
A Distributed Maximal Scheduler for Strong
Fairness

Matthew Lang and Paolo A. G. Sivilotti

Department of Computer Science and Engineering
The Ohio State University, Columbus OH, USA, 43210-1277

{langma,paolo}@cse.ohio-state.edu

Abstract. Weak fairness guarantees that if an action is continuously en-
abled, it is executed infinitely often. Strong fairness, on the other hand,
guarantees that actions that are enabled infinitely often (but not nec-
essarily continuously), are executed infinitely often. In this paper, we
present a distributed algorithm for scheduling actions for execution. As-
suming weak fairness for the execution of this algorithm, the schedule it
provides is strongly fair. Furthermore, this algorithm is maximal in that
it is capable of generating any strongly fair schedule. This algorithm is
the first strongly-fair scheduling algorithm that is both distributed and
maximal.

1 Introduction

An action system models a distributed systems as a set of actions, each of which is
either enabled or disabled. A fairness assumption controls the selection of actions
from this set for execution. For example, weak fairness requires that an action
that is enabled continuously be selected infinitely often while enabled. Strong
fairness, on the other hand, requires that an action that is enabled infinitely
often (but perhaps not continuously) be selected while enabled infinitely often.

The choice of fairness assumption is an important aspect of any model of be-
havior for a distributed system. Weak fairness is useful because of the minimal
assumption it makes and the simple scheduling algorithm required to implement
it: Select every action infinitely often. Strong fairness, on the other hand, is use-
ful for simplifying the design of synchronization and communication protocols
since it rules out the starvation of actions that are repeatedly enabled. While
weak fairness reflects an asynchronous and independent scheduling of individ-
ual actions, strong fairness reflects some scheduling coordination to rule out
certain pathological traces. The advantages of both models can be achieved by
constructing a strongly-fair scheduler on top of an assumption of weak fairness.

A program is correct if it can exhibit only behaviors permitted by its specifi-
cation. A correct program is maximal[3] if it can exhibit all behaviors permitted
by its specification. Maximal programs are important for testing component-
based systems because they prevent a component implementation from provid-
ing unnecessarily deterministic behavior and, in this way, masking errors in its

2

clients. For example, if a scheduling algorithm is not maximal, it is incapable of
generating some traces that are otherwise possible under the corresponding fair-
ness assumption. These traces are no longer observable behaviors for the system
built on top of such a limited scheduler.

In this paper, we present a strongly-fair scheduler, layered on top of a weak
fairness assumption. This algorithm is distributed: it does not maintain a global
set of enabled actions and it permits concurrent selection of independent actions.
Furthermore, this algorithm is maximal: any trace that satisfies strong fairness is
a possible behavior of the scheduler. To our knowledge, this is the first strongly-
fair scheduler that is both distributed and maximal.

This paper is organized as follows. Section 2 describes maximality and fair-
ness and illustrates how the properties one can derive about a system depend
on the underlying assumption of fairness. Section 3 introduces the strong fair-
ness scheduling problem and provides a formal specification of a strongly-fair
scheduler. Section 4 contains our solution to the strong fairness problem; we
prove its correctness in Section 5. Section 6 presents a proof of maximality of
the algorithm. Section 7 examines related work and discusses the advantage of
our maximal algorithm over existing strongly-fair scheduling algorithms, while
Section 8 concludes the paper.

2 Maximality and Fairness

2.1 Maximality

A program is maximal if it is capable of generating any behavior permitted by
a specification. This notion is similar to bisimulation [9, 11]. However, bisimula-
tion involves relating artifacts with similar mathematical representations, while
maximality relates a program text to a formal specification.

Proving the maximality of a program P with respect to a specification S
is carried out in three stages. In the first stage, one defines a set of specification
variables mentioned by S and derives properties of traces of these variables from
S . Next, one shows that an arbitrary trace σ ∈ |S| satisfying these properties
is a possible execution of an instrumented version P ′ of P (Chronicle Corre-
spondence). Finally, one proves that every fair execution of P ′ corresponds to a
fair execution of P (Execution Correspondence). Then, since σ was a possible
execution of P ′ and every execution of P ′ corresponds to an execution of P ,
σ is a possible execution of P . Since σ is an arbitrary trace, we can conclude
that any trace satisfying S is a possible execution of P .

Constructing P ′ is carried out by adding new variables, assignments to new
variables within existing actions, guards to existing actions, and actions that
assign to only new variables. These additions ensure that safety properties of P
are safety properties of P ′ . The new variables typically include read-only chron-
icle variables that encode the trace σ and auxiliary variables (e.g., variables that
encode the current point in the computation).

In order to show chronicle correspondence, it suffices to show that (i) it is
an invariant of P ′ that the program state is identical to σ and (ii) that the

3

point in the computation eventually increases. Proving execution correspondence
requires showing that (i) each additional guard in P ′ is infinitely often true and
(ii) the truth of each additional guard is preserved by the execution of every
other action in P ′ . These properties ensure that each action is infinitely often
executed in a state where the additional guard is true. Then, one can infer that
every weakly-fair execution of P ′ corresponds to a weakly-fair execution of P .

This proof technique was introduced in [4] and is used to carry out a proof
of maximality for a variety of programs, including a task-scheduling problem,
in [10]. The specification of the strongly-fair scheduling problem, however, is
compositional in nature, so we follow the method for proving maximality in
composed systems outlined in [8].

2.2 Fairness

In the rest of the section, we will illustrate the difference between weak and
strong fairness using the following simple system.

Program fairness
var b : boolean

x, y : int
initially b
assign

A : true −→ x := x + 1 ‖ b := ¬b
B : b −→ y := x

The program fairness has three program variables: two integers, x and y ,
and a boolean variable, b . Action A is always enabled and increments x by
one and sets b to ¬b . Action B is enabled in states where b is true and assigns
y the value of x .

Weak Fairness Recall that weak fairness is the property that every action
in a system is infinitely often selected to be executed. Under this assumption,
one can prove the following properties of fairness: the safety property (i) x
increases by at most one in each step in the computation, and the progress
properties (ii) x eventually increases and (iii) b eventually changes value. That
is, in UNITY logic, x = k next |x− k| ≤ 1 (i), x = k ; x 6= k (ii), and
b = k ; b 6= k (iii). Progress properties (ii) and (iii) follow from the fact
that action A is infinitely often executed in a state where it is enabled.

The only property we can derive about y under weak fairness is the following
safety property: at each step of the computation, y either remains the same
or changes to the value of x . We cannot derive any progress property about
y ; we cannot make the assumption that action B will ever be selected for
execution while it is enabled. To see why, observe that the following schedule
σ = 〈A,B,A, A,B,A, A,B, . . .〉 never executes B in a state where b is true.
σ is weakly-fair; both actions are infinitely often selected for execution.

4

Strong Fairness A strong fairness assumption allows us to prove stronger
properties of fairness. Under strong fairness, any action that is infinitely often
enabled must be infinitely often executed in a state in which it is enabled. As-
suming strong fairness we can derive the same safety and progress properties
about x and b . However, we can now prove a stronger progress property about
y . Since we know that b infinitely often changes value, it follows that b is
infinitely often true (true ; b) and action B is infinitely often enabled.

Since B is infinitely often enabled, the strong fairness assumption entails
that it is infinitely often selected for execution in a state where b holds. It
follows that x = y infinitely often (true ; x = y).

2.3 Maximality and Scheduling

Maximal scheduling of systems is important. When reasoning about systems, we
want our assertions to (i) be as strong as possible and (ii) hold in every possible
execution of a system. A maximal scheduler ensures that the strongest properties
we prove using the program text and a notion of fairness are the strongest
properties of the actual system behavior. A non-maximal scheduler eliminates
possible executions and therefore allows us to assert stronger properties that
hold on only a subset of possible program executions.

To illustrate, consider a non-maximal strongly-fair scheduler that allows a
process u to disable any other action v at most twice before v is scheduled for
execution in a state in which it is enabled. This scheduler is correct — actions
which are infinitely often enabled are infinitely often executed in a state in
which they are enabled. However, the scheduler clearly generates a small subset
of possible correct schedules.

If we schedule the program fairness using this scheduler, we see action A can
execute at most four times before action B must execute in a state in which it is
enabled. This allows us to prove much stronger properties about y : x− y ≤ 4
is a program invariant.

Although we can now assert a stronger program property, this is undesirable,
for instance, in the case of testing. If one were to test the program fairness
composed with such a non-maximal scheduler, one may be led to believe that
x− y ≤ 4 is indeed an invariant of the system. In fact, it would be impossible
to design a test case to expose the fact that it is not.

Fortunately, maximal scheduling algorithms exist for weak fairness. The un-
hygienic algorithm presented in [8] is a maximal solution to the dining philoso-
phers problem and can be used to generate maximal weakly-fair schedules.

In the rest of this paper, we create the first maximal strongly-fair scheduler.
As a first step, we formalize the problem of strongly-fair scheduling.

3 Specification

In the following section we formally define the strong fairness scheduling problem.
We formulate the problem as a distributed resource allocation problem, where
each action corresponds to a process.

