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Figure 1. Reflections on curved reflective objects using layered-depth textures.

Abstract

This paper introduces a novel approach for real-time re-
flection on curved objects. In our algorithm, we first de-
termine the regions on the reflectors where reflections are
likely to exist. To reduce the cost of rendering the reflec-
tions in those areas, for each reflected object, a local cube
map, called layered depth texture, is constructed. At run
time, a fragment program is used to search the intersection
point of the reflective ray from the reflector with the lay-
ered depth textures. For a convex reflected object, a single-
layered cube map is sufficient to ensure geometrically cor-
rect reflection results. For a concave object, however, a
multi-layered cube map is needed, which can be generated
using the depth-peeling technique. Our per fragment based
search algorithm for reflection rendering does not depend
on the geometry complexity of the reflected objects. In addi-
tion, the construction of the layered depth textures does not
depend on the viewpoint, so it only needs to be done once.
Because the cost of our algorithm is independent of the ge-
ometry complexity of reflected objects at run time, real-time
reflection computation for complex scenes can be achieved.

1. Introduction

The traditional methods for rendering reflections include
ray tracing and environment mapping. Ray tracing images
are typically of high quality with more accurate reflections.
However, it requires expensive computation, and thus is dif-
ficult to be used for real-time applications. Environment
mapping, on the other hand, is a fast approach at a cost of
lower accuracy. Because the position of the reflector is not
considered, nearby objects cannot be reflected correctly and
dynamic scenes are difficult to handle. Other than these two
methods, there also exist some reflection rendering tech-
niques that employ the virtual object concept. Some of
the methods are based on Fermat’s principle, while others
are hybrids of two or three methods combined together to
achieve desired goals. Except the less accurate environment
mapping techniques, for most of the existing algorithms, the
cost to render reflections increases as the geometry of the
reflected objects becomes more complex. Even with simple
reflectors, the speed of reflection rendering is largely lim-
ited by the number of polygons in the reflected objects.

Many researchers have previously attempted to improve
the speed of reflection rendering. Ofek and Rappoport [18]
used explosion maps to quickly identify the reflection re-
gion on the reflector without exhaustive search. The main



drawback of this approach is, however, if there are several
reflectors in the scene, or when the viewpoint is changing,
the explosion map needs to be re-computed. Another draw-
back of their approach is that inaccurate mapped vertices
are often found in the explosion map thus the reflection
points they computed can be incorrect. Some researchers
tried to partially solve the problem by using several meth-
ods combined together. Chen and Arvo in [5] combined
the ideas of virtual object and ray tracing. They avoided
going through all the geometry by first using a sparse set
of reflection points, and then applying perturbation to those
points to interpolate the nearby points. The main limitation
of this algorithm is that the reflectors need to be differential
surfaces. In addition, their approach may not work for all
the cases when the reflector is concave. Li et al. in [14]
used ray tracing with geometry fields to render reflections.
A geometry field is a combination of a light field with a
geometry image [12]. Given a surface, its geometry field
is represented as a map that stores all ray/surface intersec-
tion information. If an incident ray is given, the geometry
field returns the texture coordinates of the first intersection
point. With their algorithm, conventional intersection test-
ing is replaced by indexing a geometry field, which does not
depend on the complexity of the objects in the scene. This
method exhibits inherited limitations from geometry images
since the construction process of a geometry field includes
the generations of a geometry image and a light field. The
construction of a geometry image involves parameterizing a
given surface onto a planar domain. For those models with
high genus or long extremities, forcing the whole surface to
map into a plane can introduce distortions even with con-
formal parametrization. Moreover, this preprocess itself is
expensive and complex.

In this paper, we introduce a novel approach to achieve
real-time reflections using graphics hardware. In our algo-
rithm, instead of performing explicit intersection tests or
virtual objects rendering and clipping, reflections are ren-
dered on the curved reflectors using cube map-like textures,
called layered depth textures, generated from each reflected
object. The layered depth texture contains images ortho-
graphically rendered from the six faces of a cube surround-
ing the reflected object. Both the color and depth values
are saved in the texture, which only needs to be constructed
once. Given an arbitrary camera view, for each reflected
ray from a fragment on the reflector, if it intersects with the
bounding box of the reflected object, we search the layered
depth texture based on the ray marching positions and the
depths stored in the texture to locate the intersection point
and retrieve the reflection color. Our algorithm can handle
both convex and concave objects, and will find the correct
intersection point efficiently. For a convex object, a single-
layered cube map is sufficient for correct determination of
the intersection point. For concave objects, some points can

be only visible from particular view points but not from any
of the six orthographic views. To handle this case, a multi-
layered cube map is produced.

