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Abstract—Global state snapshots are a fundamental prim-
itive for wireless networks that sense and control real
environments. Applications often require that they be
consistent and timely, which makes them potentially costly.
Cost reduction is often realized by gathering only a “delta”
from previous snapshots. In this paper, we explore an
alternative form of efficiency by generalizing the notion
of a snapshot to satisfy distance sensitivity properties,
wherein the state of nearby nodes is available with greater
resolution, speed, and frequency than that of farther away
nodes.
More specifically, we design generalized snapshot services
for arbitrary sensor networks with N nodes that reside
in an f -dimensional space, where each node periodically
generatesm bits of information. Our design is stepwise:
we first design a service where a global snapshotS is
periodically delivered to every nodej in the network as
fast as possible withdistance sensitive latency such that the
staleness of the state of a nodei in S is O(3f ∗N ∗m ∗ d)
where d = dist(i, j), but the communication cost averages
to O(N2 ∗ m) for N samples (one from each node). We
refine the solution to improve the communication cost
by adding the property of distance sensitive resolution,
whereby the resolution of the state ofi in S decreases
as O(df ); the staleness of the state ofi in S is now
O(32f ∗ log(n) ∗ m ∗ d) and the communication cost is
O(3f ∗log(n)∗N ∗m), wheren = N

1

f , for N samples. Next,
we further refine the service to reduce the communication
cost to eitherO(3f ∗N∗(m+log(n/m))) or O(3f ∗N∗m), by
adding the property of distance sensitive rate, whereby the
state of nearby nodes is updated more often than farther
nodes. The memory required per node in our solutions is
bounded by 3f ∗ log(n) ∗ m.
For pedagogical reasons, we describe our solutions for the
case of perfect2-d grid topologies first, and then show
how to extend them for higher dimensions, for network
with irregular density, networks with arbitrary sized hole s,
networks with imperfect clustering and non unit disk
radios. We also discuss how different control applications
can exploit these generalized snapshots.

I. INTRODUCTION

Sensor networks have found significant adoption in con-
tinuous observation applications and are now progres-
sively being incorporated in distributed control appli-
cations, for instance, pursuer evader tracking [1], [2]
and control of distributed parameter systems such as
flexible structures [3], [4]. These applications often re-
quire information from network nodes to be periodically
delivered to one or more observer/controller nodes in the

network in a consistent and timely manner. For exam-
ple, in pursuer evader tracking, pursuer objects require
ongoing knowledge of other pursuer/evader locations in
order to maintain an optimum assignment. In distributed
vibration control of flexible structures, controllers need
to (re)estimate the modes of vibration using samples
from across the network in order to optimally assign
controllers for each mode and to use the optimal control
parameters.
Although consistency, timeliness, and reliability have
traditionally been the main design considerations for
periodic snapshots, their efficiency becomes essential
when considering resource constrained wireless sensor
networks. The standard way to realize efficiency is to
communicate the “delta” from previous readings or from
model-driven predictions, possibly in compressed form.
In this paper, we explore a complementary form of
efficiency based on the observation that many applica-
tions can accommodate generalized forms of snapshots,
wherein the information delivered across the network
is not necessarily consistent but satisfies certaindis-
tance sensitiveproperties: The state of nearby nodes
has greater resolution (distance sensitive resolution),
arrives faster (distance sensitive rate) and with higher
speed (distance sensitive latency). By way of example,
consider: (1) In pursuer evader tracking, information
about nearer objects are required at a faster rate and
lower latency that that of farther objects for guaranteeing
optimal pursuit [1], [5]. (2) In scale based control [6]
used for vibration control of flexible structures, different
controllers are assigned to different modes (frequencies)
of vibration; in this case, estimating characteristics of
lower frequencies requires information from a wider area
but that can be sampled at a slower rate and coarser
resolution that that for nearer areas.
Informal problem statement: Given is a connected
wireless sensor network withN nodes embedded in an
f dimensional space. Each node periodically generates
m bits of information, can communicate atW bits per
second, and is memory constrained.

Design efficient snapshots of the network state
that are distance sensitive in resolution, la-
tency, and rate for periodic delivery at (some
or all) nodes.

Contributions: In this paper, we systematically design
wireless sensor network algorithms that periodically de-
liver distance sensitive snapshots to all nodes in the
network. Our algorithms are easily adapted to allow
snapshots to be delivered only to a subset of nodes
as opposed to all nodes. They are memory efficient,
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requiring onlyO(3f ∗ log(N
1

f )∗m) bits per node. They
are readily realized in networks with irregular density,
networks with arbitrary sized holes, imperfect clustering,
and non unit disk radios. We quantify the maximum
rate at which information can be generated at each node
so that snapshots are periodically delivered across the
network, the algorithms can of course be operated at
lower rates than these.
Overview of algorithms and main results: Consider
an ideal network where nodes are embedded in a virtual
2-d grid such that there is exactly one node at each grid
location and that each grid node can reliably reach each
of its neighbors in the grid and no others. Snapshots with
distance sensitive latency may be realized in these grids,
firstly, by scheduling each node to transmit its local view
of the network so as to not interfere with its neighbors
and, secondly, by ensuring that the schedules all nodes
to transmit at the same rate. Care has to be taken to
ensure that information propagates in different directions
at the same speed. In order to ensure uniform latency,
we introduce a single level of clustering to regulate
the flow of information in all directions by proceeding
in rounds. Intuitively, a round is a unit of time when
information is exchanged between any level1 cluster
and all its neighboring clusters. Our scheduling and other
protocol actions at each step are such that information
is propagated across the network in a pipelined manner;
by this, new information can be generated at a node as
soon as previous information has been dispersed only to
its local neighborhood as opposed to the entire network.

In this first algorithm, in a snapshotS of the
network delivered to all nodes the staleness of
the state of a nodei in S is O(3f ∗N ∗m∗d),
whered = dist(i, j), and the average network
communication cost is as high asO(N2 ∗ m)
for N samples (one from each node).

To add distance sensitive resolution, instead of dispersing
the individual state of each node, we map the state of
nodes into aggregate values of non-overlapping regions.
We then deliver snapshots across the network such in
a snapshot delivered to a nodej, the size of a region
into which a nodei is mapped increases asdist(i, j)
increases. Thus, the resolution with whichi is repre-
sented in the snapshot decreases asdis(i, j) increases.
To achieve this kind of snapshot delivery, we refine
the clustering of nodes into a hierarchical one with a
logarithmic number of levels as the network size. The
basic idea is that a clusterhead at each level compresses
data from all nodes in that level intom bits. Thus, the
data aggregated at each level is represented by the same
number of bits. At higher levels, the data is summarized
with a coarser resolution as these levels contain more
nodes. The aggregated data is then dispersed to all
nodes at that level. This approach suffers from a multi-
level boundary problem however: two nodes could be
neighbors but belong to a common cluster only at level
r � 1. Thus, despite being neighbors, both nodes get

a summary of the other at a much coarser resolution
than is desired. To redress this problem, we disperse a
summary computed at each levelr not only to nodes in
level r cluster but also to nodes in all neighboring level
r clusters. Once again our scheduling and other protocol
actions at each step are such that information at each
level is aggregated and dispersed in a pipelined manner
concurrently at all levels; by this, new information can
be generated at a node as soon as previous information
has been dispersed only to its local neighborhood.

In this second algorithm, in a snapshotS of the
network delivered to nodej the resolution of
the state of a nodei in S decreases asO(df ),
the staleness of the state of a nodei in S is
O(32f ∗m∗log(n)∗d) and the average network
communication cost forN samples isO(3f ∗
log(n) ∗ N ∗ m).