5

3.1 Description of the system

The system is comprised of a set of processes, each comprised of two components
— a client layer and a scheduler layer. The system designer is given the specifi-
cation of both layers and must design a refinement of the scheduler specification.
Then, given any implementation meeting the client specification, the scheduler
layer generates a strongly-fair schedule.

Each process has an associated action which modifies some state shared
by all processes in the system. A process is enabled in some states. In these
states, a client can be granted a lock to modify the shared state. The client must
simultaneously increment a count when it changes the state, and in order to
release a lock the client must execute its action and increase the count.

We say two processes u and v are neighbors if the execution of action u
or v can affect the other’s enabledness. If the scheduler guarantees that no two
neighboring processes simultaneously hold a lock, the client layer guarantees that
held locks are eventually relinquished.

It is the responsibility of the scheduler layer to manage locks. If a process is
infinitely often enabled, the scheduler ensures that it is infinitely often granted
a lock.

The composed system generates a strongly-fair schedule — if a process is
infinitely often enabled, it infinitely often changes its count.

In order to make sure our specification is as general as possible, we neglect to
formalize state, action, and enabled. Omitting formal definitions of these notions
from the problem specification allows a solution to the strong fairness problem
to be adapted to any domain in which processes intermittently desire access to
shared resources (in this case, the shared program state) and desire to access the
shared resource is predicated upon the behavior of other processes in the system
(neighbors).

3.2 Formal Specification of the Strong Fairness Problem

The system is comprised of a set of processes P . All processes have access to
a symmetric neighbor relation N ⊆ P2 . We define N(u, v) if the execution
of action u or v can affect the other’s enabledness. This neighbor relation is
irreflexive, it is never the case N(u, u) 1.

In addition, each process u ∈ P has the following local variables:

– u.count , a count of the number of times action u has executed. Since the
execution of actions is atomic, there is no state in which an action is execut-
ing. Consequently, we require that when an action u executes, u.count is
incremented.

– u.enabled , a boolean representing the enabledness of u .
– u.lock , a boolean. u.lock is true if the process is free to execute its action.

1 This is not to say that a process cannot enable/disable itself by executing its action;
this is captured in the specification. The irreflexivity of N only simplifies presenta-
tion.

6

3.3 Client Layer Specification

The client layer is responsible for execution of the action associated with a
process. Intuitively, a client is “idle” until it is granted a lock. When granted a
lock, the client eventually executes its action and increments its count, releasing
the lock.

In UNITY logic, the specification is as follows:
Specification for client process u , where v ranges over processes, b and a

range over B , and k ranges over N :

(∀ v : v 6= u : constant v.lock) (C0)
(∀ v : v 6= u : constant v.count) (C1)
(∀ v, b : ¬N(u, v) : constant v.enabled = b) (C2)
(∀ v, b, a, k : N(u, v) : stable ¬u.lock ∧ u.count = k

∧ v.enabled = b ∧ u.enabled = a) (C3)
(∀ v, b, a, k : N(u, v) : u.lock ∧ u.count = k

∧ v.enabled = b ∧ u.enabled = a

unless ¬u.lock ∧ u.count = k + 1) (C4)
Hypothesis: invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock)),

invariant u.lock ⇒ u.enabled

Conclusion: u.lock ; ¬u.lock (C5)

The first safety requirement on the client layer for a process u is C0 which
ensures u does not assign to v.lock for all other processes v . C2 ensures u does
not assign to v.enabled for non-neighboring processes v . C3 dictates that when
u.lock does not hold, u does not modify u.count or v.enabled for neighboring
processes v . Finally, C4 dictates that when u holds a lock, it continues to hold
it until it increments u.count . C4 also ensures that u may only change the
enabledness of neighbors when it releases a lock and executes its action.

The progress property C5 is a conditional property; if the scheduling layer
maintains the property that no neighboring processes hold a lock and holding a
lock implies that a process is enabled, the client layer guarantees that a lock is
eventually relinquished.

The mutual exclusion property and the invariant in the hypothesis of C5
are important; neighboring processes are permitted to modify the enabledness
of their neighbors. If two neighboring processes u and v simultaneously hold
locks, a process, say u , may execute its action and disable the other. Then v is
not guaranteed to become re-enabled and execute its action, releasing the lock.

This property also helps to further the goal of making our formulation of the
strong fairness problem as general as possible; processes can perform computa-
tion requiring exclusive access to a shared resource while holding a lock.

7

3.4 Scheduler Layer Specification

The scheduler layer schedules actions for execution by granting client processes
locks — when a client process holds a lock it is free to execute its associated
action.

When a process becomes enabled, the scheduler should “negotiate” with
neighboring scheduler processes in order to grant its client exclusive access to a
lock.

The following are required properties of the scheduling layer for process u :

constant u.count (S0)
stable u.lock (S1)
invariant u.lock ⇒ u.enabled (S2)
invariant (∀ v : N(u, v) : ¬(u.lock ∧ v.lock)) (S3)
Hypothesis: true ; u.enabled, C0, C2, C3, C4, C5,
Conclusion: true ; u.lock (S4)

The first safety properties a scheduler must satisfy are S0 and S1, which
dictate that the scheduler does not modify u.count and once the scheduler
grants a lock it cannot revoke it. The scheduler must also satisfy the hypothesis
of C5 with S3 and S2, the latter of which dictates only enabled processes hold
locks.

The progress property S4 is a conditional property which captures the no-
tion of strong fairness. If a correct client process is infinitely often enabled the
scheduler infinitely often grants the the process a lock.

3.5 Composed Specification

Given the client and scheduler specifications, the composed specification of
the system satisfies the strong fairness property: if an action is infinitely often
enabled, it is infinitely often executed in a state in which it is enabled. Or, if
a process is infinitely often enabled, it infinitely often increases its execution
count.

Formally, client ‖ scheduler satisfies:

Hypothesis: true ; u.enabled

Conclusion: u.count = k ; u.count = k + 1

4 Algorithm

Given the specification described in the previous section, we are tasked with
creating a correct implementation of the scheduler component. However, we
have an additional goal: our algorithm should be maximal with respect to the
composed specification.

8

The challenge in designing a strongly fair scheduler lies in limiting concur-
rency — no correct scheduler always allows processes sharing a mutual neigh-
bor to concurrently hold locks. As an illustration, consider the system with
P = {x, y, z} and {〈x, y〉, 〈x, z〉} representing N . Let the behavior of action
y be to leave the system in a state where y and x are enabled and let the
behavior of action z be to leave the system in a state where z is enabled and
x is disabled.

Now suppose the system is in a state where processes y and z are enabled
and process x is disabled. A scheduler that always allows processes sharing a
mutual neighbor to concurrently hold locks will allow processes y and z to
acquire locks. Now suppose process y executes its action. Process x is now
enabled, but since z still holds its lock and N(x, z) , x may not acquire a lock.
Now suppose process z executes its action. The system is now in a state where x
is disabled and y and z are enabled. A scheduler which always allows processes
with a mutual neighbor to concurrently hold locks allows this sequence of events
to repeat continually, resulting in a schedule where x is infinitely often enabled
but never executed.

We will overcome this challenge by bounding the number of times a process
allows its neighbors to hold locks concurrently. Although unintuitive, this will not
affect the maximality of our solution: our scheduler will be capable of generating
any schedule satisfying the strong fairness property. Furthermore, any correct
algorithm satisfying the strong fairness scheduler specification can be viewed as
a refinement of our algorithm.

4.1 Scheduler Design

In order to ensure the mutual exclusion property S3 , we associate with each
pair of neighboring processes u, v a shared lock token, tok(u, v) . A process may
only be granted a lock if it holds all of its shared tokens. A process u also
stores a read-only boolean array, u.en , storing the enabledness of its neighbors.
A process u notifies a neighbor v of its enabledness by assigning to v.en[u] .

To ensure progress, each process u is assigned a negative priority u.ht which
we call a process’s height. A process is higher-priority than another if it has
greater height. We require a process’s height to be unique among its neighbors.
Ties in priority between non-neighbors are broken by a static order on processes,
say by process id. We will call lock tokens shared with higher-priority neighbors
high tokens and lock tokens share with lower-priority neighbors low tokens.

A process only changes its priority after it has executed its action and released
a held lock, at which point it lowers its height by a nondeterministically chosen
finite but unbounded amount. A process which has released a lock holds all of
its tokens until it lowers its height, at which point it gives up all its high tokens.

Processes always release tokens to higher-priority neighbors (high neighbors).
An enabled process does not relinquish tokens to lower priority neighbors (low
neighbors) and, in order to limit concurrency while still ensuring progress, a
disabled process releases at most one low token.

9

In order to ensure there are no wait-cycles, a disabled process u releases a
low token only to its highest priority low neighbor, v . If u.en[w] holds later for
some higher-priority low neighbor w , u retrieves the shared token from v by
assigning true to v.en[u] . It is guaranteed to eventually receive the token as
processes always relinquish high tokens.