Our method has several advantages. First, the run-time
performance of reflection rendering is independent of the
geometry complexity of the reflected objects. The size of
the layered depth texture grows only linearly with the depth
complexity of the reflected object if it is concave. Second,
this cube map representation does not depend on the view-
point of the camera at run time and only needs to be ren-
dered once. Third, since the layered depth texture is created
for each reflected objects, our approach overcomes the lim-
itation of environment mapping such as parallax and touch-
ing, and can easily handle dynamic scenes. To sum up, be-
cause the cost of our algorithm is independent of the geom-
etry complexity of the reflected objects, real-time reflection
computation for complex scenes can be achieved using pro-
grammable GPUs.

Our paper is organized as follows. We first briefly review
the previous work in section 2. In section 3, we describe
our algorithm in detail. In section 4, we present experimen-
tal results using different scenes. We conclude and discuss
future directions of our research in section 5.

2. Previous work

Reflection rendering has been an active research topic
in computer graphics for decades. The methods of com-
puting reflection can be classified into two main categories:
ray tracing [10] and environment mapping [1]. Ray trac-
ing is a traditional technique for rendering accurate reflec-
tions. Because of its high computational cost, full ray trac-
ing is usually not for interactive applications despite the
fact that much research has been conducted to accelerate
ray tracing using highly parallel computers [25], [26], [27],
or GPUs [3], [22]. Some research addresses how to avoid
unnecessary rays, intersection testings, and tracing process
so that the algorithm can be accelerated. Carr et al. in
[4] improved GPU ray tracer by using a threaded bound-
ing volume hierarchy stored as a geometry image min-max
MIP map. This scheme efficiently inputs nodes of the hi-
erarchy into the GPU pipeline. By updating the hierarchy
at run time, the method can ray trace dynamic geometry
and capture the secondary reflections. While effective, their
implementation cannot handle sharp edges. Another limi-
tation of their method is that it is unable to sort traversal
order and often leads to a huge number of unnecessary in-
tersection tests. As a result, their method is not interactive.
Li et al. in [14] used ray tracing in the geometry field to
achieve real-time reflection. A geometry field records all
the ray/surface intersection information. In this setting, the
expensive intersection testing in the traditional ray tracing
is replaced by indexing the geometry field. The main disad-



vantage of their method is the large storage cost and lengthy
preprocessing.

Environment mapping [1], [11] is a popular method to
compute reflection for interactive applications. It is based
on the assumption that the reflected objects (or scene) are
located at an infinite distance. When the assumption is vio-
lated, the method leads to inaccurate reflection results.

Much work has been done to improve the original en-
vironment mapping algorithm by combining it with vari-
ous image based rendering techniques. Patow [19] used the
Z-buffer to compute a distance map along with the envi-
ronment map. Both the color and the distance to the cen-
ter of the reflected object are recorded for each pixel in the
environment map, which is used to select the proper pixel
inside the environment map. Cabral et al. in [2] used ra-
diance environment maps with image-based rendering in a
reflection space for interactive viewing of arbitrary objects
with an extended interactive IBR algorithms, but still suf-
fers from the accuracy problem. Hakura et al. [13] pro-
posed Parameterized Environment Maps (PEM) to solve the
problem that the environment maps (EM) cannot capture
local reflections. However, the method requires large stor-
age space and longer time to precompute the EMs. More-
over, the transitions among different EMs could lead to dis-
continuity problem. Martin and Popescu in [16] proposed
another technique to combine environment mapping with
image based techniques. Their method interpolates among
several environment maps to handle the parallax issues at
the cost of longer preprocess time. Yu et al. in [28] used an
environment light-field which contains all the information
of a light field but is organized like an environment map.
Their method also aims to solve parallax issues at the cost
of longer pre-computation time. The region of the reflector
is also restricted to areas where the light filed or the envi-
ronment maps can cover.