In the second algorithm, the snapshots of the network
arrive at all nodes with the same rate. To achieve distance
sensitive rate, we schedule the delivery of aggregated
information at each level such that information of higher
levels is delivered over a larger interval as opposed to
lower levels. We do this in two ways. In the first solution,
we allocate an exponentially increasing number of bits
per message to lower level aggregates so that they are
delivered at a faster rate. In the second solution, we
allocate more time for aggregation and dispersion of
lower level data.

In the first of these two algorithms, the average
communication cost perN samples (one from
each node) isO(3f ∗ N ∗ (m + log(n/m))).
In the second, the average communication cost
per N samples (one from each node) in the
second algorithm isO(N∗m), but the staleness
of the received states grows asO(df ).

Our algorithms allow for a user-pluggable aggregation
function. We require only that the function, sayf, be
idempotent and satisfy the followingdecomposability
property:∀a, b, S such thatS = a∪ b, f(S) = f(f(a)∪
f(b)). Examples of such functions are average, max,
min, count and wavelet functions.
We then relax our regularity assumptions and handle the
cases of non uniform density, non uniform radio range
and holes of arbitrary sizes in the network. The case of
over density is modeled as certain virtual grid locations
containing more than1 node. When a grid location has
more than1 node, each node takes turns over multiple
rounds to send its data resulting in time sharing between
nodes to transmit their own data. Once data is sent out
from the source, however, the forwarding of the data does
not incur an extra delay despite going through denser
grid locations. This is because any node in the dense cell
that gets a turn in a given round can forward the data
heard in the previous round from neighboring locations.
In the case of holes in the network, we show that our
algorithms achieve distance sensitivity in terms of the
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shortest communication path between any two nodes as
opposed to the physical distance. When we relax the
strictly 1 hop communication range to radio interference
range varying from1 to s hops, the basic scheduling
for each round has to take into account this additional
interference. This simply results in longer round lengths
that are proportional to the size of interference region.
In our algorithms, we ensure in order arrival of state
information from any given node. Therefore timestamps
are not checked in the algorithms while updating the
local data structure. As long as the application does
not require timestamps associated with each state, global
time synchronization may not be required. A local notion
of time however is needed to ensure fair scheduling of
transmission of nodes.
Outline of the paper: In Section2, we present the
system model. In Section3, we design a snapshot
service that has the property ofdistance sensitive latency.
In Section 4, we design a snapshot service that has
the additional property ofdistance sensitive resolution.
In Section 5, we refine our snapshot service so that
snapshots are delivered with adistance sensitive rate
property. In Section6, we extend our algorithms to
irregular networks. We discuss related work in Section
7 and make concluding remarks in Section8.

II. M ODEL AND SPECIFICATION

In this section, we present the system model and a
generalization of the concept of snapshots based on
distance sensitive properties.
Network model: A sensor network consists ofN nodes
that are embedded in anf -dimensional space. We letn
abbreviateN

1

f . The nodes induce a connected network
where each communicate atW bits per second. Nodes
are synchronized in time. Each nodej periodically
generatesm bits of (sensor) information, and maintains a
data structure comprising the most recent state of nodes
(or partitions of nodes) and a timestamp associated with
that state. We letj.Xi and j.Ti (respectively,j.Xp and
j.Tp) refer to the state of nodei (respectively, partition
p) and the timestamp of that state at nodej.
In the next three sections (3-5), for ease of exposition,
we restrict our attention to sensor networks that form a
2 dimensional grid with a node at every grid location.
We further assume that node communication follows
an idealized disk model: specifically, each node can
communicate reliably with all its neighbors in the grid
and with no others. We define the neighbors of nodej
to be the ones to its north, east, west, and south and also
to its northeast, northwest, southeast, or southwest that
exist in the grid; we denote these (up to 8) neighbors as
j.n, j.e, j.w, j, s, j.ne, j.nw, j.se andj.sw respectively.
From Section 6 onwards, we remove each of these
restrictive assumptions.
Generalized snapshots: Let’s begin by considering
global snapshots where state is maintained for each node.

Definition 1 (SnapshotS). A snapshotS is a mapping
from each node in the network to a state value and a
timestamp associated with that state value.

A consistent snapshot is one where the timestamps
associated with each state value are all the same. The
stalenessof a state value inS is the time elapsed between
its timestamp and the current time. We now consider
a generalization where state values do not necessarily
correspond to the same instant of time but their staleness
enjoys a distance sensitive property.

Definition 2 (Snapshots with distance sensitive latency).
A snapshotS received by a nodej hasdistance sensitive
latency if the staleness in the state of each nodei in S
decreases asdist(i, j) decreases.

We now further generalize the notion of snapshots so
that state is associated with partitionsp of the network
as opposed to individual nodes. LetP be a partitioning
of the network.

Definition 3 (SnapshotS of P ). A snapshotS of P is
a mapping from each partitionp in P to a state value
and a timestamp associated with that state value.

The generalized definition is useful even ifP is not
a total but a partial partition, i.e., not all nodes are
represented in the snapshot. More to the point, the state
and timestamp of eachp in S intuitively represent the
aggregate state of all nodes in the partition and the
aggregate timestamp. We assume that the timestamp
of recoding the state of all nodes in any partitionp
is the same, and refer to this common value as the
aggregate timestamp. Note that the aggregate timestamp
of different partitions may be different.
As there may not exist a mapping from the aggregate
state of a partition to the exact state of individual
nodes that was recorded for the purpose of computing
the aggregate, the latter may be estimated using some
function of the state of the partition. Theresolutionof
the state of a node in a snapshot is an inverse measure of
the error between the state of the node that was recorded
and the aggregate state of the partitionp that it belongs
to.
We are interested in snapshots where the increase in the
error in the state of a node is bounded by the size of the
partition p to which it belongs and thus the decrease in
resolution of the state of a node is bounded by the size of
p. This leads us to consider a generalization where the
resolution of the state of a node increases as distance
decreases.

Definition 4 (Snapshots with distance sensitive resolu-
tion). A snapshotS of P received by a nodej has
distance sensitive resolutionif the resolution of the state
of each nodei covered byP increases asdist(i, j)
decreases.
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Informally speaking, the size of the partition to which the
state of nodei is mapped into in a snapshot received atj
increases asdist(i, j) increases. Therefore the resolution
with which i is represented inS decreases with distance.
In other words,j has amyopic or fisheyeview of the
network.
Finally, we consider a generalization where the rate at
which state of the nodes is reported to a node decreases
as the distance of the nodes increase.

Definition 5 (Snapshots with distance sensitive rate). A
nodej receives snapshots ofP with distance sensitive
rate if the rate at which the state of each nodei covered
by P is updated in snapshots received byj increases as
dist(i, j) decreases.

Note that the concept of distance sensitive rate is or-
thogonal to that distance sensitive latency. In the latter
staleness in the state received decreases with distance but
fresh information arrives at the same rate at all nodes,
where as in the former, the state of nearby nodes is
reported more often than farther nodes.

III. D ISTANCE SENSITIVE LATENCY SNAPSHOTS

In this section, we first describe a simple algorithm that
has distance sensitive latency albeit the latency is non-
uniform across different directions. We then refine the
algorithm by introducing a single level of clustering so
as to achieve uniform information flow.

A. Snapshots with non-uniform latency

Schedule: We schedule nodes to transmit maximally
while avoiding interference. In our assumed grid topol-
ogy communications model, nodes separated by3 units
horizontally or vertically can transmit simultaneously
without mutual interference. Each node gets a turn to
transmit once every9 slots. The required duration of a
slot is a critical part of the algorithm and is derived in
the following analysis.

