean utterances with speech-shaped noise at 4 SNRs: −12, −6, 0 and

6 dB. Each TMR contains 600 utterances. The SSC corpus also contains a development set.

However, since our CASA system does not have parameters to tune, we do not report results

on the development set.

To build speaker models, we utilize the GFCC feature as described in Section 2. Each of the

34 speaker models comprises 64 mixtures of Gaussians. The speech prior model is trained on

GF features and comprises 2048 Gaussian mixtures. This prior model and the binary masks

14
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are used in the cochleagram domain to reconstruct the missing T-F units. The reconstructed

GFs are then transformed into the GFCC domain using DCT. For recognition, we form the 60-

dimensional feature vector of GFCC D, including delta coefficients calculated using a sliding

window of 5 frames (Young et al., 2000). GF uncertainties are also transformed into the

cepstral domain since DCT is a linear transformation. Whole-word HMM-based speaker-

independent ASR models are then trained on clean speech; each word model comprises 8 states

and 32 Gaussian mixtures with diagonal covariance in each state. The uncertainty decoder

also uses diagonal covariance for uncertainties. During the recognition process, given the

estimated uncertainties and the clean ASR, the uncertainty decoder calculates the likelihood

of the reconstructed GFCC D features and transcribes the speech.

Since our CASA system does not rely on the content information in an utterance, the

system does not know which separated stream contains “white” in the two-talker task. In

order to select the target, we employ a normalized scoring method. We let our uncertainty

decoder recognize both segregated streams using two different grammars (W and NW):

W: $command white $preposition $letter $number $adverb

and

NW: $command $non-white $preposition $letter $number $adverb,

where $non-white only has 3 choices of colors except white. A normalized score is calculated

for each stream by subtracting the recognition likelihood score of NW from the one using

grammar W. The stream with a larger score is chosen as the target, i.e., stream 1 (s1) is

chosen as the target when

PW (s1) − PNW (s1) > PW (s2) − PNW (s2), (15)

or stream 2 (s2) if otherwise. This selection metric is actually the same as evaluating the joint

likelihood score of one stream containing the keyword “white” while the other containing

$non-white. Eq. (15) is the same as,

PW (s1) + PNW (s2) > PNW (s1) + PW (s2). (16)

The evaluation results of the proposed CASA system on the two-talker task is summarized

in Table 1. The performance is measured in terms of recognition accuracy of the relevant

keywords at each TMR conditions (Cooke and Lee, 2006). We report the results for the

different gender (DG), the same gender (SG) and the same talker (ST) subcategories as well as

the overall mean score (Avg.). For comparison, we also show the performance of our baseline

system without segregation. The proposed system improves significantly over the baseline

system in terms of average accuracy across all TMR conditions. Larger improvements are

observed in the DG and the SG conditions. However, the system does not perform nearly as

well in the ST condition, which is not a realistic condition. This is primarily due to our use

of speaker characteristics for sequential grouping. Note that for the ST condition, speaker

characteristics are not distinctive for segregation. Figure 7 compares the system performance

with (w/) and without (w/o) the ST conditions. Note that baseline performance is nearly

15
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Table 1: Recognition accuracy (in %) of the baseline system and the proposed CASA system on the two-
talker task. DG, SG and ST refer to subconditions of “different gender”, “same gender” and “same talker”
respectively. Avg. is the mean accuracy.

TMR(dB)/System DG SG ST Avg.

6
Baseline 66.00 65.92 66.52 66.17
Proposed 80.75 76.81 54.98 70.08

3
Baseline 51.25 49.44 51.58 50.83
Proposed 78.50 72.63 39.14 62.25

0
Baseline 36.00 34.64 32.58 34.33
Proposed 74.50 67.31 25.34 54.25

−3
Baseline 19.25 22.07 18.55 19.83
Proposed 63.50 53.07 20.59 44.58

−6
Baseline 9.50 10.34 9.50 9.75
Proposed 48.00 36.31 17.19 33.17

−9
Baseline 3.25 4.75 3.62 3.83
Proposed 32.00 22.34 11.99 21.75

the same for the with and the without ST conditions. Our CASA system achieves further

absolute improvement of over 11% on average in the without ST condition over the with ST

condition.

Since our sequential grouping algorithm also identifies the underlying speakers, we also

present the evaluation results of SID performance in Table 2. Note that under most of the

TMR conditions, we achieve an accuracy of over 90% in recognizing the target speaker.

Table 2: Speaker identification (SID) accuracies in the two-talker task. “Both SID” shows the accuracies
when both speakers in a mixture are identified correctly. “Target SID” presents the accuracies when the target
speaker is identified as either of the SID outputs.

