
Cost-Aware Caching Algorithms for Distributed

Storage Servers

Shuang Liang, Ke Chen, Song Jiang, Xiaodong Zhang

Technical Report
OSU-CISRC-7/07-TR52



Cost-Aware Caching Algorithms for Distributed

Storage Servers

Shuang Liang1, Ke Chen2, Song Jiang3, and Xiaodong Zhang1

1 The Ohio State University, Columbus, OH 43210, USA
2 University of Illinois, Urbana, IL 61801, USA

3 Wayne State University, Detroit, MI 48202, USA

Abstract. We study replacement algorithms for non-uniform access
caches that are used in distributed storage systems. Considering access
latencies as major costs of data management in such a system, we show
that the total cost of any replacement algorithm is bounded by the total

costs of evicted blocks plus the total cost of the optimal off-line algo-
rithm (OPT). We propose two off-line heuristics: MIN-d and MIN-cod,
as well as an on-line algorithm: HD-cod, which can be run efficiently and
perform well at the same time.

Our simulation results with Storage Performance Council (SPC)’s stor-
age server traces show that: (1) for off-line workloads, MIN-cod performs
as well as OPT in some cases, all is at most three times worse in all test
case; (2) for on-line workloads, HD-cod performs closely to the best al-
gorithms in all cases, and is the single algorithm that performs well in
all test cases, including the optimal on-line algorithm (Landlord). Our
study suggests that the essential issue to be considered be the trade-off
between the costs of victim blocks and the total number of evictions in or-
der to effectively optimize both efficiency and performance of distributed
storage cache replacement algorithms.

1 Introduction

Widely used distributed storage systems have two unique features: storage device
heterogeneity and multi-level caching management. Figure 1 shows an example
of a multi-level heterogeneous multi-level heterogeneous distributed storage sys-
tem, I/O buffer caches are installed at hierarchical levels. Access latencies to
data blocks are no longer a constant due to non-uniform access times caused by
heterogeneous storage devices and hierarchical caching. This adds another di-
mension to the management of distributed storage caches, which is a significant
impact factor to the system performance. However, most existing replacement
algorithms in practice focus on minimizing miss rate as the single metric for per-
formance optimization, treating access latency as a constant. For example, recent
studies on replacement algorithms such as 2Q, ARC, LIRS, and MQ mainly aim
to improve the traditional LRU heuristic4, which consider only block recency

4 A brief overview of these algorithms is available in [1]



or balance both recency and frequency to reduce miss rate. These algorithms
may not be suitable to manage caches of variable access latencies in distributed
storage systems.
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Fig. 1. An example of multi-level distributed storage systems with heterogeneous de-
vices.

The replacement problem for caches with non-uniform access latencies can
be modeled by the weighted caching problem, which can be solved off-line in
O(kn2) time by reduction to the minimal cost flow problem [2], where k is
the cache size and n is the number of total requests. However, this optimal
algorithm is resource intensive in terms of both space and time for real-world
system workloads, particularly when k and n are large. As an example, for a
sequence of only 16K requests and a buffer cache of as small as 1.5 MBytes, the
best known implementation of the minimum-cost flow algorithm [3] takes more
than 17 GBytes of memory and multiple days to run on a dual-core 2.8GHz SMP
Xeon server. Therefore, as current workloads and cache capacity continue to scale
up, it becomes too unrealistic to timely make optimal replacement schedules.

In face of this problem, we study replacement algorithms for non-uniform ac-
cess latency caches. Similar to previous studies, we use variable cost to model the
non-uniform access latency in order to improve the efficiency and performance
of replacement algorithms. In general, our model can be used for a distributed
storage system with other non-uniform features, such as non-uniform energy
consumption per access by instantiating costs as energy access consumption for
different blocks to minimize total the energy consumption.

We show that for any replacement algorithm, the total access cost is bounded
by the total cost of the evicted blocks (see Section 3) of the replacement algorithm
plus the total access cost of the optimal algorithm (OPT). Therefore, the key to
design variable-cost cache replacement algorithms lies in the trade-off between
the number of evictions and the cost of victim blocks. Based on this principle,
we propose two off-line algorithms: MIN-d and MIN-cod. Specifically, we take
the variable cost consideration into MIN – the optimal replacement algorithm
for uniform caches [4]. We found that choosing replacement victims based on the



ratio of cost and forward distance (see Section 3.1) is effective for minimizing the
total costs. Using this heuristic, we also propose an on-line replacement algorithm
HD-cod, which adaptively selects victims among blocks of largest recency from
different cost groups.

We have evaluated the performance of the proposed algorithms with Stor-
age Performance Council’s storage server traces [5] by comparing our algorithms
with OPT, Landlord [6] – a theoretically optimal on-line cost-aware algorithm ,
and other well-known cost-unaware replacement algorithms such as LRU, LFU,
MRU, and Minimal Cost First (MCF). The results demonstrate that the pro-
posed algorithms can be executed efficiently. Among all the algorithms, MIN-cod
performs best in all cases, whose total cost is the same as OPT in some cases,
and is at most four times of the lower bound of OPT in all cases. MIN-d performs
similarly to MIN-cod when the cost distribution is small. In on-line scenarios,
HD-cod performs close to the best algorithms in all cases and is the single algo-
rithm that performs well in all test cases.