Fig. 1. Zones around a nodej

Algorithm S0: The algorithm has3 actions at each
nodei. Whenever it isis turn to transmit,i first updates
its local data structure with its own state and transmits a
message containing the state of all nodes, as maintained
in its local data structure. Wheni hears a message from
any of its 9 neighbors, it applies the following update
rules. The network aroundi is divided into 8 zones

as shown in the Fig. 1. Wheni receives a message
from (say) its north neighbor, the state of the nodes in
zonen are updated, and so on. Updating thus yields the
following property.

Fig. 2. Unique pathk − y − j from nodek to nodej

Lemma III.1. In S0, state of any nodei is transmitted
to some other nodej along exactly one path in the grid
at all times.

The lemma is illustrated in Fig. 2.S0 thus maintains a
unique channel for communicating from nodei to node
j. This ensures that state ofi in the local data structure
of j is not over-written by stale data from another path.
We now analyze the latency and communication cost of
schemeS0.

Lemma III.2. In S0, the minimum slot width per node
so that global snapshots can be delivered periodically at
all nodes isN∗m

W
.

Proof: During each slot, a node transmits its local data
structure which isN ∗ m bits. The rate of transmission
is W bits per second. The required slot width (sw) is
thereforeN∗m

W
.

Lemma III.3. In S0, the maximum staleness in the state
of a nodei received by a snapshot at nodej is O(N ∗
m ∗ d) whered = dist(i, j).

Proof: Nodei updates its state just before transmitting.
From then on, each successive recipient can forward this
information in at most8 slots per hop. Thus,j learns
about the state ofi in time at most(8∗(dist(i, j)−1))∗
sw, wheredist(i, j) is the hop distance betweeni and
j.
In S0, although snapshots are delivered with distance
sensitive latency, the latency is non-uniform across dif-
ferent directions. In the grid topology, the latency varies
betweenO(d) and O(8 ∗ d). Uniformity is a desirable
property especially when aggregation needs to be per-
formed. We now describe a refinement ofS0 that has
uniform distance sensitive latency.

B. Snapshots with uniform latency

In order to achieve uniform latency, we create a single
level of clustering. The grid is partitioned in3 by 3 sub-
grids of nodes, with the center node in each sub-grid
cluster being its clusterhead. We call the clusterhead a
level 1 node and the rest of the nodes in the cluster as
level 0 nodes. This kind of clustering is illustrated in
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Fig. 3.
Schedule: We schedule the nodes to transmit in rounds.
A round is a unit of time in which information is
exchanged between a level1 clusterhead and all of
its 8 neighboring level1 clusterheads. Each round is
divided into multiple slots. In the first slot, all level1
clusterheads transmit. In the remaining slots, all level0
nodes in each cluster transmit twice. The second trans-
mission by a node within a round takes place after all
its 8 neighbors have transmitted at least once. Intuitively
speaking, during the first turn for a node, information
is communicated outwards from the clusterhead. In the
next turn for the node, information is communicated to
the level1 clusterhead that the node belongs to. A simple
non-interference schedule that satisfies these contstraints
is one where all level0 nodes take turns in say a
clockwise direction. For example, level0 nodes transmit
in a clockwise direction starting fromj.ne, wherej is a
level 1 node. Each round thus consists of17 slots.

Fig. 3. 1 level clustering

Algorithm S1: In slot 0 of every round, the level1
nodes update their own state in the local data structure
and transmit the entire data structure. The level0 nodes
in each cluster update their local data structure as fol-
lows: wlog, nodej.ne copies the state of all nodes in its
own cluster and the state of nodes in all level1 clusters
that are not north east ofj.
To explain the actions in other slots, without loss of
generality, consider level1 nodesj and k and level0
nodesj.ne andk.sw, as shown in Fig. 4.

• In the first slot for nodej.ne, j.ne transmits its local
data structure which contains the updates that were
heard fromj. Node k.sw updates the state of all
nodes in clusters that are southwest ofk.

• In the second slot for nodej.ne, j.ne transmits its
local data structure which contains the updates sent
from k andk.sw, heard viak.sw. Nodej updates
the state of all nodes in clusters that are north east
of j.

In the remaining slots, the states are exchanged along the
other axes aroundj. In algorithmS1, information flows
between any2 nodes through paths defined by level1
clusters. Information flow fromi to j is illustrated in
Fig. 3. Within a round, information is fully exchanged
in a level 1 neighborhood. Thus, the latency involved
in moving information between a pair of nodes depends
on the number of level1 clusters in their path, and this
is uniform in all directions. Note also that between a

Fig. 4. Neighboring level1 clustersj andk

pair of level 1 nodes, information is exchanged in17
slots and the length of the path through level1 nodes is
proportional tod.

Lemma III.4. In S1, the maximum staleness in the state
of a nodei received by a snapshot at nodej is O(N ∗
m ∗ d) whered = dist(i, j).

Lemma III.5. In S0 andS1, the average communication
cost to deliver a global snapshot to all nodes per sample
from each node isO(N2 ∗ m).

Proof: To deliver a snapshot corresponding to1 sam-
ple from each node, every node communicatesO(m∗N)
bits n times. And to deliver a snapshot corresponding to
y samples from each node, every node communicates
O((n + y) ∗ (m ∗ N)) bits since all they samples
are pipelined. Hence ify is large andy = Ω(n), the
average communication cost at each node to deliver a
snapshot of one sample from each node to all nodes
is O(m ∗ N). The average communication cost overN
nodes isO(N2 ∗ (m).
Extending to other dimensions: Consider anf di-
mensional structure. In this structure, nodes are divided
into clusters with3f nodes per cluster. Thus there are
3f − 1 level 0 nodes per cluster. Each round consists of
2∗3f −1 slots. The number of slots per round increases
proportional to3f . Using these we get the following
lemma.

Lemma III.6. In S1, the maximum staleness in the state
of i in a snapshotS received byj in a network off
dimensions isO(3f ∗N ∗m∗d) whered = dist(i, j).

IV. D ISTANCE SENSITIVE RESOLUTION SNAPSHOTS

To incorporate the property of distance sensitive reso-
lution, we refine the partitioning of the network into a
hierarchical one with a logarithmic number of levels,
which are numbered0..(log3n). A 3 by 3 set of9 level
r clusters form a cluster at levelr + 1, as illustrated in
Fig. 5. Each node belongs to one cluster at each level,
and each cluster has a clusterhead which is the center
node of that cluster. A clusterhead at levelr is also a
clusterhead at levels0..r − 1.
Overview of algorithm S2: The basic idea is that a
clusterhead at each level compresses data from all nodes
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in that level intom bits. Thus, aggregated data at each
level is represented by the same number of bits. At higher
levels, data is summarized into a coarser resolution as
the levels contain more nodes. The aggregated data is
then dispersed to all nodes at that level. This solution
suffers from a multi-level boundary problem however:
two nodes could be neighbors but belong to a common
cluster only at levelr � 1. Thus despite being neigh-
bors, both nodes get a summary of the other at a much
coarser resolution than desired. The multi-level boundary
problem is illustrated in Fig. 5, where nodesj andk are
neighbors at level0 but belong to a common cluster only
at level3. To avoid this problem, we disperse a summary
computed at levelr not only to nodes in levelr cluster,
but also to nodes in all neighboring levelr clusters.
This algorithm can be implemented in multiple phases;
aggregates at each level are computed and dispersed
sequentially. When implemented sequentially, however,
new samples can be generated at each node only after
data is dispersed at all levels. To avoid this constraint,
we use the following pipelined implementation described
next.
Notations: Let j.L be the highest level for whichj
is clusterhead. Note that there are at most8 neighbors
at each level for each node in the grid topology. We
implement virtual trees along the structure at each level.
To describe these trees, we will need the following
definitions.