TMR(dB) −9 −6 −3 0 3 6
Both SID 12.83 33.50 57.50 65.33 63.17 46.17

Target SID 57.17 89.50 98.17 99.5 99.83 99.33

For the SSN task, the speaker model-based sequential grouping algorithm is not applica-

ble. Hence, we directly use the simultaneous segment as the final binary mask output. As in

the two-talker condition, GFCC D features and associated uncertainties obtained from recon-

structed GF features are fed to the uncertainty decoder for recognition. Table 3 presents the

performance of our system in terms of recognition accuracy in percentage. Across all the SNR

conditions, our CASA system shows a significant improvement over the baseline recognizer.

7 Conclusions and Discussions

In this paper, we have presented a CASA system capable of segregating and recognizing

the contents of a target utterance in the presence of other speech sources or speech-shaped
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Figure 7: Recognition accuracy on the two-talker task. The solid star line represents our baseline recognition
results. The dashed plus line shows the baseline performance without the same talker (ST) data. The results of
our proposed CASA system is given as the solid circle line. Its accuracy without the ST condition is presented
as the dashed square line.

Table 3: Recognition accuracy (in %) on the SSN task using the proposed CASA system. For comparison, the
baseline performance is also shown.

SNR(dB) −12 −6 0 6 Clean
Baseline System 13.00 12.50 16.22 29.50 93.94
Proposed System 18.78 33.39 57.94 75.40 -

noise. The proposed CASA system is an end-to-end system that follows the ASA account

of auditory organization and produces streams that correspond to different sound sources

in a mixture. The contents of the target stream are then recognized using an uncertainty

decoding framework. We have systematically evaluated our system on the speech separation

task and obtained significant improvement over the baseline performance across all TMR/SNR

conditions. For example, at 0dB TMR two-talker condition, the absolute improvement in word

accuracy is about 20%. Additionally, the accuracy of identification of both speakers is 65.33%,

and of the target speaker is 99.5%.

The proposed system is primarily based on features such as periodicity, AM, and on-

set/offset. These properties are not specific to the target source to be segregated or even to

speech sounds. In other words, the system does not use a priori knowledge of sound sources in

the mixture, except in sequential grouping, where we have utilized text-independent speaker

models to represent speaker characteristics. Moreover, the segregation does not depend on the

nature and the size of the target vocabulary, the recognition task or even the language of the

speech sources in the mixture. A resulting advantage is the generality of our system in terms

of dealing with both speech and non-speech interferences. Further, the ASA inspired archi-
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tecture of the proposed system and adoption of the ideal binary mask as the computational

goal make the system readily scalable to handle multiple interference sources.

Similar to the generality of our CASA system, the uncertainty decoding framework of Srini-

vasan and Wang (2007) does not require interference conditions to be known a priori. Hence,

it is used in conjunction with our CASA system for robust recognition. Although the proposed

uncertainty estimation approach provides promising results, other approaches for estimation

of this uncertainty could also be explored. For example, it might be beneficial to directly

estimate the uncertainties corresponding to the static and the delta coefficients. This would

enable us to exploit the differences in the a priori accuracies of these coefficients.

Acknowledgements. This research was supported in part by an AFOSR grant (FA9550-

04-1-0117), an AFRL grant (FA8750-04-1-0093) and an NSF grant (IIS-0534707). We are

grateful to Guoning Hu for discussion and much assistance. We acknowledge the SLATE Lab

(E. Fosler-Lussier) for providing computing resources. A preliminary version of this work was

presented in 2006 Interspeech.

References

Allen, J. B., 2005. Articulation and Intelligibility. Morgan & Claypool, San Rafael, CA.

Bregman, A. S., 1990. Auditory scene analysis. The MIT Press, Cambridge, MA.

Cooke, M., Green, P., Josifovski, L., Vizinho, A., 2001. Robust automatic speech recognition

with missing and unreliable acoustic data. Speech Comm. 34, 267–285.

Cooke, M., Lee, T., 2006. Speech separation and recognition competition.

URL http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm

Deng, L., Droppo, J., Acero, A., 2005. Dynamic compensation of HMM variances using the

feature enhancement uncertainty computed from a parametric model of speech distortion.

IEEE Trans. on Speech, and Audio Processing 13, 412–421.

Deoras, A. N., Hasegawa-Johnson, M., 2004. A factorial HMM approach to simultaneous

recognition of isolated digits spoken by multiple talkers on one audio channel. In: Proc.

ICASSP ’04. Vol. 1. pp. 861–864.