2 Preliminaries

The weighted caching problem [6] is defined as follows. Given a request sequence
of data blocks:r1, ..., rn, each block has a cost (or weight) cost(r). For a cache
of size k, upon each request r, if the requested block is not in cache(a miss), it
is fetched in with cost(r). At the same time, one block in the cache is replaced
to make space for r. If the requested block is already in cache, then no cost is
involved. The goal is to minimize the total cost to serve the request sequence.
An algorithm for the problem which assumes prior knowledge of the complete
request sequence is an off-line algorithm. If an algorithm only knows the current
and past requests in the sequence, then it is an on-line algorithm.

OPT: An Optimal Off-line Algorithm. Chrobak et al. [7] gave an optimal
off-line algorithm for the weighted caching problem by reducing it to the minimal
cost maximum flow problem [2]. Let s1, ..., sk be the k cache pages. The algorithm
builds a (2 + k + 2n)-node flow network. The vertex set of the network is V =
{s, s1, ..., sk, r1, ..., rn, r′1, ..., r

′

n, t}, where s and t are the source and target nodes,
respectively. For each i = 1, . . . , k, there is an arc of cost 0 from s to si, and
an arc of cost 0 from si to t. Similarly, a zero cost arc starts from each r′j and
ends at t. From each si, there is an arc to rj , whose cost is equal to cost(rj) if
si does not occupy the block initially, or zero otherwise. For each i < j, there is
an arc from r′i to rj whose cost is equal to cost(rj) if r′i 6= rj , or zero otherwise.
Finally, from rj to r′j , there is an arc of cost −K, where K > 0 is a very large
number. Each arc in the network has a capacity of one. Figure 2 illustrates a
flow network for a two-server and a three-request sequence.

Clearly, the maximum flow of this network is k. As −K is very small, the
minimum cost maximum flow of the network should include all the arcs from rj

to r′j . Then each one of the k different paths from s → t provides the optimal
schedule for the corresponding server to service its requests, that is, the caching
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Fig. 2. A flow network constructed for an optimal weighted cache solution of a two-
servers and a three distinct request sequence. The capacity of each edge in the network
is one.

schedule for a particular cache block to cache different requested blocks. Since
the minimum-cost maximum flow problem can be solved in O(kn2) time and the
reduction step takes only O(n2 + k) time, the problem can be solved in O(kn2)
in total. Therefore, this optimal offline algorithm is resource intensive, especially
when k and n are large. For example, for a request sequence of one million
blocks, the flow network has around one thousand billion arcs to process and
needs several terabytes storage, which is well beyond the capability of current
off-the-shelf servers.

2.1 MIN: An Off-line Algorithm for Uniform Cost Cases

Belady’s MIN algorithm [4] is based on the assumption of a uniform block access
cost. It always replaces the block to be requested furthest in the future. Belady
proved that MIN can minimize the total number of misses, thus minimizing the
total cost when the access cost to each block is uniform. Compared with OPT,
MIN is much more efficient – it can be implemented in O(n log k) time and O(n)
space.

In a variable-cost cache, MIN’s replacement decision can be far from optimal,
since the furthest blocks can carry high fetch costs and lead to subsequent high
miss penalties. Next we analyze its performance in variable-cost cases.

Definition 1. A cache configuration is the set of (distinct) blocks resident in a
given cache C.

Given a request sequence S and an initial cache configuration cfg(C), let
tc(Alg, cfg(C), S) denote the total fetch costs incurred by an algorithm Alg;
and let tf(Alg, cfg(C), S) denote the total number of fetches (misses).

Let S be a request sequence, and cfg(C) be an initial cache configuration. Let
costmin = minr∈S cost(r) and costmax = maxr∈S cost(r) be the minimal fetch
cost and the maximum fetch cost among all requests, respectively. it is easy to
verify the following relationship.

tf(MIN, cfg(C), S) ∗ costmin ≤ tc(OPT, cfg(C), S) ≤

tc(MIN, cfg(C), S) ≤ tf(MIN, cfg(C), S) ∗ costmax



When costmax/costmin is sufficiently small, MIN works pretty well; indeed,
tc(MIN, cfg(C), S) is bounded together with tc(OPT, cfg(C), S) – the optimal
cost by a narrow range. Actually, if a cache-resident block with an access cost
of costmin is to be referenced furthest in the future, it is the optimal victim
candidate for replacement. However, it is not easy to choose victims when the
furthest-to-be-referenced block has a non-minimal cost. Therefore, a new heuris-
tic is needed to choose victims efficiently and accurately.

3 Cost-Aware Cache Replacement

A storage cache is a fully associative cache. It has two kinds of misses: cold miss
and capacity miss [8]. Therefore, any replacement algorithm’s total fetch cost
can be divided into cold-miss cost and capacity-miss cost. Since cold miss is
compulsory, it is the same for any algorithm including OPT, which means the
cold-miss cost is no greater than the total cost of OPT. Therefore, we have the
following observation.

Definition 2. Given a request sequence S, on each fetch of any replacement
algorithm, a block is evicted if it is replaced and is to be requested later in the
remaining request sequence.

Observation 1. Let S be a request sequence, cfg(C) be an initial cache con-
figuration, Alg be a replacement algorithm. Let v1, v2, . . . , vm be the sequence
of blocks evicted by Alg when it serves S. It holds that tc(Alg, cfg(C), S) ≤
tc(OPT, cfg(C), S) +

∑m

1
cost(vi).