Fig. 5. Hierarchical clustering

Definition 6 (tree(k, j)). tree(k, j), wherej is a level
k clusterhead, is a levelk tree formed withj as root
and spanning all nodes in the levelk cluster ofj and all
level k clusters that are its neighbors.

Definition 7 (j.in(k, y)). For eachtree(k, y) that j
belongs to,j.in(k, y) is j’s parent towards rooty.

Definition 8 (j.out(k, y)). For eachtree(k, y) that j
belongs to,j.out(k, y) is the set ofj’s descendants on
the tree.

Definition 9 (M(k, y)). M(k, y) is the levelk summary
computed by a levelk clusterheady.

In Fig. 6, a level1 tree rooted atj is shown as an illus-
tration. The level1 tree extends up to all level0 nodes
in its own cluster and level0 nodes in the8 neighboring
level 1 clusters. The trees represent the distance up to
which an aggregate at any level is propagated.
Schedule: We continue to schedule the nodes to transmit
in rounds as we did in algorithmS1. In the first slot,
all level 1 clusterheads transmit. In the remaining slots,
all the level0 nodes per cluster take turns and transmit
twice.
Local storage: Each nodei stores the most recent
value ofM(x, y) received byi for eachtree(x, y) that
i belongs to. The state of any nodej is obtained as a
function of M(x′, y′) wherex′ is the smallest level that
contains information aboutj. Recall that the resolution
of the state ofj decreases as the number of nodes in the
aggregateM(x′, y′) increases.

Fig. 6. Illustrating level1 tree rooted atj

Algorithm S2: We describe the actions executed by the
nodes in three parts: (1) send / compute actions for nodes
with j.L > 0, (2) send / compute actions for nodes with
j.L = 0 and (3) receive / update actions for all nodes.

• In slot0 of each round nodes withj.L > 0 compute
the summaryM(r, j) for each level1 ≤ r ≤ j.L
that they are a clusterhead of based on the corre-
sponding lower level information received in the
previous round. The computed summary at each
level is transmitted to the children on the respective
tree rooted atj. ThusM(r, j) is sent toj.out(r, j)
for 1 ≤ r ≤ j.L.

• To explain the actions of level0 nodes, without loss
of generality, consider level1 nodesj and k and
level 0 nodesj.ne andk.sw as shown in Fig. 4.

– In slot 1, for eachtree(x, y) that j.ne belongs
to but is not a leaf of, transmitM(x, y) as
heard in slot0 from j.in(x, y) to j.out(x, y).
Also, transmit its own informationM(0, j.ne)
to children in the level0 tree rooted atj.ne.

– In slot 9, for eachtree(x, y) that j.ne belongs
to but not a leaf of, transmitM(x, y) as heard
in slots2 to 8 from j.in(x, y) to j.out(x, y).

• The action at any nodej upon receiving a message
from i is as follows: for eachtree(x, y) that j
belongs to, storeM(x, y) if i = j.in(x, y).
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In summary, aggregates computed at each level are
copied only going downwards along a tree. This is
sufficient for a levelr node to compute aggregates from
level r−1 nodes, because a tree at levelr−1 extends up
to all level 0 nodes in neighboring levelr − 1 clusters.
And one of the neighboring levelr − 1 node is a level
r node. Thus, when a computed aggregate by any node
is being dispersed to nodes in its own cluster and the
neighboring clusters, it is also being sentin to a higher
level node to compute an aggregate. In Fig. 6, nodes
p and q are level2 clusterheads. Note that the level1
tree rooted atj reaches the level2 clusterheadq that j
belongs to. Since a levelr node is equidistant from all
level r − 1 nodes and because of the uniform latency
property, the computed summaries are synchronous. We
now analyze the latency and communication cost of
algorithmS2.

Lemma IV.1. In S2, the maximum message length
needed per slot is(9 ∗ log(n) − 7) ∗ m bits.

Proof: Consider a nodej at any levelr, where0 ≤
r ≤ log(n). Let 1 ≤ l ≤ log(n) − 1. A level l tree
rooted in the same levell cluster as that ofj can pass
through j. A level l tree rooted in neighboring levell
clusters as that ofj can also pass throughj, but no
other levell tree can pass throughj. Thus, at most9
trees at levels1..log(n)−1 can pass through each node.
There is only one levellogn tree. Also j belongs to
only one level0 tree for which it is not a leaf. The
maximum message length needed per slot in algorithm
S3 is (9 ∗ log(n) − 7) ∗ m bits.
It follows that the slot widthsw needed in algorithmS3

is (9∗log(n)−7)∗m
W

bits per second.

Lemma IV.2. In S2, the maximum staleness in the state
of a nodei received by a snapshot at nodej is O(log(n)∗
m ∗ d) whered = dist(i, j).

Proof: Consider a nodep at level r. To compute
a summary at levelr, level r − 1 summaries are
needed.dist(p, q) = 3r−1, where q is any node in
the setp.nbr(r). Thus, a levelr summary is computed
based on a levelr − 1 summary that was generated
(17/3) ∗ 3r−1 ∗ sw time ago, since latency between each
pair of level1 nodes is17 slots. A levelr − 1 summary
is computed based a levelr−2 summary, and so on until
level 0. Upon summation, we see that the staleness of a
level 0 (individual node) state information in a levelr
summary is equal to(17/2)∗3r−1∗sw [7]. The maximum
distance traveled by a levelr summary is(3/2) ∗ 3r.
The maximum latency involved is(17/2) ∗ 3r ∗ sw. The
minimum distance betweenj and i for which a levelr
summary is the smallest level that contains information
aboutj is 3r−1.
The maximum staleness in the state of a nodei at node
j is given by the following equation:

staleness(i, j) = (L1 + L2) (1)

=
(L1 + L2)

3r−1
× 3r−1 (2)

= O(34 ∗ sw ∗ d) (3)
= O(log(n) ∗ m ∗ d) (4)

The result follows.

Lemma IV.3. In S2, the resolution of state of a node
i in a snapshot received at nodej is Ω( 1

d2 ) whered =
dist(i, j).

Proof: In a levelr summary, the state of9r nodes is
compressed intom bits. We thus regard the error in the
state of each node in that summary to beO(9r). The
minimum distance betweeni and j at which j gets a
level r summary ofi but not a levelr − 1 summary of
i is 3r−1. Thus, the error in the state ofi in a snapshot
received atj is O(d2) and the resolution of state ofi in
a snapshot received atj is Ω( 1

d2 ), whered = dist(i, j).

Lemma IV.4. In S2, the average communication cost
in the network to deliver a snapshot of one sample from
each node to all nodes isO(N ∗ log(n) ∗ m).

Proof: To deliver a snapshot with a sample from
each node, every node communicatesO(m ∗ log(n))
bits n times. And to deliver a snapshot withy samples
from each node, every node communicatesO((n +
y) ∗ (m ∗ log(n))) bits, since all they samples are
pipelined. Hence, ify is large andy = Ω(n), the
average communication cost at each node to deliver a
snapshot of a sample from each node to all nodes is
O(m ∗ log(n)). The average communication cost over
N nodes isO(N ∗ (m ∗ log(n)).
Note that ify is small, for instance, if there is only one
sample from each node, then the communication cost is
O(N ∗ n ∗ (m + log(n/m)). Pipelining the delivery of
snapshots improves the average communication cost to
O(N ∗ (m ∗ log(n)).