The variables of process u include:

– u.en , an boolean array containing an entry for all neighbors v . A neighbor
v assigns true to u.en[v] if it is either enabled or it needs to retrieve a low
token from v .

– u.gate , a boolean variable. If u.gate is true u is free to exchange tokens
with its neighbors or grant itself a lock. When u grants itself a lock, it sets
u.gate to false. Upon releasing a lock, the process sets u.gate to true, lowers
its height, and releases its high tokens.

The following predicates are associated with a process u :

– u.sendtok.v for all neighbors v of u . u.sendtok.v is true if a process u
should send its shared token to process v . u.sendtok.v is true if v is a
high neighbor of u and either u.en[v] or ¬u.enabled . u.sendtok.v is true
when v is a low neighbor of u and v is the highest-priority among all low
neighbors of u , w 6= v , for which u.en[w] = true .

u.sendtok.v ≡ tok(u, v) = u

∧ ((u.ht < v.ht ∧ (¬u.enabled ∨ u.en[v]))
∨ (u.ht > v.ht ∧ u.en[v]

∧ (∀w : N(u, w) ∧ w.ht < u.ht : tok(u, w) = u)
∧ v.ht = (Maxw : N(u, w) ∧ w.ht < u.ht ∧ u.en[w] : w.ht)))

– u.maylock . u.maylock is true if u holds all its shared tokens and is en-
abled.

u.maylock ≡ u.enabled ∧ (∀ v : N(u, v) : tok(u, v) = u)

– u.retr.v for all neighbors v of u . u.retr.v is true if u has granted a low
token to v and now some low neighbor w of u is enabled.

u.retr.v ≡ tok(u, v) = v

∧ (∃w : N(u, w) ∧ u.en[w] : v.ht < w.ht < u.ht)

The UNITY program in Figure 1 implements the scheduler layer of the
strong fairness specification for a process u . Actions Uu,v and Tu,v should be
understood as quantified across all neighbors v of u .

Action Uu,v updates v.en[u] by assigning true if u.enabled or u.retr.v and
assigns false otherwise. Action Tu,v sends a token to v if u is free to exchange
tokens and u.sendtok.v is true. Action Lu grants a lock to process u and stops
further communication by setting u.gate to false. Finally, action Du frees u

10

Program SFu

var u.enabled, u.gate, u.lock : bool
u.ht : integer
u.en : array of bool

initially (∀ v : N(u, v) : u.ht 6= v.ht)
¬u.lock
u.gate

assign
Uu,v true −→ v.en[u] := u.enabled ∨ u.retr.v
Tu,v u.sendtok.v ∧ u.gate −→ tok(u, v) := v
Lu u.maylock ∧ u.gate −→ u.lock := true;

u.gate := false
Du ¬u.lock ∧ ¬u.gate −→ u.gate := true;

u.ht :=? st u.ht < u.ht′ ∧ (∀ v : N(u, v) : u.ht 6= v.ht);
(‖ v : N(u, v) ∧ u.ht < v.ht : tok(u, v) := v)

Fig. 1. Maximal Strong Fairness Scheduling Algorithm

to exchange tokens with neighbors, lowers its height by a finite but unbounded
amount, and releases u ’s high tokens. Du is enabled only after a process has
relinquished a lock and executed its action.

Note: In the algorithm SF , we assume that a process can read the height
of its neighbors. In practice, this can be implemented as a refinement of this
algorithm by encoding process height on shared tokens and associating with
each process u a new variable u.lowtoken which is assigned the height of the
process u relinquishes a low token to. In this paper, we omit these refinements
as they only serve to complicate reasoning about the behavior of SF .

5 Correctness of SFu

In this section we present an argument for the correctness of program SFu with
respect to the scheduler specification.

The safety properties S0, S1, and S2 follow directly from the program text.
The invariant that no two neighbors hold locks simultaneously follows from the
fact that a process must hold all of its shared tokens to grant itself a lock and
that a process does not relinquish its tokens while it holds a lock. The progress
property (that an infinitely often enabled process holds a lock infinitely often)
requires a more thorough treatment.

In the interest of space and reader intuition we present an informal argument
for the progress property. A detailed proof can be found in Appendix A and
follows the same general structure as the argument presented below.

In order to prove S4, we show: (i) the system is free from deadlock, (ii)
a process with no higher priority neighbors which becomes enabled eventually

11

acquires a lock, (iii) a continually enabled process eventually is granted a lock,
and finally (iv) an infinitely often enabled process eventually is granted a lock.

(i) Freedom From Deadlock. We argue by contradiction and assume the sys-
tem is in a state of deadlock. If the system is deadlocked, no process changes
enabledness, as processes are only enabled/disabled by the execution of an ac-
tion.

The priority relation on processes forms a total order so if the system is in
a state of deadlock, there must exist a highest-priority process u that is con-
tinually enabled but never executed. Since there are no higher-priority enabled
processes, u is guaranteed to eventually acquire all its high and low tokens and
acquire a lock.

(ii) A process that becomes enabled at the top of the order eventually is granted
a lock. Let u be a process such that u has no higher priority neighbors which
become enabled. It is easy to see from the program text that u is missing at
most one low token. Now, if u holds all its tokens, it will continue to hold
them as enabled processes do not release tokens to low neighbors. In this case
u eventually is granted a lock.

In the other case u is missing a low token. Now, because u is enabled and
enabled processes do not give up low tokens, it must have been the case that
u was disabled when it gave up a low token. Since u has no higher-priority
neighbors, it must have been the case that its low neighbor executed its action
and enabled u . After a process executes its action and releases a lock, the only
enabled action is Du , which releases all high tokens. So u is guaranteed to
eventually hold all its tokens in a state where it is enabled, which is the first
case.

A metric: In order to show a continually enabled process is eventually granted
a lock and an infinitely often enabled process is granted a lock infinitely often,
we define a metric for each process u called u.M .

u.M is the sum of the difference in height between u and all processes
with higher priority than u that are reachable from u by following the neigh-
bor relation through higher-priority processes. More formally we define the set
u.ab =

⋃
u.abn where u.abn is defined by recursion:

u.ab0 = { v | u.ht < v.ht ∧ N(u, v) }
u.abi+1 = { v | (∃w : w ∈ u.abi : N(v, w) ∧ u.ht < w.ht) }

Then u.M = (
∑

v : v ∈ u.ab : v.ht− u.ht) .
By definition, u.M is bounded below by zero when u.ab = ∅ and u has

no higher-priority neighbors. Furthermore, u.M is non-increasing unless u ac-
quires a lock and lowers its height.

To show the progress property, we demonstrate that if u.M = k and u
is infinitely often enabled, eventually either u.M < k or u.lock . Since u.M
is bounded below and non-increasing unless u acquires a lock, eventually u
acquires a lock.

(iii) A process cannot remain continually enabled. Again we argue by con-
tradiction and assume there is some process u that is continually enabled and

12

never executes. If u is continually enabled, u will eventually acquire all its low
tokens so there must be processes in u.ab that are infinitely often enabled which
prevent u from acquiring its high tokens.

Fix v to be the highest-priority process in u.ab that is infinitely often en-
abled. Since v is the highest-priority such process, there is a point in the compu-
tation beyond which no process with higher priority than v becomes enabled.
By a similar argument as in the case of a process at the top of the order, v
eventually acquires a lock and eventually lowers its height, decreasing u.M .

Since we fixed v to be the highest priority infinitely often enabled process in
u.ab and v eventually lowers its height we can apply the same argument to the
“new” highest priority infinitely often enabled process in u.ab . Then, eventually
u.ab = ∅ and u must be able to acquire its shared tokens and acquire a lock,
which is a contradiction.

(iv) An infinitely often enabled process eventually acquires a lock. If a process
u is continually enabled, it eventually acquires a lock. Thus, we only have to
consider the case where u becomes disabled infinitely often.

So assume eventually ¬u.enabled . We show either u.M decreases or u ac-
quires a lock.

There are two cases. In the first a higher priority neighbor v executes its
action and disables u . In this case, the metric decreases, as v must eventually
lower its height.

In the second case, a lower priority neighbor disables u . By our assumption
u must become enabled again. If a higher priority neighbor enables u , then
the metric decreases. If a lower priority neighbor v enables u , no other lower
priority neighbor can disable u as an enabled process does not release low
tokens. Then either u will eventually acquire its tokens and be granted a lock
or a higher priority neighbor will disable u , decreasing the metric.

In either case, either u.M is decreased or u is eventually granted a lock.
Then a process that is infinitely often enabled and disabled eventually rises

in the order.
It follows that if u.enabled is infinitely often true and u.enabled holds in

a state where u.M = k , eventually either u.lock or u.M < k . The interested
reader should refer to the detailed proof in Appendix A for a thorough argument
of this property.

It follows from this property and the previous properties described that if u
is infinitely often enabled, u acquires a lock infinitely often.

6 The Maximality of SF

In this section we present an outline of the proof of maximality for SF . Our
goal is to show that all schedules permitted by the strong-fairness specification
are possible schedules of SF .