Observation 1 shows that the key to design replacement algorithms for a
weighted cache is the trade-off between the cost of eviction victims and the total
number of evictions to minimize

∑m

1
cost(vi). If a replacement algorithm is wise

in choosing replacement victims such that no eviction is needed, then the total
cost involved is the same as OPT. Otherwise, it performs at most

∑m

1
cost(vi)

worse than OPT.
In addition, unlike competitive analysis involving some unknown constant,

observation 1 shows that a concrete upper bound of extra cost compared with
OPT can be determined by simply adding the costs of all the evicted blocks,
which can be implemented with negligible overhead in real systems. Such an
upper bound is useful for evaluating the cache efficiency of a replacement algo-
rithm. On the other hand, it can also be used to calculate the lower bound of
OPT so as to estimate its total cost by deducting the eviction costs from the
total costs of tested replacement algorithms.

Aimed at minimizing
∑m

1
cost(vi), next we propose two off-line algorithms

and one on-line algorithm.

3.1 MIN-d Algorithm

Our first algorithm, MIN-d, is an extension of MIN. It chooses the minimal-cost
block from the d+1 furthest blocks (d ≥ 0) as victim rather than choose the one



furthest block without consideration of costs. In particular, when d = 0, MIN-d
is MIN. Before giving the details of MIN-d, depicted in Figure ??, we make the
following definition.

Definition 3. Given a block r resident in the cache, the forward distance of r,
denoted by fwd(r), is the number of distinct accesses from the current position
to the next access of r in the request sequence.

For example, suppose that the current cache configuration is {r1, r2, r3}, and
the remaining request sequence (that has not be served) is r2, r4, r5, r4, r3, r1.
Then we have fwd(r1) = 4, fwd(r2) = 0, and fwd(r3) = 3.

Algorithm 1 MIN-d Algorithm

Input: request sequence S and initial cache configuration cfg(C).
for each request r in S do

if r /∈ cfg(C) then

Let Q ⊆ cfg(C) be the set of d + 1 resident cache blocks that have the largest
forward distances.
Let b ∈ Q be the block that has the smallest cost among Q. Replace b and read
block r.

end if

Update cfg(C) and the forward distances of resident cache blocks.
end for

We claim that MIN-d’s total number of misses is small, if d is relatively small
compared to the cache size. Actually, the extra number of misses for MIN-d can
be at most n ∗ ln k−1

k−d−1
, where k is the cache size, n is the number of total

requests.

Bound of Miss Count for MIN-d In what follows, we fix a request sequence
S of length n. For simplicity of exposition, we assume that the ith request of S
occurs at time i. Let S[i, j] be the subsequence of S consisting of the requests
at time from i to j (inclusive).

Given a set H and two elements x, y, the notation H −x+ y refers to the set
(H \ {x}) ∪ {y}.

Definition 4. Let seq(t, b) be the first occurrence of a block b in the sequence S
after time t; if b is not requested in S after time t then let seq(t, b) = ∞. For
example, if S = {a, b, a, d, c, b}, then seq(4, b) = 6 and seq(3, a) = ∞.

Definition 5. When S is being served by a given cache C, the cache config-
uration of C changes only when a miss occurs. Let curi(C) be the time when
the ith miss occurs (namely, if the rth request of S incurs the ith miss, then
curi(C) = r). Let cfgi(C) be the cache configuration of C after i misses have
occurred. For example, cfg0(C) is the initial cache configuration of C.



Let HSi(C) = {seq(curi(C), b) 6= ∞ | b /∈ cfgi(C)}. In words, if a block b is
not in the cache configuration cfgi(C) and if b is requested after curi(C), then
the first occurrence of b after curi(C) is in HSi(C). Note that the next cache miss
after curi(C), namely curi+1(C), would occur at the earliest time in HSi(C).

Let H1 and H2 be two sets of positive integers, we write H2 ≺ H1 if
|H2 ∩ [1, x]| ≥ |H1 ∩ [1, x]|, for any x ≥ 1. For example, {1, 2, 4, 5, 7} ≺ {2, 3, 5, 6}.

Claim 1. (i) Let H ′

1 and H ′

2 be the (nonempty) set after removing the smallest
element from H1 and H2, respectively. If H2 ≺ H1 then H ′

2 ≺ H ′

1.
(ii) Let H ′

1 = H1 + h1 and H ′

2 = H2 + h2. If H2 ≺ H1 and h2 ≤ h1, then
H ′

2 ≺ H ′

1.

Lemma 1. Given a request sequence S, let C1 and C2 be two caches such that
|C1| = d+1+ |C2| and cfg0(C2) ⊂ cfg0(C1). If MIN-d is used for C1 and MIN

is used for C2, then curr(C2) ≤ curr(C1) and HSr(C2) ≺ HSr(C1), for each r ≥ 0
(satisfying HSr(C1) 6= ∅).

Proof. By induction on r. When r = 0, it is easy to verify that the claim holds.
Assume the claim holds for r = i. Next we show that the claim holds for r = i+1.

Let z1 = curi+1(C1) and z2 = curi+1(C2). By definition, z1 and z2 are the
earliest times in HSi(C1) and HSi(C1), respectively. This immediately implies
z2 ≤ z1, since HSi(C2) ≺ HSi(C1). It remains to prove HSi+1(C2) ≺ HSi+1(C1).

t1

t2

z1

z2

C1 with MIN-d

C2 with MIN

Fig. 3. Here, z1 = curi+1(C1) is the time when the (i+1)th miss occurs in C1. At time
z1, the block h1 is fetched into C1 and v1 is the victim block. The time t1 is the first
occurrence of v1 (in S) after z1. The numbers z2 and t2 are defined similarly on C2.
Note that z1 ≥ z2, but t1 may be smaller than t2.