In addition to these two main categories, some works
make use of Fermat’s principle to compute reflection. Mit-
cell and Hanrahan [17] calculated exact reflection paths
from curved surfaces defined by implicit functions. They
have to solve a nonlinear system numerically to find the
reflection points. Therefore, it’s a computationally expen-
sive approach. Following Fermat’s principle, Roger and
Holzschuch [23] computed the exact reflection position by
solving an optimization problem where the gradient of the
optical path lengths must be zero. However, the accuracy
of their method is only at the vertex level. If the reflected
object is not tesselated fine enough, interpolation artifacts
will appear. Moreover, the approach only captures the first
reflections but not secondary ones on reflectors.

Some researchers have explored the idea of virtual ob-
jects proposed in [6] to simulate reflections. Ofek and Rap-
poport [18] used the virtual object approach to interactively
compute single-level reflections on curved objects. The vir-

tual objects are created using a structure called the reflection
subdivision and an acceleration scheme, the explosion map.
The explosion map needs to be re-computed for each re-
flector and viewpoint. Their method could obtain incorrect
reflection points because an explosion map can often lead
to find an incorrect triangle. Chen and Arvo in [5] com-
bined the virtual object idea with ray tracing. They used
ray tracing to pre-compute a sparse set of reflection points,
then applied perturbation to those points to interpolate the
nearby points. However, their approach requires that the re-
flector be a differential surface. The other limitation is that
their approach may not work well for all the cases when the
reflector is concave. Estalella et al. in [8] [7] also used
the concept of virtual objects. For each reflector and each
reflected mesh, they create a virtual mesh by using an er-
ror function and a search algorithm with a pre-computed
cube map for each reflector. The cube maps save the re-
flector position and normal information, which are needed
to search for reflection points at run time. Their method re-
quires the reflectors to be closed objects to fill the reflector
cube maps and the objects to be segmented into concave or
convex pieces. Moreover, the edges of large polygons are
not correctly reflected since they only reflect the endpoints.

In our algorithm, we use layered depth information to
find the intersection points between the reflective rays and
the reflected objects. The layered depth technique was orig-
inally proposed by Shade et al. in [24]. In our approach,
we extract depth information from different layers of the re-
flected object, especially for concave objects. Among the
various techniques of obtaining depth values, depth peeling
proposed by Everitt [9] is more attractive due to its simplic-
ity and robustness. Policarpo et al. in [21] proposed an ef-
ficient search algorithm to find the best approximated value
in their relief mapping. Moreover, they extend their work
in [20] to handle non-height-field object in relief mapping.
In some sense, our algorithm is similar to relief mapping in
terms of finding the intersection points from a precomputed
depth map for a given ray.

3. Rendering reflections on curved surfaces

3.1. Overview

Our approach consists of several steps. First, for each re-
flected object in the scene, we generate a cube map-like tex-
ture called layered depth texture in a pre-processing stage.
Then, at run time given a particular camera view, the poten-
tial reflection regions on the surface of the reflector is first
identified. For those regions, we render reflections using a
fragment shader to search for the intersection point between
the reflected ray and the layered depth textures. Our algo-
rithm handles both convex and concave reflected objects. In
the following, we describe our algorithm in detail.



(a) The bounding cone. (b) The reflected ray intersects with
the bounding box.

Figure 2. In the left figure, the blue triangle
is one of those on the reflective surface and
the yellow quad is its expanded plane. C is
the camera position. O is the center of the
virtual bounding sphere. CA and CB are the
lines from C and tangent to the sphere at A
and B respectively. All tangent points on the
plane perpendicular to line CO forms a circle
with its center at O

′
. This circle and the view

position C construct a cone. In the right fig-
ure, N is the normal at P . A and B are the
points that the reflected ray enters and exits
the bounding box respectively.

3.2. Determine the potential reflection re-
gions

For a planar reflector, reflection can be calculated in a
straightforward way by rendering the virtual object directly.
The virtual object is a copy of the reflected object symmet-
ric to the reflection plane computed using a reflection ma-
trix listed in the appendix. We can extend this method to
render reflections on curved reflectors when they are mod-
elled as triangular meshes. In this case, a curved reflector
can be thought of as being composed of many small pla-
nar reflectors. For each small planar reflector in the form of
a triangle, if the reflection on this plane overlaps with the
extent of the triangle, this triangle has the reflection; oth-
erwise it has not. This test can be efficiently done if we
test the triangle against a bounding volume, in the form of
a cone, between the camera and the virtual object. To con-
struct such a cone, we first obtain a bounding sphere of the
virtual object (see Figure 2(a)); then connect the center of
the bounding sphere O with the camera C; all points Vi on
the sphere that are tangent to the sphere when connecting to
the camera C, form a circle with O

′
as its center. This circle

is the base of the cone. The plane defined by the circle is
perpendicular to line CO, and C is the apex of the cone. For
examples, in Figure 2(a), A, B are on the sphere, and line
CA and CB are tangent to the sphere (i.e., angle 6 CAO
and 6 CBO are right angles).