Since maximality is noncompositional, we use the rely-guarantee style proof
outlined in [8] as a template. This method for proving the maximality of com-
posed systems involves stipulating that other processes in the system satisfy

13

certain properties beyond their formal specification and proving the maximality
of the composed system using these properties. These additional properties en-
tail that the client process our system is composed with is maximal and can be
constrained in a way to establish its maximality.

In the interest of space and clarity, we only present the intuition behind
the proof of maximality in this section. The interested reader should refer to
Appendix B for a thorough proof of maximality of SF .

In this section we reverse the priority relation described in Section 4 to clarify
presentation and allow the reader to maintain an intuition about the behavior
of the constrained system. In Section 4 a process was higher priority if it had
a greater height and processes lowered their priority by lowering their height.
In this section, we will reverse this — a process has higher priority if it has a
lesser height, thus a process lowers its priority by increasing its height. In our
description of the behavior of the constrained program SF ′ , the motivation for
this modification will become clear.

Formally u.sendtok.v , u.retr.v , and u.maylock become:

u.sendtok.v ≡ tok(u, v) = u

∧ ((u.ht > v.ht ∧ (¬u.enabled ∨ u.en[v]))
∨ (u.ht < v.ht ∧ u.en[v]

∧ (∀w : N(u, w) ∧ w.ht > u.ht : tok(u, w) = u)
∧ v.ht = (Minw : N(u, w) ∧ w.ht > u.ht ∧ u.en[w] : w.ht)))

u.maylock ≡ u.enabled ∧ (∀ v : N(u, v) : tok(u, v) = u)

u.retr.v ≡ tok(u, v) = v

∧ (∃w : N(u, w) ∧ u.en[w] : v.ht > w.ht > u.ht)

6.1 Proving the Maximality of SF

In order to prove SF is a maximal implementation of the strong-fairness specifi-
cation, we need to show that any trace satisfying the strong-fairness specification
is a possible trace of SF . In order to accomplish this, we create a constrained
program SF ′ from SF that accepts as input any trace σ satisfying the strong-
fairness specification. We then show that at each point i in the trace σ , the state
of the system is exactly that of σi . This establishes σ as a possible execution
of SF ′ .

Next we need to show that any fair execution of SF ′ corresponds to a fair
execution of SF . Then, since any trace σ satisfying the specification of the
strong fairness problem is a possible execution of SF ′ , any trace satisfying the
strong fairness problem is a possible execution of SF .

However, this simple view is not quite complete. Since we want to show that
any schedule of action executions is a possible behavior of the composed system,
we need to stipulate that the client process composed with SF satisfies some

14

additional requirements. Namely, we will require that this client process can
be constrained to produce client′ which, when composed with SF ′ , can take
the “steps” in the computation that σ dictates. i.e., if at some point i in σ
some process u is to execute and enable/disable itself or its neighbors, client′

can compute this step. The additional requirements are that the client process
is maximal, client′ satisfies the safety properties of the client specification,
and that client′ is created in a way that ensures the correspondence between
executions of client′ and the client process.

In order to compute σ , we will introduce a variable p shared by client′ and
SF ′ that marks the current point in the trace. Then if we can prove (i) it is
invariant that u.count = Cu

p and u.enabled = Eu
p for all p and (ii) the point p

eventually increases, it follows that σ is a possible execution of SF ′ ‖ client′ .

6.2 A strong fairness trace

Let σ be a stutter-free sequence of tuples σ = 〈σ0, σ1 . . .〉 representing the
state of processes in an execution satisfying the strong-fairness specification.
σi = 〈E,C〉i is a tuple containing two arrays, Ei and Ci , representing the en-
abledness and count of processes in state σi . That is, Eu

i = true if u.enabled
in σi and Cu

i = k if u.count = k in σi . σ is stutter-free in that each tuple
in the sequence is differs from the previous by at least one element, unless the
execution is in a state of quiescence (each processes is disabled forever).

Since σ is a correct trace of the strong fairness scheduling problem, it obeys
certain properties. Namely, it satisfies the following: in subsequent states in σ ,
at most one process changes count (by incrementing it by one) and if a process
changes enabledness, a process must change count. Also, if a process is infinitely
often enabled in the trace, it infinitely often changes its count.

Given a trace σ , we create an isomorphic trace σ′ by inserting a stuttering-
state in between every σi and σi+1 . That is, σ′

0 = σ0 and σ′
i+1 is σ′

i if i is
even and is σ(i+1)/2 if i is odd.

The motivation for introducing stuttering-states will become clear when we
describe our approach for ensuring that SF ′ ‖ client′ computes σ .

6.3 Requirements of client′
u

We require that a client process u can be constrained to produce client′u . The
requirements on client′u are as follows:

– client′u is produced from the client process by only adding new variables,
assignments to new variables, and new guards referencing new and existing
program variables. Furthermore, if random assignments in the client process
are replaced with deterministic assignments, we require that the assigned
value satisfy the predicate on the random assignment. These requirements
ensure that client′u satisfies the safety properties of the client process.

– The additional guards of client′u are infinitely often true and the enabledness
of each guard is preserved by the execution of any other action in the system.

15

– At each point p in the computation, it is invariant that u.enabled = Eu
p

and u.count = Cu
p .

– client′u does not assign to σ and only changes p by at most one.
– If SF ′

u ensures u holds a lock at a point p = k in the trace where Cu
k 6=

Cu
k+1 (i.e., u executes its action), client′u guarantees that p is incremented

and the lock is released.

These requirements on the client process ensure that client′ will compute
the transitions dictated by σ . It is then the obligation of SF ′ to ensure that
processes hold locks when σ dictates u executes its action and increments its
count.

6.4 The Constrained Program SF ′
u

In the constrained program SF ′
u we introduce the following objects not found

in SFu : the input trace σ and the point p , a function u.next to compute the
next point at which process u executes its action and increments its count, a
predicate u.done to indicate whether or not u increments its count again after
the current point in the computation, and a predicate u.quiet which indicates
whether or not u is enabled after the current point in the computation.

Formally, u.quiet , u.done , and u.next are defined as the following.

u.quiet ≡ (∀ i : i ≥ p : ¬Eu
i)

u.done ≡ (∀ i : i ≥ p : Cu
i = Cu

i+1)

u.next = (Min i : i ≥ p : Cu
i 6= Cu

i+1) if ¬u.done

(Min i : i ≥ p : (∀ j : j ≥ i : ¬Eu
j ∧

(∀ v : v 6= u : v.ht 6= j))) otherwise

Figure 2 shows the instrumented program.
The key property that follows from this instrumentation is that a process u ’s

height corresponds to the next point in the computation when u increments
its count. At that point, u is the highest priority enabled process among its
neighbors (i.e., lowest height). Any process with a higher priority (lower height)
than u at that point is in a state of quiescence.

If a process u has executed for the last time, we set its height to be after
the last point in the trace that it is enabled. This ensures that any process
that executes and enables/disables u will be higher priority than u until u
is quiescent. Such a point is guaranteed to exist by the assumption that the
process has executed for the last time; if no such point exists, the process must
be infinitely often enabled (and therefore execute again).

The motivation for the introduction of stutter states in σ is to ensure that
a process that never executes again can be assigned a unique height. If σ were
stutter-free, it is not guaranteed that such a point exists.

16

Program SF ′
u

var u.enabled, u.gate, u.lock : bool
u.ht : integer
u.en : array of bool

initially p = 0
u.enabled = Eu

p

¬u.done ⇒ u.ht = u.next
u.done ⇒ u.ht ≥ min i (∀ j : i ≤ j : ¬Eu

j)
(∀ v : N(u, v) : u.ht 6= v.ht)
¬u.lock
u.gate

assign
U ′

u,v true −→
true −→ v.en[u] := u.enabled ∨ u.retr.v

T ′
u,v true −→

u.sendtok.v ∧ u.gate −→ tok(u, v) := v
L′

u (u.ht = p ∧ ¬u.done) ∨ u.quiet −→
u.maylock ∧ u.gate −→ u.lock := true;

u.gate := false
D′

u true −→
¬u.lock ∧ ¬u.gate −→ u.gate := true;

u.ht := u.next;
(‖ v : N(u, v) ∧ u.ht < v.ht : tok(u, v) := v)

Q′ σi = σi+1 −→ p := p + 1

Fig. 2. Constrained Strong Fairness Scheduling Algorithm

A key invariant of SF ′
u is that if ¬u.done and u.gate hold, u.ht = u.next .

SF ′
u inherits the safety properties of SFu as guards are only strengthened

and existing program variables are not assigned to, except for the replacement
of the random assignment to u.ht with a deterministic assignment. However, at
the point of the assignment to u.ht , u.next > u.ht and is unique by definition
of u.next and the properties of σ .

6.5 Proof Sketch of the Maximality of SF

There are two main obligations to dispatch: (i) SF ′ ‖ client′ computes σ and
(ii) every fair execution of SF ′ ‖ client′ corresponds to a fair execution of the
original system.