Let h1 be the block being requested (in S) at time z1, and v1 be the victim
block (in C1) replaced by MIN-d at the same time. Let h2 be the block being
requested at time z2, and v2 be the victim block (in C2) replaced by MIN at
the same time. Let t1 = seq(z1, v1) and t2 = seq(z2, v2). See Figure 3.

For simplicity, we focus on the cases when t1 6= ∞ and t2 6= ∞, and omit
the other cases (when t1 = ∞ or t2 = ∞) since they are similar. Consider the
difference between HSi(C1) and HSi+1(C1). It is easy to see that z1 is the earliest
time in HSi(C1), and it is not in HSi+1(C1). Also note that t1 is in HSi+1(C1) but
not in HSi(C1). All other elements in HSi(C1) remains unchanged in HSi+1(C1).
Therefore, it holds that

HSi+1(C1) = HSi(C1) − z1 + t1. (1)



Similarly, we have

HSi+1(C2) = HSi(C1) − z2 + t2. (2)

1. t1 ≥ t2. By Claim 1 (i), we have HSi(C1)−z1 ≺ HSi(C2)−z2, since z1 and z2

are the earliest times in HSi(C1) and HSi(C1), respectively. Now, by Claim
1 (ii), it is easy to verify HSi+1(C1) ≺ HSi+1(C2), since t2 ≤ t1.

2. t1 < t2. We need to show that |HSi+1(C2) ∩ [1, x]| ≥ |HSi+1(C1) ∩ [1, x]|, for
any integer x ≥ 1.

(i) x ≤ z1. We have HSi+1(C1)∩ [1, x] = ∅ (recall that z1 is the earliest time
in HSi(C1), which implies that the earliest time in HSi+1(C1) is larger than
z1). The claim trivially follows.

(ii) z1 < x < t1. Note that z2 ≤ z1 and t1 < t2. By Eq. (1) and Eq. (2), we
have |HSi+1(C1) ∩ [1, x]| = |HSi(C1) ∩ [1, x]| − 1 and |HSi+1(C2) ∩ [1, x]| =
|HSi(C2) ∩ [1, x]| − 1. The claim immediately follows, by the induction hy-
pothesis |HSi(C1) ∩ [1, x]| ≤ |HSi(C2) ∩ [1, x]|.

(iii) x ≥ t1. Note that HSi+1(C1) ∩ [1, z1] = ∅ and HSi+1(C2) ∩ [1, z2] = ∅,
by similar arguments to (i). As such, it suffices to prove

|HSi+1(C1) ∩ [z1 + 1, x]| ≤ |HSi+1(C2) ∩ [z2 + 1, x]| . (3)

Let B1 be the set of distinct blocks in S[z1 +1, x], and R1 ⊆ B1 be the set of
distinct blocks in S[z1 + 1, x] that are in cfgi+1(C1). Similarly, let B2 be the
set of distinct blocks in S[z2+1, x], and R2 ⊆ B2 be the set of distinct blocks
in S[z2 + 1, x] that are in cfgi+1(C2). Now, notice that the LHS of Eq. (3)
is the number of distinct blocks in S[z1 + 1, x] that are not in cfgi+1(C1),
which is equal to |B1|−|R1|, and the RHS of Eq. (3) is the number of distinct
blocks in S[z2 +1, x] that are not in cfgi+1(C2), which is equal to |B2|−|R2|.
Therefore, we need to prove that

|B1| − |R1| ≤ |B2| − |R2| .

By the MIN-d algorithm, v1 is one of the d+1 furthest block to be requested
at time z1. Therefore, |R1| ≥ |C1| − (d + 1) = |C2|. On the other hand,
|R2| ≤ |C2|. It follows that |R1| ≥ |R2|. Furthermore, by the definition,
B1 ⊆ B2, since z1 ≥ z2. This implies that |B1| ≤ |B2|. It thus follows that
|B1| − |R1| ≤ |B2| − |R2|, as required.

⊓⊔

The following corollary is straightforward:

Corollary 1. Let S be a request sequence, C1 and C2 be two caches such at
|C1| = |C2|+d+1 and cfg0(C1) ⊇ cfg0(C2). It holds that tf(MIN-d, cfg(C1), S) <=
tf(MIN, cfg(C2), S).

Lemma 2. Let S be a given request sequence and C1 and C2 be two caches such
that |C1| = |C2| + 1 and cfg(C1) ⊇ cfg(C2). The number of fetches by MIN on
C2 is at most n/ |C2| larger than the number of fetches by MIN on C1. That is,
tf(MIN, cfg(C2), S) ≤ tf(MIN, cfg(C1), S) + n/ |C2|.



Proof. Let cfgi and cfgi be the configurations of C1 and C2 after the ith element
of S has been served by MIN, respectively. First we prove cfgj ⊆ cfgj , for
j = 0, . . . , n. Since |C1| = |C2| + 1, this implies that only one element is in cfgi

but not in cfgi, and we call this element the bubble of cfgi, denoted by bbi. We
define the rank of bbi, denoted by rank(bbi), to be the number of elements in
cfgi that have smaller forward distances than bbi (namely, those elements will
be requested before bbi).