Lemma IV.5. In S2, the memory requirement per node
is O(log(n) ∗ m) bits.

Proof: Recall that the data structure maintained at
each node is the most recent value ofM(x, y) received
by i for each tree(x, y) that i belongs to. Nodes do
not buffer information to be forwarded over multiple
rounds. The maximum number of trees through any node
is O(log(n)), with m bits of information flowing along
each tree. The result follows.
Extending to other dimensions: In an f dimensional
structure wheren = N

1

f , there can be at most3f − 1
neighbors at each level. Thus, there can beO(3f ∗log(n))
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trees passing through each node. Also, as described in
Section 3, the length of each round isO(3f ). Using
these, we generalize Lemmas4.2 and4.4 as follows:

Lemma IV.6. In S2, the maximum staleness in the state
of a nodei received by a snapshot at nodej in a network
of f dimensions isO(32f ∗ log(n) ∗ m ∗ d) whered =
dist(i, j).

Lemma IV.7. In S2, the average communication cost
in the network to deliver a snapshot of one sample from
each node to all nodes isO(N ∗ 3f ∗ log(n) ∗ m).

Note also that in anf dimensional structure, the state
of 3f∗r nodes is compressed inm bits. Following the
structure of proof for lemmaIV.3, we get the following
result.

Lemma IV.8. In S2, the resolution of state of a node
i in a snapshot received at nodej in an f dimensional
network isΩ( 1

df ) whered = dist(i, j).

V. D ISTANCE SENSITIVE RATE SNAPSHOTS

In this section, we describe two algorithms in which
nodes receive snapshots that are distance sensitive in
latency, resolution and also distance sensitive in rate.

A. Distance sensitive rate by data division

We partition the network hierarchically into clusters and
schedule nodes to transmit in rounds exactly as we did in
algorithm S2. The snapshot at each level is aggregated
into m bits. However, instead of transmittingm bits
for each level of data in every round, we allocate the
number of bits hierarchically. Accordingly, a message
transmitted by a node in any given round consists of
m bits for each level0 information,m/3 bits for each
level1 information, and1 bit for each level fromlog(m)
to log(n). The actions executed by every node in their
corresponding slots remain the same as in algorithmS2
except that every levelr summary is now transmitted
over min(3r,m) rounds, as opposed to in each round
containing a new levelr summary.
Algorithm S3a: By way of refining algorithmS2,
consider a level0 node withj.L = r. A level r summary
is computed by this node once every3r rounds based
on the most recent levelr − 1 summaries it receives.
This summaryM(r, j), which consists ofm bits, is
transmitted in slot0 of each round withmax(1, m

3r )
bits per round. Thus, a levelr summary is sent over
min(3r,m) rounds. The actions for forwarding nodes
remain the same except for the change that each node
now only receives a fraction ofM(x, y) in every round
for eachtree(x, y) that it belongs to, and it forwards
only that fraction in the next round. We now analyze the
latency and communication cost of algorithmS3a.

Lemma V.1. In S3a, the maximum message length
needed per slot in algorithm is11 ∗ m

2 + 9 ∗ log( n
m

)

bits.

Proof: Recall that at most9 trees at levels1..log(n)−1
can pass through each node, and there is only one
level logn tree. Also, j belongs to only one level0
tree for which it is not a leaf. Moreover,m3r bits are
allocated for each level0 ≤ r ≤ log(m) and 1 bit
for each levelz where log(m) < z ≤ log(n). The
maximum message length (ML) needed is obtained by
the following equation:

ML =
m

30
+

i=log(m)∑

i=1

(9 ∗
m

3i
) + 9 ∗ (log(n/m))(5)

= m + m ∗
9

2
∗ (1 −

1

m
) + 9 ∗ log(

n

m
) (6)

< m + m ∗
9

2
+ 9 ∗ log(

n

m
) (7)

The result follows from these facts.
It follows that the slot widthsw needed in algorithmS3a

is
m∗

11

2
+9∗log( n

m
)

W
bits per second.

Lemma V.2. In S3a, the maximum staleness in the state
of a nodei received by a snapshot at nodej is O((m+
log(n/m)) ∗ d) whered = dist(i, j).

Proof: Consider a nodep at levelr wherer ≤ log(m).
To compute a summary at levelr, level r−1 summaries
are needed.dist(p, q) = 3r−1 where q is any node in
the setp.nbr(r). The latency between each pair of level
1 nodes is17 slots. Thus the latency to travel from level
r−1 node to levelr node is given by(17/3)∗3r−1 ∗sw.
But in this algorithm, a levelr − 1 summary is actually
transmitted in3(r − 1) rounds by dividing it into3r−1

parts. Thus, a levelr summary is computed based on
level r − 1 summary that was generated2 ∗ (17/3) ∗
3r−1 ∗ sw time ago. A levelr− 1 summary is computed
based a levelr − 2 summary and so on until level0.
Upon summation, we see that the staleness of a level0
state information in a levelr summary is(17)∗3r−1∗sw.
Note that a complete levelr − 1 snapshot is sent every
3r−1 rounds in a pipelined manner. Thus every3r−1

rounds, a levelr − 1 snapshot is received by a node.
On the other hand a levelr snapshot is computed only
every3r rounds. Thus a fresher levelr − 1 snapshot is
always available to compute a new levelr snapshot.
The maximum distance traveled by a levelr summary is
(3/2) ∗ 3r. However, this summary is sent in3r rounds.
The maximum latency involved is2 ∗ (17/2) ∗ 3r ∗ sw.
Recall that in order to update the local data structure ofj,
the state of a nodei is updated using summaryM(x′, y′)
wherex′ is the lowest level which contains information
aboutk. Now the minimum distance betweenj and i
for which a levelr summary is the smallest level that
contains information aboutj is 3r−1.
The maximum staleness in the state of a nodei at node
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j is given by the following equation:

staleness(i, j) = (L1 + L2) (8)

=
(L1 + L2)

3r−1
× 3r−1 (9)

= O(68 ∗ sw ∗ d) (10)
= O(m ∗ d + log(n/m) ∗ d) (11)

Note that at levelsr > log(m), 1 bit is allocated per
round. Thus, for all these levels, a summary can be sent
out in less than3r rounds. The maximum staleness for
those nodes whose state is obtained using summaries
greater than levelr is less than that derived in the above
equation.
The maximum staleness in the state of a nodei received
by a snapshot at nodej is thusO((m + log(n/m)) ∗ d),
whered = dist(i, j).

Lemma V.3. In S3a, the maximum interval between
when a nodej receives the state of nodei is O((m +
log(n/m) ∗ d), whered = dist(i, j).

Proof: Consider levels0 ≤ r ≤ log(m). Note that a
complete levelr snapshot is sent every3r rounds in
a pipelined manner. Thus every3r rounds, a levelr
snapshot is received by a node. The time corresponding
to 3r rounds is(17/3) ∗ 3r ∗ sw.
Recall that in order to update the local data structure ofj,
the state of a nodei is updated using summaryM(x′, y′)
wherex′ is the lowest level which contains information
aboutk. Now the minimum distance betweenj and i
for which a levelr summary is the smallest level that
contains information aboutj is 3r−1.
The maximum interval between when a nodej receives
the state of nodei is given by the following equation:

interval(i, j) =
(17/3) ∗ 3r ∗ sw

3r−1
× 3r−1 (12)

= O(17 ∗ sw ∗ d) (13)
= O(m ∗ d + log(n/m) ∗ d) (14)

Note that for levelsr > log(m), 1 bit is allocated per
round. Thus, for all these levels, a summary can be
sent out in less than3r rounds. The maximum interval
between receiving two successive state information for
those nodes whose state is obtained using summaries
greater than levelr is less than that derived in the
above equation. The maximum interval between when
a j receives the state ofi is thusO((m+ log(n/m)∗d).