(i) is proved by showing u.enabled = Eu
p ∧ u.count = Cu

p is an invariant of
the system and p = k ; p = k +1 . (ii) requires showing that the truth of each
additional guard in the system is preserved by the execution of any other action
and that each additional guard is infinitely often true. Then each additional
guard is executed infinitely often in a state where it is true, corresponding to a
fair execution of the original program.

17

Proving the invariant: The invariant in (i) is initially true by the initially
predicates in SF ′

u . Also, each action of SF ′ maintains the invariant as no
action assigns to the trace, u.enabled , or u.count and the only action that
assigns to p only increments p in a stuttering state. Thus, since the invariant
is also a property of client′u , it is an invariant of the composed system.

Proving p = k ; p = k + 1 : There are two cases to consider — the case
where the current point is a stuttering-state, in which action Q′ increments p ,
and a non-stuttering state. In a non-stuttering state, there exists some process
u such that Cu

p = Cu
p+1 . It was a requirement on client′u that if u holds a

lock in such a state, client′u eventually increments p . It is the responsibility of
SF ′ to ensure that in such a state process u eventually acquires a lock.

At that point in the computation u.next = p and ¬u.done holds. Without
loss of generality, assume u.gate holds as well, so by the invariant of SF ′

u ,
u.ht = p . Also, by the way height is assigned u is the highest priority process
among all its neighbors that are enabled. So u eventually acquires all its tokens
and acquires a lock.

Proving the stability of additional guards: Since client′u is required to satisfy
this property, it suffices to show that the guard of L′

u is not falsified by any
action of SF ′

u . It is easy to see that the only actions which might affect the
truth of the additional guard of L′

u are Q′ , which assigns to p , and D′
u ,

which assigns to u.ht .

Since u.quiet is stable, neither Q′ nor D′
u can falsify it. Now, if u.ht =

p ∧ ¬u.done hold, it is implied by the invariant that σp 6= σp+1 , so Q′ is
disabled in such a state. If action D′

u is enabled, ¬u.lock ∧ ¬u.gate holds.
Then since ¬u.lock ∧ ¬u.gate holds, client′u must have released a lock and
incremented the point, which implies u.ht < p . So if L′

u is enabled, D′
u is not.

Proving additional guards are infinitely often true: Again, since this was a
requirement of client′u , we only need consider the guard of L′

u . Now, since
u.quiet is stable and if u.done ever holds, eventually u.quiet holds, it suffices
to show that u.ht = p ∧ ¬u.done is infinitely often true if ¬u.quiet is an
invariant of the trace. Assuming ¬u.quiet is an invariant of the trace, ¬u.done
is an invariant of the trace as well.

Now, if ¬u.gate holds at any point in the computation, it must be the
case ¬u.lock holds as well and both continue to hold until eventually D′

u is
executed. The execution of D′

u in an enabled state ensures u.gate holds. Then
the invariant of SF ′

u dictates that u.ht = u.next and, since u.next ≥ p and
p = k ; p = k + 1 , eventually u.ht = p . Thus, the additional guard of L′

u is
infinitely often true.

The Maximality of SF : The preceding arguments establish that any trace
σ satisfying the strong-fairness specification is a possible execution of SF com-
posed with a client process meeting the requirements described. It follows that
SF is a maximal strongly-fair scheduler.

18

7 Discussion

Fairness is a well-researched and developed notion in existing literature, both in
terms of interaction fairness [1] and in terms of selection of actions in nondeter-
ministic guarded command programs [7].

Although a large body of work surrounds fairness issues, our algorithm is
unique in that it is the first solution for strongly-fair scheduling of atomic actions
that is both maximal and distributed.

In [6] Karaata gives a distributed self-stabilizing algorithm for the strongly-
fair scheduling of atomic actions under weak fairness. However, a key property
of the algorithm is that an action u can disable another action v at most
twice before action v must execute. This corresponds exactly to the situation
described in Section 2 and is clearly not maximal. In addition although there
is no notion of a “lock,” the algorithm precludes two processes with a shared
neighbor from having the “right” to execute their actions. Although this does
not affect the possible schedules the algorithm can generate, it in some sense
limits the algorithm from being generalized to a situation where the mutual
exclusion property of the strong-fairness specification can benefit processes (e.g.,
processes perform some computation before releasing the lock and affecting their
neighbors). Then the concurrency of non-neighboring processes holding locks is
a valuable property.

We should note that Karaata’s algorithm has the advantage of being self-
stabilizing, whereas ours does not. Also, Karaata provides a brief message com-
plexity analysis of the algorithm while we make no claims regarding the message
complexity of our algorithm.

In [5], Joung develops a criterion for implementability of fairness notions
for multiparty interactions. If a fairness notion fails to meet the criterion, then
no deterministic scheduling algorithm can meet the fairness requirement in an
asynchronous system. In the general case, both strong interaction fairness and
strong process fairness fail to meet the criterion. Our problem is outside of this
result.

The dining philosophers problem proposed by Dijkstra [2] seems superficially
similar (as also pointed out in [6]) to the strong-fairness problem in that one can
map the state ¬u.enabled to thinking, u.enabled ∧ ¬u.lock to hungry, and
u.enabled ∧ u.lock to eating. However, in the dining philosophers problem, a
process becomes hungry autonomously, not as a result of the behavior of other
processes in the system. Furthermore, processes remain hungry until the arbi-
tration layer affects a change in state to eating.

The possibility for processes to affect the enabledness of neighboring pro-
cesses adds complexity to the strong fairness scheduling problem. For example,
a solution to the dining philosophers problem can maintain an invariant that if
a process holds a request from a neighbor, that neighbor is hungry. No corre-
sponding invariant can be shown for a solution to the strong-fairness problem
without synchronization between a process and its neighbor’s neighbors.

19

8 Conclusions

In this work we presented a formal specification of the distributed strong fairness
scheduling problem and described a maximal solution SF to the problem.

The importance of a maximal scheduling algorithm was discussed in detail
in Section 2, making the maximality of the SF algorithm a key contribution of
the work. The maximality of SF also implies that any correct implementation
of the strong-fairness specification is a refinement of the SF algorithm in that
any correct algorithm’s behavior is a subset of the behavior of SF .

References

1. K. R. Apt, N. Francez, and S. Katz. Appraising fairness in distributed languages.
In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 189–198, New York, NY, USA, 1987.
ACM Press.

2. Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informat-
ica, 1(2):115–138, 1971.

3. Rajeev Joshi and Jayadev Misra. Maximally concurrent programs. Formal Aspects
of Computing, 12(2):100–119, 2000.

4. Rajeev Joshi and Jayadev Misra. Toward a theory of maximally concurrent pro-
grams. In PODC ’00: Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, pages 319–328, New York, NY, USA, 2000.
ACM Press.

5. Yuh-Jzer Joung. On fairness notions in distributed systems, part I: A characteri-
zation of implementability. Information and Computation, 166:1–34, 2001.

6. Mehmet Hakan Karaata. Self-stabilizing strong fairness under weak fairness. IEEE
Trans. Parallel Distrib. Syst., 12(4):337–345, 2001.

7. Leslie Lamport. Fairness and hyperfairness. Distrib. Comput., 13(4):239–245, 2000.
8. Matthew Lang and Paolo A. G. Sivilotti. The maximality of unhygienic dining

philosophers. Technical Report OSU-CISRC-5/07-TR39, The Ohio State Univer-
sity, May 2007.

9. R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

10. Jayadev Misra. A Discipline of Multiprogramming: Programming Theory for Dis-
tributed Applications. Sprinver-Verlag, New York, NY, USA, 2001.

11. David Park. Concurrency and automata on infinite sequences. In Proceedings of
the 5th GI-Conference on Theoretical Computer Science, pages 167–183, London,
UK, 1981. Springer-Verlag.

20

A Full Proof of Correctness for SFu

In this section we provide a full proof that SFu satisfies the progress property
S4.

In order to carry out the proof, we first present some properties of SFu ,
followed by an observation and a few lemmas from which S4 follows.

First, we show the system is free from deadlock. Next, we prove that an en-
abled process can make individual progress by showing that the highest priority
process among all is neighbors can acquire a lock and that a continuously en-
abled process eventually is granted a lock. Then we develop a metric for u that
is bounded below and decreases each time u is enabled and then later disabled,
following the intuition presented Section 5.

The following properties follow directly from the text of SFu and are pre-
sented without proof.

invariant (
∑

v : tok(u, v) = v ∧ v.ht < u.ht : 1)

≤ 1 (SF0)
invariant u.lock ⇒ ¬u.gate (SF1)
invariant ¬u.gate ⇒ (∀ v : N(u, v) : tok(u, v) = u) (SF2)
invariant (∃ v : N(u, v) : tok(u, v) = v)) ⇒ u.gate (SF3)
u.gate unless u.lock (SF4)
stable u.ht = k ∧ u.gate (SF5)
transient (u.enabled ∨ u.retr.v) 6= v.en[u] (SF6)
transient ¬u.lock ∧ ¬u.gate (SF7)

Next, we present the following observation:

Observation A1 If ¬u.gate and u.ht = k , eventually u.ht < k and (∀ v :
N(u, v) ∧ u.ht < v.ht : tok(u, v) = u) .