We can change the coordinate system to simplify the

cone equation into x2 + y2 = (r − rz
h )2, where (x, y, z)

are the coordinates of a point on the cone surface, r is the
radius of the cone base circle, and h is the cone height. In
the new coordinate system, O

′
is the origin, and the vector

−−→
CO is the positive z axis. Let θ be the angle 6 ACO, then
cos θ = |CA|

|CO| and |CO
′ | = cos θ × |CA|. We can compute

O
′

by the following two equations.

λ =
|CO| − |CO

′ |
|CO|

O
′
= O + λ× (C −O)

The expanded plane defined by the triangle can cut through
the cone and form an ellipse. Hence the testing becomes to
check if the triangle overlaps with the ellipse.

Overall, when a triangle has a reflection, it will satisfy at
least one of the following three cases:
1. at least one of the three corners of the triangle is inside
the cone;
2. at least one of the three edges of the triangle intersects
with the cone;
3. the ellipse is completely inside the triangle.

After identifying the triangles that have reflections on a
reflective surface, we will efficiently render the reflections
on those triangles with our algorithm described below. The
main contribution of our algorithm is to avoid the expensive
virtual objects rendering and clipping. This is especially
crucial when the number of triangles in the reflection re-
gions is large and the reflected objects are complex. In the
following, we present our algorithm in detail.

(a) The first layer depth texture. (b) The second layer depth texture.

Figure 3. The layered depth textures of the
genus3 model.

3.3. Reflection computation

To render reflections, we take an image-space approach
to construct a local cube map called layered depth texture
for each reflected object. This effectively shifts the work of
rendering the reflection geometry to simple texture lookups
so that reflection rendering can be accelerated substantially.
With orthographic projections, we render each reflected ob-
ject from six views similar to the construction of a cube



map. For each view, both the color and depth values are
read out from the frame buffer and depth buffer to the cor-
responding cube map face. The colors are stored in the first
three channels of 2D RGBα textures, and the depth val-
ues are stored in the α channel. The six face textures are
packed into one single 2D texture since the graphics hard-
ware usually supports a limited number of texture objects.
The packing of six textures are illustrated in Figure 3.

Figure 2(b) illustrates our rendering algorithm. For now,
we assume that the reflected objects are convex. We will
relax this constraint in the next section and describe how
our algorithm handles arbitrary concave objects and con-
struct the layered depth textures. In the figure, 4P1P2P3

is one of the triangles on a reflective object, P a point on
the triangle, N its normal vector, and C the viewpoint. The
reflected ray at P is

−→
PA computed from its normal and the

view vector. A and B are the intersection points that the re-
flected ray enters and exits the bounding box of the reflected
object. V is the point that the reflected ray intersects with
the reflected object. The goal of our rendering algorithm is

(a) Linear search (b) Binary search

Figure 4. (a)Linear search is to find the first
point inside the object. V3 is the one, and
h ≥ z at the corresponding texture coordi-
nate t3. t3 and its previous one t2 are passed
as the parameters into the binary search pro-
cess. (b)Binary search approximates the best
value for V within two texture coordinates ti
and ti−1. The numbers here indicate the se-
quence of approximation.

to, for each fragment P on the reflective triangle, identify
the intersection point V based on the depth values stored in
the layered depth texture and retrieve its color stored there.
Since the computation is per fragment based, we employ a
shader program to perform the task of rendering reflections.
The process of computing reflections for each fragment can
be conceptually described as follows:

• transform point P , its normal vector, and the viewpoint
into the local space of the reflected object;

• compute the reflected ray in the local object space;

• compute the two points (A and B in Figure 2(b)) where
the reflected ray enters and exits the bounding box;

• search between t0 and tn, the texture coordinates for
A and B

′
on the face texture for the intersection point,

where B
′

is the projection of B to the face that the
reflected ray first intersects, as shown in figure 2(b).