Clearly, it holds that cfg0 ⊆ cfg0. Now suppose that cfgi ⊆ cfgi, we show
cfgi+1 ⊆ cfgi+1 in what follows. Let si+1 be the (i + 1)th element requested in
S. There are three cases:

(i) si+1 is in both cfgi and cfgi. Then cfgi+1 = cfgi and cfgi+1 = cfgi, and

as such, cfgi+1 ⊆ cfgi+1. We have bbi+1 = bbi and rank(bbi+1) ≥ rank(bbi)−1.

(ii) si+1 is in cfgi but not in cfgi. In this case, we have bbi = si+1 and
rank(bbi) = 0. Let f be the element having the largest forward distance in C2,
note that f is also the element having the largest forward distance in C1 (because
C1 = C2 + si+1 and si+1 has a forward distance 0). By the algorithm MIN, we
have cfgi+1 = cfgi and cfgi+1 = cfgi−f+si+1. It is easy to verify that cfgi+1 ⊆
cfgi+1 still holds, and the new bubble bbi+1 is f . We have rank(bbi+1) ≥ |C2| =

|C2| + rank(bbi).
(iii) si+1 is in neither cfgi nor cfgi. Then MIN fetches si+1 into both C1

and C2, and evicts one element from each of C1 and C2. It is easy to verify that
cfgi+1 ⊆ cfgi+1 and rank(bbi+1) ≥ rank(bbi) − 1.

The above arguments have shown that cfgj ⊆ cfgj , for j = 0, . . . , n. Note
that an extra fetch (that is, a fetch that occurs for C2 but not for C1) occurs
only in the case (ii) above. Now, the crucial observation is that case (ii) cannot
happen too often (by analyzing the rank of bbi). We omit the further details. ⊓⊔

The following theorem follows from Corollary 1 and Lemma 2.

Theorem 1. Let S be a request sequence of length n and C be a cache of size
k. We have tf(MIN-d, cfg(C), S) ≤ tf(MIN, cfg(C), S) + n ln k−1

k−d−1
, namely, the

MIN-d algorithm performs at most n ln k−1

k−d−1
more fetches than MIN.

Proof. Let Ci+1 be a cache such that |Ci+1| = |C| − (i + 1) = k − i − 1 and
cfg(Ci+1) ⊆ cfg(C), for i = 0, . . . , d. By Corollary 1, it holds that

tf(MIN-d, cfg(C), S) <= tf(MIN, cfg(Cd+1), S).

By Lemma 2, for each i = 0, . . . , d, it holds that

tf(MIN, cfg(Ci+1), S) ≤ tf(MIN, cfg(Ci), S) +
n

k − i − 1
,

which implies that tf(MIN, cfg(Cd+1), S) ≤ tf(MIN, cfg(C), S) +
∑d

i=0

n
k−i−1

.

Since
∑d

i=0

n
k−i−1

≤ n ln k−1

k−d−1
, the claim follows.



3.2 MIN-cod Algorithm

The MIN-d algorithm takes block cost into consideration for replacement deci-
sions without significantly increasing the number of misses. However, it is con-
servative in nature as the scope of the candidate victim blocks is small (d + 1
furthest blocks). In reality, it is possible that some blocks to be accessed recently
are much cheaper than the d + 1 furthest blocks such that evicting those near
blocks to keep those expensive blocks despite of more misses is still beneficial.
Obviously, MIN-d cannot make efficient decisions in these cases, thus its perfor-
mance is limited, especially when the cost differences among the blocks are large.
Therefore, we propose an algorithm that more aggressively pursues an optimal
trade-off between the number of evictions and block costs by considering every
block as a potential replacement candidate.

Algorithm 2 MIN-Cod Algorithm

Input: request sequence S and initial cache configuration cfg(C).
for each request r in S do

if r /∈ cfg(C) then

Let b ∈ cfg(C) be the resident cache block that has the smallest Cod value cost(b)
fwd(b)

in current cache configuration cfg(C). If there is a tie, choose b as the one with
largest forward distance. Replace b and read block r.

end if

Update cfg(C) and the forward distances of resident cache blocks.
end for

As described in Figure ??, the algorithm MIN-cod makes replacement deci-
sions based on the ratio of the cost over forward distance (Cod) among all the
resident blocks in cache. If two blocks have the same ratio, the block with a
larger forward distance is chosen. Clearly, if a block has the minimal cost among
all resident blocks and is the furthest block, MIN-cod will replace it upon a miss,
which is necessary for OPT too. However, if one block has a smaller cost and
a shorter forward distance than another block, then it is unclear which one is a
better victim block to reduce the total cost. Note that the number of evictions
for keeping a block is closely related with its forward distance. Assuming keeping
a block is beneficial, then it must not be evicted before its next request, other-
wise the sooner it is evicted the better so as to save space for other blocks. Since
the space for this block is occupied from the current request to the block’s next
request, keeping a block can be viewed as effectively reducing the cache size by
one during this period. Based on the reasoning of Lemma 2, it is not difficult
to know that the upper bound of extra misses caused for keeping this block in
comparison to keeping a nearer block is roughly in proportion to its forward dis-
tance. Therefore, the cost/fwd essentially represents the minimal average cost
savings per extra miss. The Cod heuristic chooses to replace the furthest block
that generates the smallest saving.



The Running Times of MIN-d and MIN-cod A naive implementation of
MIN-d and MIN-cod, on each request, scans the resident blocks in cache to find
the victim and update fwd values. Therefore, the total execution times of both
algorithms are O(nk).