Lemma V.4. In S3a, the average communication cost
to deliver a snapshot of one sample from each node to
all nodes isO(N ∗ (m + log(n/m)).

Proof: To deliver a snapshot corresponding to1 sam-

ple from each node, every node communicatesO(m +
log(n/m)) bits n times. And to deliver a snapshot
corresponding toy samples from each node, every node
communicatesO((n + y) ∗ (m + log(n/m))) bits since
all the y samples are pipelined. Hence ify is large and
y = ω(n), the average communication cost at each node
to deliver a snapshot of one sample from each node to all
nodes isO(m+ log(n/m)). The average communication
cost overN nodes isO(N ∗ (m + log(n/m)).
Discussion: We note that apart from decreasing the
average communication cost per sample from each node,
solution S3a also offers flexibility in terms of the
size of each sample. Whenm << log(n), the factor
log(n) dominates and the average communication cost
is O(N ∗ log(n)) and the staleness is bounded by
O(log(n) ∗ d). In algorithmS2 the corresponding costs
areO(N ∗m∗log(n)) andO(m∗log(n)∗d) respectively.
But when the sample size increases to as large as order
n, the average communication cost isO(N ∗ n) and the
staleness is bounded byO(n ∗ d), where as in algorithm
S2 the corresponding costs areO(N ∗ n ∗ log(n)) and
O(n ∗ log(n) ∗ d) respectively.

B. Distance sensitive rate by time division

Again, we hierarchically partition the network into clus-
ters and schedule nodes to transmit in rounds exactly as
we did in algorithmS3. The snapshot at each level is
aggregated intom bits. However, instead of allocating
exponentially increasing number of bits per level in
each round, we allocate each round to a particular
level and the information corresponding to that level is
propagated in that round. The frequency at which a round
is allocated to a particular level increases exponentially
as level decreases. Every alternate round is allocated to
level 1. Once every4 rounds is allocated to level2 and
so on. This results in a levelk aggregate being sent out
every2k rounds.
Algorithm S3b: Consider levelr > 0. Let the rounds
be numbered starting from1. The first round that is
allocated to levelr is 2r−1. Starting from that round,
all successive rounds2r apart are allocated to levelr.
Thus, all rounds enumerated by2r−1 + i × 2r for i > 0
are allocated to roundr. A level 0 information is carried
in all rounds.
We refine algorithmS2 as follows. Consider a rounds
that belongs to levelrs > 0. A nodej with levelj.L ≥ rs

computes the summary only corresponding to levelrs.
The computed summary at each level is transmitted to
the children on the respective tree rooted atj. Level 0
nodes forward information only pertaining to levelrs in
rounds. We now analyze the latency and communication
cost of algorithmS3b.

Lemma V.5. In S3b, the maximum message length
needed per slot is10 ∗ m bits.

Proof: Recall that at most9 trees at levels1..log(n)−1
pass through each node. But, in each round, information
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pertaining to only one of those levels is forwarded
resulting a message size of9∗m bits. Also,j belongs to
only one level0 tree for which it is not a leaf, resulting
in m bits for level0 in each round. The result follows.

We now state the following lemmas regarding latency,
rate of snapshot delivery, and communication cost of
algorithmS3b.

Lemma V.6. In S3b, the maximum staleness in the state
of a nodei received by a snapshot at nodej is O(m∗d2)
whered = dist(i, j).

Proof: Consider a nodep at level r. To compute a
summary at levelr, level r − 1 summaries are needed.
dist(p, q) = 3r−1 where q is any node in the set
p.nbr(r). The latency between a pair of level1 nodes
is 17 slots. However, between every pair of level1
nodes a levelr − 1 information is forwarded only once
every 2r−1 rounds. Therefore delay over3r−1 distance
is (17/3) ∗ 3r−1 ∗ 2r−1 ∗ sw. Thus, a levelr summary
is computed based on levelr − 1 summary that was
generated(17/3) ∗ 3r−1 ∗ 2r−1 ∗ sw time ago. A level
r−1 summary is computed based a levelr−2 summary
and so on until level0. Thus the maximum staleness
(L1)of a level0 state information in a levelr summary
is (17/2) ∗ 3r−1 ∗ 2r−1 ∗ sw.
The maximum distance traveled by a levelr summary
is (3/2) ∗ 3r. The maximum latency (L2) involved is
(17/2) ∗ 3r ∗ 2r ∗ sw.
Recall that in order to update the local data structure ofj,
the state of a nodei is updated using summaryM(x′, y′)
wherex′ is the lowest level which contains information
aboutk. Now the minimum distance betweenj and i
for which a levelr summary is the smallest level that
contains information aboutj is 3r−1.
The maximum staleness in the state of a nodei at node
j is given by the following equation:

staleness(i, j) = (L1 + L2) (15)

=
(L1 + L2)

3r−1
× 3r−1 (16)

=
sw ∗ (119/2) ∗ 6r−1

3r−1
× 3r−1(17)

= sw ∗ (119/2) ∗ 2r−1 ∗ d (18)

= O(sw ∗ d2) (19)

= O(m ∗ d2) (20)

Thus the maximum staleness in the state of a nodei
received by a snapshot at nodej is m ∗ d2) whered =
dist(i, j).

Lemma V.7. In S3b, the maximum interval between
when a nodej receives the state of nodei is O(m ∗
d).

Proof: Note that a levelr information is forwarded
once every2r rounds. Thus when snapshots are delivered
in a pipelined manner, a new levelr snapshot is received
at every node once every2r rounds. The latency of each
round is 17 slots. Time corresponding to2r rounds is
(17/3) ∗ 2r ∗ sw

Recall that in order to update the local data structure ofj,
the state of a nodei is updated using summaryM(x′, y′)
wherex′ is the lowest level which contains information
aboutk. Now the minimum distance betweenj and i
for which a levelr summary is the smallest level that
contains information aboutj is 3r−1.
The maximum interval between when a nodej receives
the state of nodei is given by the following equation:

interval(i, j) =
(17/3) ∗ 2r ∗ sw

3r−1
× 3r−1 (21)

= O(sw ∗ d) (22)
= O(m ∗ d) (23)

Lemma V.8. In S3b, the average communication cost to
deliver a snapshot of one sample from each node to all
nodes isO(N ∗ m).

Proof: To deliver a snapshot corresponding to1 sam-
ple from each node, every node communicatesO(m)
bits n times. And to deliver a snapshot corresponding
to y samples from each node, every node communicates
O((n+y)∗(m) bits since all they samples are delivered
in a pipelined manner. Hence ify is large andy = Ω(n),
the average communication cost at each node to deliver
a snapshot of one sample from each node to all nodes is
O(m). The average communication cost overN nodes
is O(N ∗ m).

Lemma V.9. In S3a and S3b, the memory requirement
per node isO(log(n) ∗ m).

Proof: The maximum number of trees passing through
any node isO(log(n)). The storage at each node is the
most recentM(x, y) for each tree(x, y) that a node
belongs to. In algorithmS3a, the difference is that this
information ((M(x, y)) arrives at a node over multiple
rounds. The memory requirement is stillO(log(n)∗m).