Proof. Assume ¬u.gate ∧ u.ht = k . We can assume ¬u.lock as if u.lock holds,
by S2 and S3, the client progress property C5 holds and eventually ¬u.lock .
Then, eventually ¬u.lock ∧ ¬u.gate ∧ u.ht = k . Then action Du is the only
enabled action and by weak fairness Du it is eventually executed. As a result,
u.gate ∧ u.ht < k ∧ (∀ v : N(u, v) ∧ u.ht < v.ht : tok(u, v) = v) .

We begin the proof of progress for SFu by first showing that if a process is
enabled, some process eventually holds a lock.

Lemma A1 (Weak progress) If a process is enabled, some process eventually
holds a lock.

Proof. By contradiction. Assume at least one processes is enabled and does not
hold a lock. For a contradiction, assume the system is in a state of deadlock.
That is, there is no process that eventually acquires a lock.

21

First notice that by property C3, if no process in the system holds a lock, no
process in the system will change enabledness.

As the only action by which processes acquire locks is action L , no process
u ever executes Lu in a state where u.maylock ∧ u.gate hold. For a contradic-
tion it suffices to show there exists a process u such that u.maylock ∧ u.gate
eventually and continuously holds.

Without loss of generality we may assume that u.gate is true for all processes
u . If ¬u.gate holds for any process u , ¬u.lock ∧ ¬u.lock holds by assumption
¬u.lock for all processes u . Then eventually u.gate holds by SF7. Furthermore,
u.gate continuously holds, by assumption the system is in deadlock and SF4.

Then there must be processes that are enabled for which maylock does not
hold.

Consider the highest-priority enabled process, say u . There are two cases:
Case (a): u has no higher-priority neighbors. In this case, by SF6, eventually

v.en[u] = true for all v such that N(u, v) . Furthermore, since u is enabled
and the system is in deadlock, v.en[u] = true continuously. Since by assumption
v.ht < u.ht , v.sendtok.u is true and eventually u will hold all its tokens. Notice
that in this case, u.sendtok.v is false as u is enabled and higher-priority than
all its neighbors. Then u will hold all its tokens and u.maylock ∧ u.gate will
hold continuously. Contradiction.

Case(b): u has at least one higher-priority neighbor. By the same argument
as in case (a), u eventually holds all its low tokens. Then there exists some v
will not relinquish a token to u such that N(u, v) and u.ht < v.ht . By SF6,
eventually v.en[u] = true and u.en[v] = false . Furthermore, can assume by
SF6 and the fact that no process changes state that v.en[w] = w.enabled ∨
w.retr.v for all w such that N(w, v) .

v is not enabled by the assumption u is the highest-priority enabled process,
so in order for v.sendtok.u to not hold, v must have relinquished a low token
to some other low neighbor, say w . w is either enabled or disabled — we show
that in either case, eventually v holds all its tokens.

If w is disabled, w.sendtok.v holds and eventually v holds all its tokens.
If w is enabled, v.retr.w is true by the assumption u is the highest priority
enabled process and v.en[u] = true . So by SF6, eventually w.en[v] = true .
Then w.sendtok.v holds and eventually v holds all its tokens.

Now, since u is the highest-priority enabled process, u.ht > w.ht for all
w 6= u such that N(v, w) and v.en[w] = true . Then v.sendtok.u will hold
and eventually tok(u, v) = u . Furthermore, since no process changes enabledness
u.en[v] will continue to be false.

Since v was an arbitrary higher-priority process such that tok(u, v) 6= u
and u holds its low tokens, eventually u.maylock ∧ u.gate continuously holds.
Contradiction.

In both cases we arrive at a contradiction. It follows that if a process is
enabled, some process eventually holds a lock.

In the following, we use the metric described in Section 5 as part of the proof
of progress.

22

Lemma A2 If u.ab = ∅ ∧ u.gate and u becomes enabled, eventually u ac-
quires a lock.

Proof. Assume u is a process which becomes enabled and u.ab = ∅ ∧ u.gate .
We will show eventually u.lock

u.ab = ∅ implies u has no higher-priority neighbors. Then, by SF0, u is
missing at most one low token.

Now, by C3 and C4 there must be a process v such that N(u, v) that
released a lock and enabled u . Since u is enabled, u.sendtok.w is disabled for
all w such that N(u, w) .

It follows from SF1 and SF2 that at the point v releases its lock enabling
u , tok(u, v) = v and ¬v.lock ∧ ¬v.gate hold. By Observation A1, eventually
tok(u, v) = u holds. Furthermore, for all w 6= v such that N(u, w) , tok(u, w) =
u . Then u.maylock holds and by SF3 u.gate holds.

Since u.sendtok.w is disabled for all w such that N(u, w) , u.maylock ∧
u.gate holds continuously. By weak-fairness, Lu eventually executes and u.lock
holds.

Then a process with no higher-priority neighbors that becomes enabled even-
tually is granted a lock.

Lemma A3 If a process is continuously enabled, it eventually is granted a lock.

Proof. By contradiction. Let u be a process such that u.enabled and let u.M =
k . For a contradiction assume that u.enabled ∧ ¬u.lock hold continuously.

It follows from the assumption that u.enabled ∧ ¬u.lock hold continuously
and by a similar argument as in Lemma A2 that u.ab 6= ∅ continuously. We
obtain a contradiction by showing that it must be the case that eventually u.ab =
∅ .

Without loss of generality we may assume (by SF6 and SF7) that v.en[u] =
true for all neighbors v of u and u.gate .

First notice that by SF5, u.ht never changes value. It follows from the defi-
nition of u.M that u.M never increases.

In addition, we can assume that u holds all its low tokens: If u is miss-
ing low tokens, by SF0, u is missing at most one to a low neighbor, say v .
As v.en[u] = true , v.sendtok.u holds. If ¬v.gate then by Observation A1
eventually tok(u, v) = u . If v.gate then eventually either ¬v.gate (if it is the
case that v holds all its tokens) or v executes Tv,u . In either case eventually
tok(u, v) = u .

In order for u.enabled ∧ ¬u.lock to continuously hold, it must be the case
that u.maylock is infinitely often false. Since u holds all its low tokens, infinitely
often u does not hold all its high tokens.

Then infinitely often there is some process v ∈ u.ab such that v.enabled .
Since u.ab is finite, there must be some v ∈ u.ab such that v.enabled infinitely
often. Fix v to be the highest-priority such process and let v.ht = j and
u.M = k . We show eventually u.M < k .

23

Since v is the highest-priority process which is infinitely often enabled, even-
tually all higher-priority processes with respect to v remain disabled. Then, by
C4 if v.enabled becomes true, it must be the case that some lower-priority neigh-
bor, say w of v executed its action. By Observation A1 eventually tok(v, w) = v
while v.enabled (since no higher-priority neighbor is enabled). Then v holds all
its low tokens. Furthermore, by SF6, eventually w.en[v] = true for all higher
priority neighbors w of v . Again by the assumption no process of higher prior-
ity than v is enabled, w.sendtok.v and w.en[v] = false will at some point hold
continuously for all such w . Then eventually v acquires all its shared tokens
and v.maylock holds continuously.

Then, by weak fairness, v.lock eventually holds and by C5 and Observa-
tion A1, eventually v.ht < j .

It follows that eventually u.M < k . Since v was arbitrary as the highest
priority process in u.ab such that v.enabled infinitely often, u.M decreases
infinitely often.

Since u.M never increases and is bounded below, it must be the case that
eventually u.ab = ∅ , which is a contradiction.

Lemma A4 If a process is infinitely often enabled, then either eventually it is
granted a lock or its metric decreases.

Proof. Assume process u is infinitely often enabled and u.M = k . We will show
that eventually either u.lock or u.M < k .

Since u is infinitely often enabled, we can assume without loss of generality
that u.enabled holds.

By A3 u cannot remain enabled indefinitely. Then either eventually u.lock
or ¬u.enabled . If u.lock then we are done so assume eventually ¬u.enabled .

There are two cases.
Case (a): Some higher priority neighbor of u , say v , executed its action

and disabled u . Then ¬v.lock ∧ ¬v.gate . Let v.ht = j . By Observation A1,
eventually v.ht < j . Then, since u.M is the sum of the difference in height
between u and all processes above it and v ∈ u.ab , u.M < k .

Case (b): Some lower priority neighbor of u , say w , executed its action and
disabled u . Now, since u is infinitely often enabled, eventually u.enabled will
hold. By C4, some process v such that N(u, v) must execute its action, enabling
u . If v is higher-priority than u , by the same argument as in the previous case,
eventually u.M < k . If v is lower-priority than u , no lower-priority neighbor
of u can execute once u.enabled holds, since v will return its token and u
will not release low tokens while u.enabled holds. Then by A3, either u.lock or
u.disabled eventually holds. If u.lock then we are done. Similarly we are done
if u.disabled , as it must have been a higher-priority process which disabled u ,
which falls under case (a).

In both cases, eventually u.lock or u.M < k . Then, if a process that is
infinitely often enabled, eventually it is granted a lock or its metric decreases.