There are two observations that can lead to a faster implementation for MIN-

d, which uses only O(n log k) time. First, MIN-d only requires to maintain the
relative forward distances among the blocks to choose victims from. Second, after
serving a new request, the cache configuration changes by only one element, and
at most one resident cache block changes its relative forward distance. Therefore,
if we use a priority queue to maintain the (relative) forward distances of resident
blocks, we only need log k time for processing each request, resulting a total
running time of O(n log k).

In real systems, the number of different fetch costs of blocks is relatively
small, because only a limited number of different storage devices and levels exist
in a system. Therefore, by keeping the resident blocks in binary trees of different
costs, MIN-cod only needs to compare the blocks of the largest (relative) forward
distance within each tree to find the right victim, whose total execution steps
are in proportion to the number of different trees, thus can be considered as
O(1). Since the maintenance of each binary tree needs O(log k) time, the overall
running time is bounded by O(n log k), which is much faster than OPT.

3.3 An On-line Algorithm HD-cod

The off-line algorithms assume complete knowledge of future requests, which is
not always realistic in practice. In this section, we present HD-cod, an on-line
algorithm based on MIN-cod.

In on-line algorithms, we can only estimate the forward distance of a resident
block. To this end, we use the recency of a resident cache block b as the estimated
forward distance of b. (Recency is a concept borrowed from the well-known
LRU replacement algorithm.) More specifically, the recency of b is the difference
between its current request sequence number and the request sequence number
of the last request of b.

It is widely recognized that the LRU replacement algorithm, which estimates
the forward distance of a block by its recency, works well for most workloads
with strong temporal locality. However, it performs poorly for workloads with
weak locality such as those with looping or random access patterns, where a
recent access of a block does not indicate its re-access is near. These observa-
tions suggest that different considerations of forward distance can be used when
evaluating Cod value of each block for the choice of replacement victims.

In HD-cod, we use cost
fwdα

to evaluate each block, where α is a workload de-

pendent parameter in [0, 1]. For workloads with LRU-like temporal locality, α
approaches 1 because the forward distance estimation is accurate, so that the
Cod heuristic is appropriate. For non-LRU-like workload, α approaches 0 be-
cause the estimation of forward distance is inaccurate and the forward distance
becomes less relevant, so that the replacement decision can be more dependent
on the cost.



Algorithm 3 Calculating α

Input: c[i] - total hit count of region i (the region number increases as the recency
increases;
Input: cum[i] - cumulative hit count of the first i regions;
Input: seg - total number of regions;
Input: peak - a constant threshold to identify a peak in the density curve.
α = 0; flag = 0;
for each region i do

r = c[i]
c[i−1]

if (r > peak and cum[i] < 0.5) then

α = α − 21−i;
else

if ( 1
r

> peak and cum[i] > peak ∗ i/seg) then

if (flag! = 0) then

α = α + 21−i;
else

flag = 1;
α = α + cum[i];

end if

end if

end if

end for

To determine the workload type, HD-cod maintains an LRU queue (ordered
by recency) for all the resident blocks. It divides the queue into multiple con-
tiguous regions of a fixed size, which is a system run-time parameter and usu-
ally small. HD-cod traces the hit count in each recency region to generate the
hit density curve of the workloads, so that α can be set dynamically based on
the locality feature. Therefore the algorithm is called Hit Density(HD)-cod. For
workload with LRU-like locality, the hit density continuously decreases with the
first few regions holding most hits. For non-LRU-like locality, the hits are dis-
tributed among the regions irregularly. On each replacement decision, HD-cod
walks through the regions to calculate α, as shown in Algorithm 3. Since HD-cod
maintains each queue using LRU order whose overhead is very small, its time
complexity is O(n).

4 Evaluation

Methodology: We evaluate our proposed algorithms through trace-driven simu-
lation. We compare the performance of our proposed algorithms with the op-
timal off-line algorithm OPT, representative non-cost-aware algorithms includ-
ing MIN, Least Recently Used (LRU), Most Recently Used (MRU), Most Fre-
quently Used (LFU) as well as cost-aware algorithms including Landlord and
Minimal Cost First (MCF). Landlord is an optimal on-line cost-aware caching
algorithm [9, 6]. Upon each replacement, it chooses the block with the minimal
residual cost as victim, and decreases each resident block’s residual cost by this



minimal value. Then upon each hit, the block’s residual cost is updated by a
value that is between current value and its original cost. It is proved in [6] that
Landlord is a k-competitive algorithm, hence an optimal on-line replacement
algorithm. It is also a generalization of the GreedyDual algorithm [10], which is
studied in WWW-proxy cache management.

The traces used in our experiments are production storage I/O traces from
Storage Performance Council (SPC) [5] – a vendor-neutral standards body. They
include both OLTP application I/O and search engine I/O. The OLTP traces
are with strong temporal locality, i.e. repeated accesses to the same block, if any,
are usually separated by a small (compared with cache size in blocks) count of
accesses to other blocks. And the OLTP traces also include a significant portions
of concurrent sequential accesses due to both the nature of server workloads and
OLTP itself. The search engine traces comprise mostly random accesses, which
are mostly non-sequential accesses with weak temporal locality, i.e. repeated
accesses to the same block, if any, are usually separated by a large (compared
with cache size in blocks) count of accesses to other blocks. Due to the resource-
intensive nature of the OPT algorithm, which makes replaying the complete
trace computationally intractable on our system, we split an entire trace into
smaller traces by the ASU (Application Specific Unit) field of each request, so
that logically related requests are grouped in the same trace file. We randomly
generate the cost for each block based on two cost distributions. One cost dis-
tribution spans a wide range with differences as large as 70,000 times, the other
spans a small range with differences at most 3 times. The details of the cost
distribution is listed in table 1 and 2 (see Appendix).
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Fig. 4. Total cost comparison of three workloads between OPT and different algorithms

Impact of Cost-Aware Replacement: We compare OPT with both existing and
our proposed replacement algorithms to evaluate the impact of weighted cache
on replacement performance. In this experiment, we set one eighth of the working
set size as the cache size.