Both algorithmsS3a andS3b can be generalized tof di-
mensions just as algorithmS2 is [7]. We summarize our
results in Fig. 7, which shows the bounds on staleness
and resolution in the state ofi at nodes that are distance
d away, the bound on interval at which state updates
of i are received, and the average communication cost
for delivering a snapshot ofN samples (one from each
node) across the network.
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Algorithm Staleness Communication cost Resolution Interval Memory
S1 O(3f ∗ N ∗ m ∗ d) O(N2 ∗ m) full independent ofd N ∗ m
S2 O(32f ∗ log(n) ∗ m ∗ d O(3f ∗ N ∗ m ∗ log(n)) Ω( 1

df ) independent ofd 3f ∗ log(n) ∗ m
S3a O(32f ∗ (m + log(n/m)) ∗ d) O(3f ∗ N ∗ (m + log(n/m))) Ω( 1

df ) O(3f ∗ (m + log(n/m)) ∗ d) 3f ∗ log(n) ∗ m
S3b O(32f ∗ m ∗ d2) O(3f ∗ N ∗ m) Ω( 1

df ) O(m ∗ d ∗ 3f ) 3f ∗ log(n) ∗ m

Fig. 7. Summary of results for snapshot algorithms

VI. I RREGULAR NETWORKS

In this section, we relax several assumptions weve made
in designing algorithmsS0 − S3. We show how the
algorithms continue to yield distance sensitive snapshots
and quantify the impact on the performance in the
following cases: non uniform density, holes of arbitrary
sizes within the connected network, non unit disk radios
and imperfect clustering.
Clustering Model: We assume the existence of a
clustering layer that partitions the general but connected
network, as modeled in Section 2, into hierarchical
clusters such that every network node belongs to one
cluster at each level. As perfect (i.e., regular and sym-
metric) clustering may no longer be possible, we may not
assume, for example, that all level0 nodes are within 1
hop range of the level 1 clusterhead. We weaken that
assumption to: each level1 cluster includes all nodes
that are1 hop away but may also include nodes that
are up to some bounded number of hops,z, from it.
Likewise, all higher level clusterheads also have the same
radius range as opposed to a uniform radius. Moreover,
the paths between neighboring clusters also need not the
shortest ones, unlike what we assumed in the previous
sections.
More formally, our clustering assumption is stated as
follows (with distance standing for communicationhop
distances):

• (C1) All nodes within distance3
k
−1
2 from a level

k clusterhead belong to that cluster.
• (C2) The maximum distance of a node from its

level k clusterhead iszk × 3k
−1
2 .

• (C3) There exists a path from each clusterhead
to all nodes in that cluster containing only nodes
belonging to that cluster.

• (C4) At all levelsk > 0, there is at least one and at
most 8 neighboring levelk clusters for each level
k clusterhead and there exists a path between any
two neighboring clusterheads.

We note that the existence of such clustering solutions
has been validated in previous research [8] and also been
used in the context of object tracking.

A. Networks with non uniform density

Once the network has been partitioned into clusters, we
impose a virtual grid on the network, as shown in Fig. 8.
Each level0 node belongs to some cell, but now each
cell in the virtual grid may contain any number of nodes.
In particular, cells may be empty and empty cells may
be contiguous; we call sets of contiguous empty cells the
holesof the network. We first describe how the case of

over density is handled.

Fig. 8. Virtual grid and cells with different densities

Over density cells: In the virtual grid, each cell gets a
slot to transmit as described in algorithmsS0−S1. When
a cell has more than one node, each node in the cell gets
a turn over multiple rounds to send its data, resulting in
time sharing between nodes of a cell to transmit its own
data. However, once data is sent out from the source, the
forwarding of the data does not incur this extra delay
despite going through denser cells. This is because any
node in the dense cell that gets a turn in a given round
can forward the data heard in the previous round from
neighboring cells.
Under density cells, holes, and imperfect cluster-
ing: If a particular cell is empty in sparse regions
of the network, then the communication path between
neighboring levelk clusters (0 < k < log(n)) is lost.
We consider2 density models for network with holes.
In the first model, the density of the network is such
that the communication hop distances are of the same
order as the geometric distance despite holes in the
network. We call this density assumption,DA. In the
second model,DA does not hold, i.e., the network may
have arbitrary sized holes. The hop distance between any
two nodes may be arbitrarily higher than the Euclidean
distance. For both these density models, we first describe
the changes needed in the scheduling to handle clusters
of non uniform size. We then describe how distance
sensitivity is preserved.
Scheduling scheme (FS):Recall that around is a unit of
time in which information is exchanged between a level
1 clusterhead and all its neighboring level1 clusterheads.
In the general model, a level1 cluster can cover up
to a z hop neighborhood. Accordingly, the basic round
scheduling introduced in Section2 is adapted as follows.
For ease of explanation, assumez = 2. Thus, a level1
cluster comprises a minimum of the1 hop neighborhood
and a maximum of the2 hop neighborhood. At the
beginning of each round, level1 clusterheads transmit.
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There can be at most26 level 0 nodes in each cluster.
Some may be absent because of holes or because of
non uniform clustering. Depending on the position in
the cluster, each level0 node gets2 slots per round such
that information is exchanged from all8 directions. The
round length thus increases withz.
Distance sensitivity:A level k tree rooted at any node
j spans all nodes in its own levelk cluster and all nodes
in the neighboring levelk clusters, using fixed paths as
described in Sections3 and 4. If a neighboring level
k cluster is completely absent, then there is no need
to reroute the information. However if the neighboring
level k cluster is present but the path is broken, then
information has to be re-routed. We now investigate the
impact on latency and resolution when the information
takes a different path than normal.
Recalling the clustering specifications stated above, con-
sider any two nodesi and j in the network. Let the
shortest path between these two nodes in the presence
of holes bep. We considerDA networks and nonDA
networks seperately.
DA networks:

Lemma VI.1. For DA networks, ifk is the smallest
level at whichi and j are neighbors thenp > 3k−1.

Proof: Note that i and j are not neighbors at level
k−1. And if p ≤ 3k−1, then a levelk−1 cluster cannot
exist betweeni and j since from propertyC1, a level
k − 1 cluster has a minimum radius of3

k−1
−1

2 .

Theorem VI.2. For DA networks, algorithmsS1, S2,
S3a and S3b yield snapshots that retain their distance
sensitive properties.

Proof: From the previous lemma, the minimum dis-
tance between two nodesi and j for which level k is
the smallest level at whichi andj are neighbors is3k−1.
Using C3 andC4 we have that levelk information can
be exchanged betweeni andj.
Despite the fact the trees are not formed along the
regular grid pattern, it still holds that not more than9
trees per level pass through any node. This is because
there at most8 neighboring levelk clusters for any
level k cluster. Moreover, the maximum degree of any
node in all trees is still8, by imposing the virtual
grid for level 0. Therefore, the slot width allocations in
algorithmsS1, S2, S3a andS3b are sufficient to transmit
all information despite the trees not being created in a
regular pattern.
Rerouting in Case1 is illustrated in Fig. 9. The figure
shows a level1 cluster with a clusterheadA that has7
neighboring level1 clusters. The small unfilled circles
represent cells of the virtual grid; these may contain one
or more level0 nodes. The level1 clusters cover up to
a 2 hop neighborhood. The figure also shows a level1
tree rooted atA and extending up to clustersB andC.
Non DA networks: In these networks, LemmaV I.1

Fig. 9. Handling holes in dense networks

may not hold. The clustering may be such that distance
between two nodes may be small, but they may belong
to neighboring clusters at a much larger level. One such
instance is illustrated in Fig. 10 where there are two
dense regionsD1 and D2 connected by a thin strip
and a vertical thin section of nodes. In this instance,
dist(A,B) = 4 units. R andS are levelk′ − 1 cluster-
heads that containA and B respectively.P and Q are
level k′ clusterheads that containA andB respectively.
The clustering is such thatA andB are not neighbors up
till an arbitrarily high levelk′ because the neighboring
clusterheads for all levels smaller thank′ lie in the thin
long section of the network. In such cases, if a levelk
information is transmitted only up to neighboring level
k clusters, distance sensitivity will not be satisfied. In
Fig. 10, nodesA andB will exchange information only
at levelk′. We therefore refine our algorithms as follows.
RefinementR: Instead of extending a levelk tree only
up to all nodes in neighboring levelk clusters, we extend
a level k tree until the height of the tree is equal to
3 ∗ zk ∗ (3k

−1)
2 along all branches. But we retain that the

degree of each node is still bounded by8.
In other words, we extend a tree up to a height equal
to the maximum radius of a cluster plus the maximum
diameter of a cluster. This results in levelk information
propagating up to a hop distance that is proportional to
3k regardless of whether all nodes in that radius are
limited to neighboring clusters; this is stated formally
in the following lemma.