As illustrated in Figure 4, our search algorithm contains
two main steps: (1) an approximate linear search for the
first point Vi inside the object; (2) switch to a binary search
between ti−1 and ti, where ti represents the texture coordi-
nates for Vi, and ti−1 represents the texture coordinates of
the point right before Vi as we are marching the ray. The
linear search starts with t0, the entry point of the ray to
the layered depth texture, see Figure 4(a). For each step,
we march toward tn at an equal distance. We compute the
height h of the ray and look up the depth z in the corre-
sponding texture for ti at step i. If h is greater than z, it
means the ray point is now inside the object and thus the
linear search stops because the intersection point V will be
in between the step i-1 and i with texture coordinates ti−1

and ti. We then switch to use a binary search algorithm to
identify the intersection point.

As illustrated in Figure 4(b), in the binary search, we
calculate the middle point tm between ti−1 and ti. At tm,
if its height hm is greater than zm, discard ti and continue
the binary search between ti−1 and tm. Otherwise, throw
away ti−1 and continue the binary search between tm and
ti. This binary search will stop when the error is within
a fraction of one texel or it has iterated a pre-set number of
steps. Figure 4(b) shows the sequence of search as indicated
by the numbers.

Figure 5. The search process that needs
more than one texture.

Our search algorithm is similar to the one which com-
putes ray surface intersection in [21]. However, in our re-
flection computation, searching only one face texture may
not lead to a correct value for the intersection point. This
case does not appear in the relief map since the relief map
is a small detailed geometry map that is used to enhance a



polygonal surface. Figure 5 shows such a case that one tex-
ture is not enough to find the correct value. This is because
the depth texture for the face that is first hit by the reflec-
tive ray does not capture the actual depth of the intersection
point due to the fact that the reflected object, a cylinder, is
perpendicular to that face of the layered depth texture.

In Figure 5, point P on the reflective surface should re-
flect the color value of V on the reflected object. If we only
search for V in the top face texture, we will get an incor-
rect texture value T since all points between V0 and V are
projected onto the same point T in the top face texture. The
point V0 with the smallest depth occludes all other points
along the vertical line. If we use the right face texture, how-
ever, to perform the search, the correct intersection point
can be found because the correct value T1 for V is stored
there. The number of the faces we need to search and com-
pare from the layered depth texture is at most three. The
three faces that are selected for the search process is decided
by the direction of the reflected ray. By negating the sign of
each component of this normalized vector, we can choose
the three textures. We can simplify the three-texture search-
ing in our algorithm by setting a threshold. The search pro-
cess can stop early when h and z are close to each other
within the threshold.

The algorithm described in this section is sufficient for
convex reflected objects. However, the reflections of con-
cave objects cannot be correctly rendered with a single-
layered depth texture. For example, in Figure 6(a), the ver-
tex V is blocked by V 1 from the bottom view but is also
not visible to the right face view. In the next section, we
describe how to handle the concave cases.

(a) A concave object. (b) The layered searching algorithm.

Figure 6. The left figure shows a concave ob-
ject in our approach. The right illustrates that
a reflected ray PB intersects the object at V .
Texel ti has 4 depth values at L1, L2, L3, and
L4. Among them, L1 and L3 are the front face
depths. L2 and L4 are the back face depths.

3.4. Handle concave objects

The algorithm described above can be extended to han-
dle concave reflected objects. Basically, this is done by: (1)
construct a multi-layered depth texture that stores the depth

and color information (examples are shown in Figure 3); (2)
modify the search algorithm presented above to handle an
arbitrary number of layers. This situation is illustrated in
Figure 6(b). For the bottom face, the pixel at T contains
two layers (at L4 and L2) with back faces (at L3 and L1)
ignored.

To generate a multi-layered depth texture, we use the
depth peeling technique described in [15] and [9] to extract
the desired information for each layer. Besides colors and
depths are saved and packed into the textures as described
previously, we also construct another texture to include sur-
face normals in the first three channels, and the layer count
associated with current pixel in the α channel. The layer
count indicates how many layers that the current pixel has,
which will be used by the search algorithm. We assume that
the concave objects are defined as closed surfaces, which
means that all front faces are paired with the correspond-
ing back faces. For example, the concave object shown in
Figure 6(b) at texel ti, has two front faces L1 and L3 (if
we view the object from the top face), and two back faces
L2 and L4 corresponding to its front faces. The layer count
associated with the texel ti in the cube map texture in this
case is two. We define three variables h, z, and d. h is the
height computed along the reflected ray