Figure 4 shows the performance ratio of various algorithms over OPT for
three small workloads using two different cost distributions. Overall, a signifi-
cant performance degradation is observed using non-cost-aware replacement al-
gorithms. For example, the optimal non-cost-aware algorithm MIN is 182% worse
than OPT for OLTP2 using large cost distribution, so is LRU 537% worse. In
contrast, the cost-aware algorithms including Landlord, MIN-d, and MIN-cod
perform better almost in all these cases. The only exception is for the small
cost distribution, MIN performs closer to OPT than Landlord, since in these
scenarios, miss count is more important in the trade-off for overall performance.

The results also show that the extent of the performance degradation is
related with the workload itself. As we can see, OLTP2 is much more sensitive
to the cost-awareness of the algorithms than the other two, because the other
two traces have very few reused blocks.

Miss Rate of MIN-d: Figure 5 show the miss rate impact of MIN-d on both
OLTP and WebSearch workloads. The OLTP workload has a working set of
around 300K blocks, while the WebSearch workload has a working set of around
480K. The results show that the miss rate does not increase noticeably until d
is larger than 6% of the cache size. 5 Based on this empirically result, in the
following experiments, we set d to be 1/16 of the cache size.
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Fig. 5. The impact of d on miss rate for two different workloads. The experiments are
run with 10 different cache sizes. For each size, we vary the value of d to half the cache
size to evaluate the impact on miss rate. The results shows the impact is very small up
to 1/16 of the cache size

Off-line Algorithm Results: Figure 6 shows the experiment results comparing
off-line algorithms (MIN-d and MIN-cod) with existing off-line algorithm MIN.

5 Please note this results include cold miss, therefore when cache size is large than
working set, there are still significant miss rate for the workloads.



We also include the comparison with on-line algorithms: MCF and Landlord
for two reasons: a) MIN and MCF represent two ends on the trade-off between
miss count and cost. MIN considers only misses in replacement decisions, while
MCF considers only cost; b)since Landlord is the state-of-the-art cost aware
replacement algorithm, the inclusion of it gives us an idea on the benefit of
complete request knowledge to variable-cost cache replacement.

Overall, MIN-cod consistently performs the best for all workloads. It reduces
up to 62% of the total cost of MIN and up to 50% of Landlord. Other algorithms
perform differently depending on the workloads. For example, as expected, MIN-
d performs close to MIN-cod for the small cost distribution; however it is signifi-
cantly worse than MIN-cod for the large distribution due to its scope limitation
of victim candidates. Compared with Landlord, MCF performs poorly for the
OLTP workloads, while it performs better for the Websearch workloads. Using
the lower bound measured, it also shows that when the cache size is 50% of the
workload, in seven out of the eight cases MIN-cod performs the same as OPT,
while for one of the WebSearch workloads, MIN-cod has a total cost 20% larger
than the lower bound of OPT. In all cases, using the bound reported, we can
guarantee that MIN-cod’s performance is at most four times of optimal.

The above results show that the Cod heuristic works well with all the work-
loads tested. Since MIN-cod balances the cost of evicted blocks and the number
of misses the replacement decision can cause, it is effective for a cost-aware
replacement algorithm.

On-line Algorithm Results Figure 7 compares HD-cod with online algorithms:
LRU, LFU, MRU, MCF, and Landlord. Overall, HD-cod performs very close to
the best algorithm in each test scenario. Specifically, for the OLTP workload,
HD-cod performs comparably as Landlord, yet reduces up to 68% of the total
cost of MCF; for the WebSearch workload, HD-cod performs similarly as MCF,
yet reduces up to 15% of the total cost of Landlord.

The above results show that for on-line cost-aware replacement algorithms
where the forward distance of a block is not known, the balance between the
two metrics (cost and forward distance) needs to be conducted adaptively based
on the workloads. Since the Landlord algorithm only considers future accesses
as with LRU-like locality, it does not perform well for workloads with the non-
LRU-like locality. Since HD-cod detects workload characteristics by tracing the
hit density, it adapts itself to behave more like MCF when temporal locality
is weak and to behave more like Landlord when temporal locality is strong.
Therefore, HD-cod performs close to the best algorithm in all test cases.