Theorem A1 (Progress of SFu) If a process is infinitely often enabled, it in-
finitely often is granted a lock.

24

Proof. This follows directly from Lemmas A2 and A4.
Assume u is infinitely often enabled. We show u.lock infinitely often.
First we show that if u.enabled , eventually u.lock .
Assume u.enabled and u.M = k . By the assumption and Lemma A4, even-

tually either u.lock or u.M < k ∧ u.enabled . By induction on k and the
fact that u.M is bounded below, either u.lock or u.M = 0 . It follows from
Lemma A2 that eventually u.lock .

It follows that since u.enabled infinitely often, infinitely often u.lock .

B Proof of Maximality for SF

In this section, we provide a full proof of the maximality of SF .

B.1 A Maximal Trace

Let σ be a stutter-free sequence of tuples σ = 〈σ0, σ1 . . .〉 as described in
Section 6.

The following properties characterize any trace σ that is constructed in the
way previously described from a trace satisfying the strong-fairness specification.

These properties are quantified over all processes u and all points i in the
trace.

– Every other state is a non-stuttering state, except in the event of quiescence.

σi = σi+2 ⇒ (∀ j : i ≤ j : σj = σj+1) (T0)
i mod 2 = 0 ⇒ σi = σi+1 (T1)

– At each point in the computation, u.count increases by at most one for all
u and at most one process changes count .

Cu
i 6= Cu

i+1 ⇒ Cu
i+1 = Cu

i + 1 (T2)
Cu

i 6= Cu
i+1 ⇒ (∀ v : u 6= v : Cv

i = Cv
i+1) (T3)

– If a process changes its count, it must have be enabled.

Cu
i 6= Cu

i+1 ⇒ Eu
i (T4)

– If a process’s enabledness changes, either the process or a neighbor must
have increased its count.

Eu
i 6= Eu

i+1 ⇒ Cu
i 6= Cu

i+1

∨ (∃ v : N(u, v) : Cv
i 6= Cv

i+1)

– An infinitely often enabled process infinitely often changes its count.

(∀ i :: (∃ j : i < j : Ej))⇒
(∀ i :: (∃ j : i < j : Cu

j 6= Cu
j+1))

25

B.2 The Constrained Program SF ′

The constrained program SF ′ is as it appears in Figure 2 in Section 6.
First, observe that u.next is odd if u.done and even if ¬u.done by the

construction of the trace (processes only change count and state in even, non-
stuttering states). Then u.next is a function as by definition of u.done , ¬u.done ⇒
(∃ i : i ≥ p : Cu

i 6= Cu
i+1) . For the other case, by the definition of σ ,

u.done ⇒ (∃ i : i ≥ p : (∀ j : i < j : ¬Eu
j)) . Also, it is possible to find a

unique such i : by the construction of the trace, there are an infinite number of
stuttering states and a finite number of quiescent processes which assign heights
equal to such states.

The following properties follow directly from the text of SF ′ .

– u.next is greater than or equal to the current point in the computation.

invariant u.next ≥ p (SF′0)

– If u.gate holds for a process that will change its count again, u.ht = u.next .

invariant ¬u.done ∧ u.gate ⇒ u.ht = u.next (SF′1)

– If a process will change its count again, u.next is equal to the next point a
process changes its count.

invariant ¬u.done ⇒ Cu
u.next+1 = Cu

u.next + 1 (SF′2)

– If a process does not change its count again, u.ht is at least the last point
u was enabled.

invariant u.done ∧ u.gate ⇒ u.ht≥
(Min i :: (∀ j : i ≤ j : ¬Eu

j)) (SF′3)

– The trace is not changed and the current point in the computation increases
by at most one.

constant σ (SF′4)
p = k unless p = k + 1 (SF′5)

– It is transient that the current point is a stuttering state and the point is
stable in a non-stuttering state.

transient σk = σk+1 ∧ p = k (SF′6)
stable σk 6= σk+1 ∧ p = k (SF′7)

In addition, the following are easily shown:

– If a process increases its count again, it is enabled in the at the point u.ht .

invariant ¬u.done ∧ u.gate ⇒ Eu
u.ht (SF′8)

26

Proof. This follows directly from SF ′ 1, SF ′ 2, and T4.

– u.done is stable.

stable u.done (SF′9)

Proof. If u.done holds, it can only be invalidated by σ changing or p
decreasing. However, by SF ′ 4 and SF ′ 5, the trace is constant and p is
nondecreasing.

– u.quiet is stable.

stable u.quiet (SF′10)

Proof. As above.

– If a process will increases its count again, its height is equal to a point in
the trace where it increments its count.

¬u.done ⇒ Cu
u.ht 6= Cu

u.ht+1 (SF′11)

Proof. The invariant initially holds and since u.done is stable, if ¬u.done
holds, it held at the point at which u assigned to u.ht . This assignment
would have assigned to u.ht the next point in the computation where u
changed its height.

B.3 The Constrained Client Program

Now we formally state our assumptions about the processes satisfying the client
specification. Specifically, we assume that a client process u can be constrained
to produce client′u which satisfies the following:

– The trace is not changed.

constant σ (C′0)

– The state corresponds with the current point in the trace.

invariant u.count = Cu
p (C′1)

invariant u.enabled = Eu
p (C′2)

– The client process does not change the point in the computation in a stut-
tering state.

stable p = k ∧ σk = σk+1 (C′3)

– The current point in the computation advances by at most one.

p = k unless p = k + 1 (C′4)

27

– Given that no other process changes the point when Cu
p 6= Cu

p+1 , the point
is eventually changed.

Hypothesis: stable p = k ∧ Cu
k 6= Cu

k+1

invariant u.enabled = Eu
p ∧ u.count = Cu

k

stable u.lock

Conclusion: p = k ∧ Cu
k 6= Cu

k+1 ∧ u.lock ; ¬u.lock (C′5)

– Guards added to the constrained program are infinitely often true and the
truth of an additional guard is preserved by the execution of any action in
client′ and SF ′ .

The following is a property follows from C ′ 1 and C4.

u.lock ∧ p = k unless p 6= k (C′6)

Furthermore, we require (as in our constrained SF ′) that client′ is produced
from a correct client process by only adding new variables, assignments to new
variables, and new guards referencing new and program variables. Also, if client′

replaces random assignments with deterministic assignments referencing new
and existing variables, the assigned value satisfies the predicate on the random
assignment.

These additional constraints ensure that client′ satisfies the safety properties
in the client specification.

B.4 Proof of Maximality

There are two obligations to prove the maximality of SF ; we must show (i)
an arbitrary trace σ satisfying the strong-fairness specification is a possible
execution of SF ′ ‖ client′ and (ii) any fair execution of SF ′ ‖ client′ is a fair
execution of SF composed with a process satisfying the client specification.

Lemma B1 At each step in the computation, for each process u , u.count and
u.enabled are equal to Cu

p and Eu
p .

invariant u.count = Cu
p ∧ u.enabled = Eu

p

Proof. Initially the invariant holds: initially p = 0 , initially u.enabled = Eu
0 ,

and by C ′ 1 initially u.count = Cu
0 .

By SF ′ 4, the only way the invariant can be invalidated in SF ′ is if p ,
u.enabled , or u.count is assigned to. However, no action in SF ′ assigns to p ,
u.count , or u.enabled , so SF ′ maintains the invariant.

client′ maintains the invariant by C ′ 1 and C ′ 2.
Then the invariant holds in the composed system.

28

Next, we introduce a few obligations which we will use in the proofs of the
remaining properties.

Observation B1 invariant u.lock ⇒ (u.ht = p ∧ ¬u.done)

Proof. The invariant holds initially as no process holds a lock. The only action
of SF ′ which assigns to u.lock is L′

u . It follows from the guards of L′
u that if

the action is enabled, u.ht = p ∧ ¬u.done .
To show the invariant holds in the composed program, it suffices to show the

predicate is stable in client′ . Since releasing a lock maintains the invariant and
by C3 and ¬u.lock is stable in a correct client process, the only way for client′

to invalidate u.lock ⇒ (u.ht = p ∧ ¬u.done) is by changing p while u.lock
holds (as both u.ht and the trace are constant in client′). However, by C ′ 1,
C ′ 4, and C4, in order to change the point, the client must release a lock. Then
the predicate is stable in client′ and it is an invariant of the composed program.

Observation B2 invariant (p = k ∧ Cu
k = Cu

k+1) ⇒ ¬u.lock

Proof. Assume p = k and Cu
k = Cu

k+1 . For a contradiction assume u.lock . By
the Observation B1, u.ht = p ∧ ¬u.done . It follows from ¬u.done and SF ′ 11
that Cu

u.ht 6= Cu
u.ht+1 . However, u.ht = p = k and Cu

k = Cu
k+1 . Contradiction.

Observation B3 (¬u.done ∧ u.gate ∧ u.ht = p) ⇒ (∀ v : N(u, v) ∧ v.ht <
u.ht ∧ v.gate : v.quiet) .