−−→
PB. z is the depth

read out from the current face texture in the current layer.
d is one minus the back face depth of the current layer. To
make efficient use of the texture memory, for each face of
our cube map texture, we do not store the back face depths.
However, the back face depth can be found from the op-
posite side of the current cube map face since it is seen as
the front face there. With this multi-layered texture setup,
our linear search algorithm not only needs to find a proper
point inside the object, it should also identify which layer
that the point resides when the linear search ends. For each
point along the ray with h being the height, there are two
cases that can help us distinguish which layer an intersec-
tion point may reside: (1) if h ≤ z, the intersection point is
in the current layer; (2) if h > z and h < d, the intersection
point is in the layer that is greater than the current one. So
the layer number increases until the condition (1) is held in
some layer or the program stops if all the layers in current
texel run out without meeting the criteria, i.e, no intersec-
tion is found. Then the search process marches to the next
step with a new texel. The pseudo code of the linear search
is listed in algorithm 1.

When the linear search ends up at a point inside the re-
flected object corresponding to a particular layer, the binary
search starts. The layer number, and two texture coordinates
ti−1 and ti are passed into as parameters. The binary search
keeps refining the value between ti−1 and ti in the texture
until the intersection point is found.



Algorithm 1 LinearSearch(t0, tn, faceId)
1: i=1; j=1; find=false; t = t0; dir=normalize(tn − t0);
2: while (not find and i ≤ linearSearchSteps) do
3: h = computeDepth(t);
4: pixelLayers = getPixelLayer(faceId, t);
5: j=1; subFind=false;
6: while (not subF ind and j ≤ pixelLayers) do
7: z=getDepthWithLayer(faceId, t, j);
8: d=getBackfaceDepth(faceId, t, j);
9: if (h < z) then

10: subF ind=true;
11: else
12: if (h ≤ d) then
13: layer=j; find=true; subF ind=true;
14: end if
15: end if
16: j++;
17: end while
18: i++; t = t0 + stepSize∗i∗dir;
19: end while

Figure 7. The reflections of the hollow-box
touching the reflective sphere.

4 Results

This section presents some experimental results us-
ing our real-time reflection rendering technique. All ex-
periments are conducted on a windows XP system with
a 2.19GHz Intel processor, 1GB RAM and an NVidia
GeForce 7800 GPU. The resolution of our images gener-
ated is (768× 512).

4.1. Experimental results

The geometry information about the models used in our
experiments are listed in Table 1, which includes the model
size, the number of the depth layers, and the pre-processing
time (in milliseconds) for creating the layered depth tex-
tures. The pre-processing speed is dependent on the size
and the model’s depth complexity.

Table 2 shows the performance of our algorithm with ex-
perimental scenes. The second column of the table lists the
time (in milliseconds) just to render the reflected objects

(a) Genus3 and its reflection. (b) Knotty-cup and its reflection

Figure 8. The reflections of two non-zero
genus models.

Table 1. Model sizes and the time (in millisec-
onds) to create the layered depth textures.

Models Triangular Faces Layers Time
Ball 1520 1 24.783
Hollow-box 135 2 46.489
Dancer 49996 2 50.372
Knotty-cup 10768 3 63.289
Genus3 13312 3 63.592
Elephant 25086 3 65.789
Horse 96966 3 71.075
Armadillo 49998 5 95.328
Tyra 49998 5 95.827
Happy-Buddha 129484 5 110.000

with OpenGL, which is solely determined by the geome-
try complexity of the model and unrelated to the perfor-
mance of our reflection algorithm. Column three and four
of the table lists the speed of the different stages in our algo-
rithm. Column three lists the time for rendering the reflector
with a global environment mapping but not the reflections
of nearby objects. Column four lists the performance of
our real-time reflection algorithm for the reflected objects
running on the fragment shader. Column five shows the to-
tal frame rates, which include rendering the reflector, the
reflected objects, the global environment mapping, and the
reflections of nearby reflected objects. Alpha blending is
used to combine the global and nearby reflections.

(a) Two textured balls and their re-
flection.

(b) Three textured genus3s and their
reflection

Figure 9. The reflections of textured models.



Figure 10. Reflections of the armadillo and tyra.