Lemma VI.3. If k is the smallest level of information
received by a nodej about the state ofi, then p ≥
zk−1 ∗ 3k−1.

Proof: Nodej does not receive levelk−1 information
abouti. Therefore, the level distance ofj from levelk−1

clusterhead ofi is greater than3 ∗ zk−1 ∗ (3k−1
−1)

2 . The
maximum distance ofi from its levelk − 1 clusterhead
is zk−1 ∗ (3k−1

−1)
2 . Thus,p ≥ zk−1 ∗ 3k−1.

Theorem VI.4. For non DA networks, algorithmsS1,
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S2, S3a andS3b with refinementR yield snapshots that
retain their distance sensitive properties.

Note: Refining the tree to go beyond neighboring
clusters may violate the capacity bound at each node
per slot. This is because certain nodes may have more
than 9 trees passing through them at any level as trees
are not limited to those from neighboring clusters any
more. Along links that have more trees passing through
them, information propagation has to be time shared.
This results in higher latency when passing through such
parts of the network. Consider Fig. 10 again. In this
graph, a levelk′ − 1 tree rooted insideR will extend
not only to neighboringk′ − 1 cluster T , but also to
nodes insideS. SinceS is a dense region, nodes within
S may already have9 level k′ − 1 trees passing through
them and the tree fromR is an addition. This results in
information flow becoming slower when passing through
nodes inS.

Fig. 10. Handling holes in sparse networks

B. Non uniform radio range

The design of algorithmsS0 − S3 assumed a strictly1
hop communication range. If communication range were
relaxed to radio interference range varying from1 to s
hops, the basic scheduling for each round would need to
take into account this additional interference. This would
result in longer round lengths proportional to the size of
interference region.

C. Implementation considerations

In this subsection, we highlight considerations for im-
plementing our snapshot services in wireless sensor
networks. In the past, we have implementedTrail [5],
an asynchronous network protocol for querying object
states and used this in the context of a distributed
object tracking application. We have noted that as the
objects in the network get densely located, interference
issues lead to high latency and decreased efficiency. The
snapshot services that we consider in this paper are high
density operations and TDMA is naturally suited for
such scenarios as interference can be avoided. But we
do not need global time synchronization in the network.
Nodes in their network can learn their TDMA slots by
knowing their relative position to that of a clusterhead
and locally scheduling in a non interference manner.
Another issue to consider is that of localization. For our

snapshot services, knowledge of relative location with
respect to clusterheads is sufficient as opposed to the
knowledge of precise coordinates.

VII. R ELATED WORK

Communicating periodic global state snapshots is a well
studied problem in distributed systems [9] and con-
sistency, timeliness and reliability have been the main
design considerations in those studies. But efficiency
becomes essential when considering periodic snapshots
for resource constrained wireless sensor networks. To the
best of our knowledge algorithms for delivering periodic
snapshots across a wireless sensor network have not been
studied before.
A common approach to achieving compression for effi-
ciency is to exploit the temporal and spatial correlation
of data being shared. For example, in [10], the authors
propose a framework for a one time all-to-all broadcast
of sensor data assuming the data is spatially correlated.
There has also been work [11] on compression mecha-
nisms for correlated sensor data sent to a central base sta-
tion. Instead, in this paper we explore an alternate form
of compression to achieve efficiency by generalizing the
notion of snapshots to satisfy certain distance sensitive
properties. We do not require data to be correlated. At
the same time, our algorithms can be used in conjunction
with other forms of compression.
Fractionally cascaded information [12] is a form of
distance sensitive resolution that is widely used in com-
putational geometry community for speeding up data
structures. Each node stores an ordered list of keys,
shares a well distributed sample of that list with its
neighbors, a sample of that sample with its two hop
neighbors, and so on. Recently, fractional cascading has
been used for sensor networks as an efficient storage
mechanism [13], [14]. Data is first stored at multiple
resolutions across the network. Stored data is then used
to efficiently answer aggregate queries about a range of
locations without exploring the entire area. In contrast,
we have considered a model where information is gen-
erated and consumed on an ongoing basis. Accordingly
we describe push based services that regularly deliver
to subscribers snapshots of the network in a pipelined
manner. By providing snapshots with not just distance
sensitive -resolution but also -latency and -rate, we
achieve compression and thereby efficiency. At the same
time these services can be used in range based querying
as well as in several other control applications.
The idea ofdistance sensitive ratehas also arisen in other
contexts. Fisheye state routing is a proactive routing
protocol [15] that reduces the frequency of topology
updates to distant parts of the network. The spatial gossip
protocol [16] is one in which each node in a peer-to-peer
network chooses to communicate to another node with a
probability that decreases polynomially with the distance
between the pair.
In [17], the authors propose a probabilistic algorithm to
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aggregate sparse data generated in sensor networks that
is eventually exfiltrated from the network. In contrast,
we have focused on dense data generation models.
Synchronous, push based services are more suited in
this model as they are less prone to contention in sensor
networks.
Recently algorithms for bulk data collection in sensor
networks have been proposed. In [18] data is collected
from one node at a time, while [19] performs concurrent,
pipelined exfiltration of data using TDMA schedules.
In [20], the authors describe TDMA based algorithms
optimized for convergecast. Our algorithms can be spe-
cialized for the case of bulk convergecast and we addi-
tionally emphasize on efficiency using distance sensitive
properties.

VIII. C ONCLUSION

We have generalized the basic notion of snapshots us-
ing distance sensitive notions and accordingly designed
efficient wireless sensor network algorithms that pe-
riodically deliver. Our algorithms can be formulated
to allow delivery at a subset of nodes as opposed to
all nodes. They are memory efficient and realizable
in networks with irregular density, with arbitrary sized
holes, imperfect clustering, and non unit disk radios.
We have quantified the maximum rate at which infor-
mation can be generated at each node so that snapshots
are periodically delivered across the network. We have
specified the allowable aggregation functions in abstract
terms, allowable functions include average, max, min and
wavelet functions.
Our algorithms assume knowledge of location at each
node. We map nodes to a virtual grid and each node
is aware of the clusters it belongs to and position
within each cluster. We know that algorithms for distance
sensitive snapshots can be designed without knowledge
of location at each node, although it is open as to what
are the weakest assumptions under which the problem is
solvable.
We expect to implement our snapshot algorithms in the
context of applications such as pursuer evader tracking
and vibration control, and study their performance and
tradeoffs more exhaustively in the future. Thus far, we
have only a preliminary version of our distance sensitive
latency snapshot service for linear networks [21], and
this implementation has been used to support a pursuer
evader tracking application that was demonstrated in
Richmond Field Station in August 2005.
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