Proof. By contradiction. Assume ¬u.done ∧ u.ht = p and v is a neighbor of
u such that v.gate , v.ht < u.ht , and ¬v.quiet . There are two cases, ¬v.done
or v.done .

In the case of ¬v.done , by SF ′ 1 and SF ′ 0, v.ht ≥ p . So v.ht ≥ u.ht ,
which is a contradiction.

In the case of v.done and ¬v.quiet , there exists some point in the compu-
tation i ≥ p such that Ev

i but no point j ≥ p such that Cv
i 6= Cv

i+1 . By
SF ′ 3, v.ht ≥ i . Then v.ht ≥ p and v.ht ≥ u.ht , which is a contradiction.

In either case we have a contradiction.

Lemma B2 The current point in the computation eventually changes.

p = k ; p 6= k

Proof. Assume p = k . It follows from T1, T0, and T3 that either σk = σk+1

or there exists a process u such that Cu
k 6= Cu

k+1 . Then there are two cases.
Case (a): p = k ∧ σk = σk+1 . We show σk = σk+1 ∧ p = k ensures p 6= k

in the composed system. By C ′ 3, stable σk = σk+1 ∧ p = k in client′ . It
suffices to show σk = σk+1 ∧ p = k ensures p 6= k in SF ′ .

By SF ′ 6, σk = σk+1 ∧ p = k is transient in SF ′ . Since σ is constant,
the only way for the predicate to be transient is for p to change. The ensures-
property follows from this.

29

Case (b): Cu
k 6= Cu

k+1 ∧ p = k . C ′ 5 and C ′ 6 entails client′ will eventually
change the count provided p = k ∧ Cu

k 6= Cu
k+1 ∧ u.lock . Then, in order to

show eventually p 6= k it suffices to show that the hypothesis of C ′ 5 is satisfied
by the rest of the processes in the union and eventually u holds a lock.

The hypothesis is satisfied by Lemma B1, S1, SF ′ 7, C ′ 3, and T3.
Assume p = k and Cu

k 6= Cu
k+1 . By the definition of done and next

it is the case that ¬u.done and u.next = p . Without loss of generality we
may assume u.gate holds as if ¬u.lock ∧ ¬u.gate , eventually u.gate and if
u.lock ∧ ¬u.gate , we are done.

Then by SF ′ 1, SF ′ 8, and Lemma B1, u.ht = p and u.enabled .
Furthermore, by T3, it is the case for all v 6= u that Cv

k = Cv
k+1 . Then, by

C ′ 3, no other process may change the point in the computation. It then follows
from Lemma B1 that u.enabled is stable unless the point is incremented by
process u .

Now, for all v 6= u , it is the case that ¬v.lock by Observation B2 and
Cv

k = Cv
k+1 . We may then assume without loss of generality v.gate . Since

u.ht = p , by Observation B3, u is the highest-priority among all processes that
may ever become enabled.

Also notice that for all v 6= u the additional guard of action L′
v is false

since heights are unique and u.ht = p .
Then eventually u will collect its shared tokens and u.lock will hold.

Lemma B3 The current point in the computation eventually advances by one.

p = k ; p = k + 1

Proof. This follows directly from Lemma B3 and p = k unless p = k + 1 is a
property of the composed system.

The following observation is used in the proofs of the remaining Lemmas.

Observation B4 invariant (¬u.lock ∧ ¬u.gate) ⇒ u.ht < p

Proof. Assume ¬u.lock ∧ ¬u.gate . By SF4, in order to have ¬u.gate , it must
have been the case that action L′

u was executed in a state where its guard was
true, granting u a lock. Let this point in the computation be p′ . Then u.ht = p′

at the point L′
u was executed in a state where its guard was true. Since u.lock

is stable in SF ′ (S1), it must have been falsified by an action of client′ . By
C ′ 6, client′ releasing a lock necessarily changes the point, so by C ′ 4 p′ < p .
Furthermore, since u.ht = k is stable in client′ and u.ht = k ∧ ¬u.gate is
stable in SF , it must be the case u.ht = p′ if ¬u.gate . Then u.ht = p′ < p .

Lemma B4 Any guard added to an existing action in the composed system can
only be falsified by the action it guards.

30

Proof. The requirements on constraining a client process to create client′ stip-
ulate that this property holds.

It remains to be show that the Lemma holds for additional guards of SF ′ . It
holds trivially for actions U ′

u,v , T ′
u,v and D′

u . Then it suffices to show (u.ht =
p ∧ ¬u.done) ∨ u.quiet is preserved by all actions of client′ ‖ SF ′ .

Again, by the requirements on client′ , we only need to consider actions of
SF ′ . Since u.quiet is stable and the trace constant in SF ′ , the only actions
which can falsify the predicate are D′

u , which assigns to u.ht , and Q′ , which
assigns to p .

To show D′
u cannot falsify the guard of L′

u , assume u.ht = p and ¬u.done .
We will show u.lock ∨ u.gate by contradiction. So assume ¬u.lock ∧ ¬u.gate .
By B4, u.ht < p . Contradiction.

To show Q′ cannot falsify L′
u , assume u.ht = p ∧ ¬u.done . By SF ′ 9, at

the point u.ht was assigned to, ¬u.done held. Then by the definition of u.next ,
Cu

u.ht 6= Cu
u.ht+1 . So Cu

p 6= Cu
p+1 and therefore σp 6= σp+1 . Then Q′ is disabled

in a state where u.ht = p ∧ ¬u.done holds.
It follows that (u.ht = p ∧ ¬u.done) ∨ u.quiet can be falsified only by

executing L′
u .

Lemma B5 Any guard added to an existing action in the composed system is
infinitely often true.

Proof. The Lemma trivially holds for actions U ′
u,v , T ′

u,v , and D′
u and holds

for all actions in client′ by the requirements of client′ . Then it suffices to show
(u.ht = p ∧ ¬u.done) ∨ u.quiet is infinitely often true.

If u.quiet ever becomes true, it will remain true forever by SF ′ 10. We show
that if ¬u.quiet is an invariant of the trace, u.ht = p ∧ ¬u.done infinitely
often. From the definition of u.quiet and u.done , if ¬u.quiet is an invariant
of the trace, then ¬u.done is an invariant of the trace as well.

Since the only action which assigns to height is D′
u , u.ht = k unless

¬u.done ∧ ¬u.gate . By B4, (¬u.done ∧ ¬u.gate) ⇒ u.ht < p . So u.ht =
k unless u.ht < p .

To prove the Lemma, we will show that if ¬u.done is an invariant of the
trace, then u.ht = p infinitely often. There are two cases.

Case (a): u.gate holds. Then by SF ′ 3, u.ht = u.next and by SF ′ 0, u.ht ≥
p . If u.ht = p then we are done so assume u.ht = k where k > p . By the
unless property demonstrated in the penultimate paragraph and induction on
p , eventually u.ht = p .

Case (b): ¬u.gate holds. If ¬u.gate then as in the proof of B4, ¬u.lock ∧
¬u.gate hold. It follows eventually u.gate , which is case (a).

In either case, eventually u.ht = p . Then u.ht = p infinitely often and the
guard of L′

u is infinitely often true.

Lemma B6 The assignment u.ht := u.next in D′
u implements the random

assignment in Du .

31

Proof. In order for D′
u to be enabled, it must be the case ¬u.lock ∧ ¬u.gate .

By B4, u.ht < p . By SF ′ 0, u.next ≥ p . So u.ht is increased. Now we show
u.ht is unique. There are two cases. In the first case, u.done at the point of the
assignment. By the definition of u.next if u.done holds, then u.next is odd
and u.next 6= v.ht for all v . If ¬u.done holds, then u.next is even and equal
to the next point u increments count, which is unique by T3.

Then u.ht := u.next implements the random assignment in Du .

Finally, we prove the main results — σ is a possible computation of SF ′ ‖
client′ and SF maximally implements the scheduler specification.

Theorem B1 Any fair execution of SF ′ ‖ client′ is a fair execution of SF
composed with the client process.

Proof. Lemmas B4 and B5 establish that each action of SF ′ ‖ client′ is in-
finitely often executed in a state where its additional guard is true. Then weakly-
fair execution of the composed constrained system corresponds to a weakly-fair
execution of the original composed system.

Lemma B6 establishes that u.ht := u.next correctly implements the random
assignment in SF .

Theorem B2 The SF algorithm composed with a client process meeting the
additional requirements is a maximal with respect to the strong fairness specifi-
cation.

Proof. Let σ be an arbitrary trace satisfying the strong-fairness specification.
We show σ is a possible execution of SF composed with a client process that
is able to satisfy the requirements stated.

Lemmas B1 and B3 establish σ as a fair execution of SF ′ ‖ client′ . The-
orem B1 proves that any execution of SF ′ ‖ client′ is a fair execution of the
unconstrained system. Then σ is a possible execution of the unconstrained sys-
tem.

Since σ is arbitrary, any trace satisfying the strong-fairness specification
is a possible execution of SF composed with a client process meeting the re-
quirements stated. Then the SF algorithm is a maximal solution to the strong-
fairness problem.