Ephraim, Y., 1992. A Bayesian estimation approach for speech enhancement using hidden

Markov models. IEEE Trans. on Signal Processing 40 (4), 725–735.

Furui, S., 2001. Digital speech processing, synthesis, and recognition. Marcel Dekker, New

York.

Gales, M. J. F., Young, S. J., 1996. Robust continuous speech recognition using parallel model

combination. IEEE Trans. on Speech, and Audio Processing 4, 352–359.

18



OSU Dept. of Computer Science and Engineering Technical Report #62, 2007

Hu, G., Wang, D., 2006. An auditory scene analysis approach to monaural speech segregation.

In: Hansler, E., Schmidt, G. (Eds.), Topics in Acoustic Echo and Noise Control. Springer,

Heidelberg, pp. 485–515.

Hu, G., Wang, D. L., 2007. Auditory segmentation based on onset and offset analysis. IEEE

Trans. on Audio, Speech, and Language Processing 15, 396–405.

Huang, X., Acero, A., Hon, H., 2001. Spoken Language Processing. Prentice Hall PTR, Upper

Saddle River, NJ.

Jang, G., Lee, T., 2003. A probabilistic approach to single channel blind signal separation. In:

Becker, S., Thrun, S., Obermayer, K. (Eds.), Advances in Neural Information Processing

Systems 15. MIT Press, Cambridge, MA, pp. 1173–1180.

Kristjansson, T., Attias, H., Hershey, J., 2004. Single microphone source separation using high

resolution signal reconstruction. In: Proc. ICASSP ’04. Vol. 2. pp. 817–820.

Moore, B. C. J., 2003. An introduction to the Psychology of Hearing, 5th Edition. Academic

Press, San Diego, CA.

Oppenheim, A. V., Schafer, R. W., Buck, J. R., 1999. Discrete-time signal processing, 2nd

Edition. Prentice-Hall, Inc., Upper Saddle River, NJ.

Patterson, R. D., Holdsworth, J., Allerhand, M., 1992. Auditory models as perprocessors for

speech recognition. In: Schouten, M. E. H. (Ed.), The auditory processing of speech: From

sounds to words. Mouton de Gruyter, Berlin, Germany, Ch. 1, pp. 67–83.

Raj, B., Seltzer, M. L., Stern, R. M., 2004. Reconstruction of missing features for robust

speech recognition. Speech Communication 43, 275–296.

Raj, B., Singh, R., Smaragdis, P., 2005. Recognizing speech from simultaneous speakers. In:

Proc. Interspeech ’05. pp. 3317–3320.

Roman, N., Wang, D. L., Brown, G. J., 2003. Speech segregation based on sound localization.

J. Acoust. Soc. Am. 114, 2236–2252.

Roweis, S. T., 2005. Automatic speech processing by inference in generative models. In: Di-

venyi, P. (Ed.), Speech separation by humans and machines. Kluwer Academic, Norwell,

MA, pp. 97–134.

Shao, Y., Srinivasan, S., Wang, D. L., 2007. Incorporating auditory feature uncertainties in

robust speaker identification. In: Proc. ICASSP ’07. Vol. IV. pp. 277–280.

Shao, Y., Wang, D. L., 2006. Model-based sequential organization in cochannel speech. IEEE

Trans. on Audio, Speech and Language Processing 14, 289–298.

Srinivasan, S., Roman, N., Wang, D. L., 2006. Binary and ratio time-frequency masks for

robust speech recognition. Speech Communication 48, 1486–1501.

19



OSU Dept. of Computer Science and Engineering Technical Report #62, 2007

Srinivasan, S., Wang, D. L., 2007. Transforming binary uncertainties for robust speech recog-

nition. IEEE Transactions on Audio, Speech and Language Processing, in press.

Varga, A. P., Moore, R. K., 1990. Hidden Markov model decomposition of speech and noise.

In: Proc. ICASSP ’90. pp. 845–848.

Vincent, L., Soille, P., 1991. Watersheds in digital spaces: An efficient algorithm based on

immersion simulations. IEEE Trans. on Pattern Analysis and Machine Intelligence 13 (6),

583–598.

Wang, D. L., 2005. On ideal binary mask as the computational goal of auditory scene analysis.

In: Divenyi, P. (Ed.), Speech separation by humans and machines. Norwell, MA, pp. 181–

197.

Wang, D. L., Brown, G. J., 1999. Separation of speech from interfering sounds based on

oscillatory correlation. IEEE Trans. on Neural Networks 10 (3), 684–697.

Young, S., Kershaw, D., Odell, J., Valtchev, V., Woodland, P., 2000. The HTK Book (for

HTK Version 3.0). Microsoft Corporation.

20