Table 2. Performance (in milliseconds) of our
algorithm with various experimental scenes.

Scene Objects* Reflector Reflection FPS
2 balls 0.195 1.013 1.559 52
Hollow-box 0.154 1.019 1.612 90
Knotty-cup 0.316 1.023 2.131 60
Buddha 4.25 1.027 2.188 55
Armadillo 2.439 1.022 2.337 75
Tyra 1.95 1.021 2.342 75
2 elephants 0.592 1.064 4.324 45
2 horses 5.684 1.024 4.822 40
3 genus3s 0.568 1.013 5.372 40
3 dancers 2.443 1.029 6.261 35
Objects* - The rendering time of reflected objects.

4.2. Comparisons with other reflection
methods

While it is difficult to compare our approach with all the
other existing reflection rendering methods, there are some
notable advantages in our algorithm. For example, we can
achieve more accurate reflection images than environment
mapping without sacrificing the performance when the re-
flected objects are close to or even touch the reflector, as
shown in Figure 7. In terms of speed, our algorithm out-
performs ray tracing due to its simplicity. The performance
of our algorithm is also independent of the size of the re-
flected models and only related to the depth complexity of
the layered depth textures. This can be seen from Table 2.

Unlike the explosion map in [18], the construction of the
layered depth textures for each reflected object is indepen-

dent of the viewpoint, so it only needs to be done once. In
addition, explosion maps can lead to inaccurate reflections
because they do not compute the exact explosion map cells
to all mapped vertices. See the discussion section in the
original paper.

Compared with the method of ray tracing using the ge-
ometry field in [14], we have advantages as follows:

• During the preprocessing, Li et al.’s method needs to
generate the geometry image, the geometry field, and
parametrization etc, so it can take much more time than
our algorithm. Even for concave objects, the time of
obtaining a multi-layered cube map in our algorithm
increases only with the depth complexity of the object,
but not its geometry complexity.

• In terms of space consumption, Li et al.’s approach re-
quires a large size of storage for the geometry fields to
store all ray directions even for simple geometry mod-
els. In their paper, all geometry fields have the size of
(24 × 24 × 6)2, even for a simple sphere. In our ap-
proach, we do not need to quantize and store all reflec-
tive ray directions. For a simple sphere, for example,
only a single layered depth texture is needed. If the
resolution is 256, then we only need (256 × 256 × 6)
for the storage.

• Li et al.’s algorithm employs geometry images, which
are stored at a fixed resolution. For high genus mod-
els, geometry images can often contain errors. Since
the depth information of all layers are stored in our al-
gorithm, we can capture those high genus structures
correctly. See the reflection images of knotty-cup and
happy-Buddha in Figure 1 and Figure 8.



Figure 11. The reflections of two models.

Figure 12. Three dancers and their reflections

5 Conclusions and future work

We have presented a simple and interactive technique for
real-time reflection rendering. After first determining the
potential reflection areas on the reflectors, we make use of
programmable graphics hardware to compute reflections on
these regions. To efficiently and correctly find the colors
of reflection points, we construct a multi-layered cube map
called layered depth texture with a depth peeling technique.
We also implement an efficient search algorithm to find the
best values of reflection points based on the stored multi-
layered cube map, which ensures that the time complexity
of our algorithm is independent of the complexity of the re-
flected objects. Therefore we can enhance the performance
and achieve interactive frame rates.

Our algorithm, however, also has some limitations. The

current implementation does not yet handle occlusions. For
example, the reflection should not appear on the reflective
surface if it is blocked by the reflector itself, or other ob-
jects in the scene. In addition, the current work only com-
putes the first order reflections but not secondary reflections
such as the self reflections or inner reflections. These are all
important to improve realism and we are exploring ways of
capturing and representing those features.

Appendix

Given a triangle,P1P2P3, where P1 = (x1, y1, z1), P2 =
(x2, y2, z2), P3 = (x3, y3, z3). Let −→n be the normal of the
plane defined by the triangle. Then −→n = (P1 − P2) ×
(P3 − P2). Let a, b, c be the three components of −→n , then
the plane equation is: ax + by + cz + d = 0. The mirror



matrix to compute the virtual object will be:

M =


1− 2a2 −2ab −2ac −2ad
−2ab 1− 2b2 −2bc −2bd
−2ac −2bc 1− 2c2 −2cd
0.0 0.0 0.0 1.0

 .
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