5 Related Work

Previous work on cost-aware cache replacement includes both theoretical results
and system studies. Young [11] studied the weighted caching problem and pro-
posed an on-line algorithm – GreedyDual. Cao et al. [10] studied WWW-proxy
caching and proposed GreedyDual-size to incorporate file size into replacement
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Fig. 6. Comparison of off-line cost aware algorithms using different cache sizes

decision. Landlord [6] is a generalization of both GreedyDual and GreedyDual-
size. Chrobak et al. [7] proposed on-line algorithms: Rotate and Balance. All
these algorithms are proved to be k-competitive, thus theoretically optimal.
GreedyDual-size has also been demonstrated to be effective experimentally us-
ing simulation experiments on Web proxy traces. Although competitive analysis
provides a bound for approximation algorithms, the bound is usually too loose
to be attractive. For example, k in the above results is the cache size in blocks,
which is at the magnitude of millions with current technology; and it keeps in-
creasing as the technology evolves. Although experimental results are provided
to demonstrate the effective of GreedyDual-size [3], it focuses on the variance
of document size rather than the access cost of uniform-sized block in storage
system. Therefore, they compare with popular replacement algorithms such as
LRU, LFU and other size-aware algorithms. Forney et al. [9] studied partition-
based cache management scheme for heterogeneous storage devices and proposed
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Fig. 7. Comparison of on-line cost aware algorithms using different cache sizes

to use equal device wait time as a metric for dynamic cache allocation, which is
orthogonal to our studies.

Compared with previous work, our work demonstrates that the upper-bound
of performance degradation of any replacement algorithm over OPT can be
determined by keeping track of the costs of evicted blocks, which is more practical
and meaningful than the k-competitive result. We also point out that the key
design issue for efficient cost-aware replacement algorithms is to make an effective
trade-off between victim blocks’ cost and the total number of evictions. Our Cod
heuristic which is based on the principle is demonstrated to outperform previous
cost-aware and cost-unaware algorithms in real storage server traces simulations.



6 Conclusions

We have proposed both off-line and on-line algorithms that have performance
comparable to the optimal replacement algorithm (OPT) measured by the total
cost, yet are much faster to run in practice. The algorithms’ design is guided by
the following findings of ours. The performance of any replacement algorithm is
deviated from OPT by at most the cost of evicted blocks, such that the key to
design cost-aware replacement algorithm is to trade-off the number of evictions
and the cost of victim blocks. Our work provides analytical bases for buffer
cache management in distributed storage systems. We will further understand
the implications of our study in our experimental system research.
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7 Appendix

Cost Distribution of Traces



Table 1. Large Cost Distribution of Different Traces

Cost OLTP1 OLTP2 OLTP3 OLTP4 OLTP5 WebSearch1 WebSearch2

30 32.2% 0.4% 12.3% 16.0% 14.8% 15.0% 12.7%

800 2.3% 0.0% 0.0% 5.6% 0.8% 2.1% 4.8%

1000 4.1% 0.2% 17.3% 11.3% 10.4% 5.9% 6.3%

70700 2.9% 0.0% 0.0% 7.3% 1.4% 2.1% 4.7%

1044 4.8% 0.0% 21.1% 7.8% 9.5% 14.8% 8.1%

5000000 4.9% 0.0% 0.0% 2.5% 1.0% 2.1% 4.7%

80054 5.6% 0.2% 10.7% 3.3% 13.3% 5.9% 6.5%

623 4.9% 25.0% 0.0% 3.0% 1.0% 2.1% 4.7%

2345879 3.9% 1.3% 9.3% 11.9% 18.5% 14.8% 7.9%

17456 3.0% 14.1% 0.0% 3.8% 0.9% 2.2% 4.8%

8567 2.3% 6.9% 12.2% 4.3% 6.7% 5.9% 6.4%

37859 4.1% 3.0% 0.0% 3.0% 0.7% 2.1% 4.9%

77392 5.0% 4.8% 7.2% 9.9% 9.7% 14.9% 8.0%

351238 8.0% 28.3% 0.0% 3.1% 0.8% 2.2% 4.7%

6345982 6.0% 15.2% 9.9% 3.9% 9.6% 5.8% 6.2%

2345907 6.1% 0.5% 0.0% 3.4% 1.0% 2.1% 4.8%

Total: 6489 10136 9693 1235633 3046112 1055236 4578819

Table 2. Small Cost Distribution of Different Traces

Cost OLTP1 OLTP2 OLTP3 OLTP4 OLTP5 WebSearch1 WebSearch2

534 36.1% 1.6% 5.7% 31.4% 6.1% 11.9% 19.7%

87 0.0% 0.0% 7.3% 1.2% 7.7% 4.4% 3.3%

112 9.7% 28.8% 10.2% 3.2% 8.9% 6.5% 5.9%

77 0.0% 0.0% 8.1% 1.5% 5.9% 4.5% 3.4%

104 8.0% 8.5% 6.6% 4.3% 5.2% 8.4% 9.9%

56 0.0% 0.0% 7.7% 1.9% 5.9% 4.7% 3.3%

67 9.5% 14.6% 2.4% 5.5% 7.0% 6.5% 6.0%

23 0.0% 0.0% 4.7% 2.6% 4.0% 4.7% 3.3%

58 9.8% 4.8% 6.6% 28.6% 8.9% 8.4% 9.9%

46 0.0% 0.0% 4.2% 1.5% 7.1% 4.5% 3.4%

93 6.8% 25.0% 9.5% 4.2% 4.4% 6.6% 5.9%

39 0.0% 0.0% 4.9% 1.4% 3.1% 4.5% 3.3%

47 10.0% 14.0% 2.7% 4.9% 9.7% 8.7% 10.1%

38 0.0% 0.0% 6.5% 1.9% 7.7% 4.6% 3.4%

62 10.2% 2.6% 6.2% 4.5% 4.3% 6.6% 5.9%

37 0.0% 0.0% 6.8% 1.4% 3.9% 4.5% 3.3%

Total: 6489 10136 9693 1235633 3046112 1055236 4578819


