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Abstract

The emergence of multicore systems poses several challenges for the next-generation cluster architec-
ture. Due to the availability of multiple processing cores per node, more number of application processes
can be run on each node. In this context, the scalability of the cluster communication middleware like
MPI is important for the overall performance of large scale applications.

MPI collective operations are widely used by many application codes to get good efficiency and
high speed-up in performance. It is imperative that these operations scale both with respect to the
protocols used and the communication resources employed for these multicore systems. SMP-aware
collective optimizations have been well-researched in the past. However, these have been done over
customized MPPs such as the IBM-SP and Sun Starfire. Also, most of the work has been targeted at
improving performance. But, with sizes of commodity multicore clusters reaching several thousands of
nodes it is important to ensure high performance of these collectives and also maintain optimum resource
consumption. Recently, InfiniBand has emerged as the main stream high performance interconnect for
commodity clusters. One of the important forms of message transport used by InfiniBand is the Reliable
Connection (RC) mode. With this mode of transport, two important issues arise which need detailed
investigation to design a scalable and high performance collective communication system. Firstly, the
impact of concurrent network transactions can be significant for collective communication especially
for the all-to-all communication pattern. Secondly, as clusters span tens of thousands of nodes resource
consumption plays a key role for ensuring scalability.

In this paper, we explore these issues and study the utility of shared memory to enhance several aspects
relating to performance and resource consumption. Specifically, we study the impact of cutting down
of network transactions for important collective operations such as MPI_Barrier and MPI1_Allreduce.
For MPI_Alltoall, we evaluate message aggregation technique and use analytical modeling to obtain
valuable insights. We also explain the savings obtained in the connection resources while using shared
memory based collective operations. We have evaluated our designs over four node quad-core Intel
Xeon Clovertown systems. On this testbed, our results show that an improvement by a factor of three
can be achieved for MPI_Barrier and MPI_Allreduce. For MPI_Alltoall, we observe a performance
improvement of two orders of magnitude for message sizes up to 1024 bytes for the Clovertown system
testbed.

1 Introduction

Clusters of commodity PCs are becoming ubiquitous in the high performance computing arena owing
to their high performance-to-price ratios. Recently, the shift in the trend towards multicore computing is
presenting several challenges to the system designers to effectively harness the capacity of such systems.
With the number of cores steadily increasing per node, several open questions emerge pertaining to the
scalability of the various aspects of system design. One of such challenges is the scalability of the
communication sub-system both with respect to the communication protocols employed and the amount
of resources consumed.

Message Passing Interface (MPI) [15] has evolved as the de-facto programming model for writing
parallel applications. MPI provides many point-to-point and collective primitives which can be lever-
aged by the applications codes. Especially, many parallel applications [12] employ collective operations



for their efficiency and ease of use. Some of the widely used collective operations are MPI_Allreduce,
MPI_Reduce, MPI_Alltoall, MPI_Bcast and MPI_Barrier. The advent of multicore clusters enables more
than one MPI process to be run on a node. In such scenarios, it is important that these collective opera-
tions perform optimally and consume less communication resources. Several researchers have proposed
optimal algorithms for these operations for varying system sizes and architectures. One such class of
algorithms is the SMP-aware collectives. Traditionally, these algorithms have been studied in the context
of customized massive MPPs such as the IBM-SP and Sun Starfire [9, 22]. Also, most of the work has
been targeted at improving performance. But, with sizes of commodity multicore clusters reaching sev-
eral thousands of nodes it is important to ensure high performance of these collectives and also maintain
optimum resource consumption.

Recently, InfiniBand(IBA) has emerged as one of the main stream high performance commodity clus-
ter interconnect. IBA is increasingly being deployed to interconnect several hundreds of multicore sys-
tems owing to its high bandwidth and low latency capabilities. IBA provides for different classes of
message transport, the two important ones being the Reliable Connection (RC) and the Unreliable Data-
gram (UD). In this paper, we focus on the RC mode of message transport and understand the implications
of its usage on the important collective operations, MPI_Allreduce, MPI_Alltoall and MPI_Barrier. This
is especially important in scenarios where multiple MPI processes are run per node stressing the com-
munication interfaces. We first understand the impact of concurrent network transactions over the RC
transport. Though generally true for many collective operations, this study is particularly important for
personalized All-to-all communication. We use both experimental and analytical methods to evaluate
this behavior. We then evaluate the shared memory based optimizations to minimize the number of
network transactions. Particularly, we explore message aggregation techniques to cut-down network op-
erations and improve network utilization. Further, we explain how significant savings of communication
resources can be achieved by utilizing shared memory methods.

Specifically, our objectives in this paper are the following:

e Analyze the impact of concurrent network transactions which can potentially be large for multicore
systems.

e Analytically model and understand message aggregation techniques over InfiniBand.

e Evaluate the savings in communication resources obtained by using shared memory communica-
tion methods.

e Evaluate the shared memory optimizations for important collective operations such as MPI_Allreduce,
MPI_Barrier etc. for the next-generation multicore architectures and analyzing the switch-points
for different algorithms.

We have implemented our designs and integrated them into MVAPICH [8] which is a popular MPI
implementation for InfiniBand used by more than 455 organizations worldwide. We have evaluated our
designs over the quad-core Intel Xeon Clovertown systems. Our results show that an improvement by a
factor of three can be achieved for MPI_Barrier and MPI_Allreduce. For MPI_Alltoall, we observe high
degradation in performance without using shared memory message aggregation techniques.

The rest of the paper is organized in the following way. In Section 2, we provide the background of
our work. In Section 3, we explain the motivation for our scheme. In Section 4, we discuss detailed
design issues followed by the Analytical model in Section 5. We evaluate our designs in Section 6 and
talk about the related work in Section 7. Conclusions and Future work are presented in Section 8.
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2 Background

In this section we first provide an overview of InfiniBand. We then present the standard algorithms
used for different collective operations.

2.1 InfiniBand Overview

The InfiniBand Architecture (IBA) [5] defines a switched network fabric for interconnecting process-
ing nodes and I/0 nodes. It provides a communication and management infrastructure for inter-processor
communication and I/O. In an InfiniBand network, processing nodes and I/O nodes are connected to the
fabric by Channel Adapters (CA). Host Channel Adapters (HCAs) sit on processing nodes. InfiniBand
supports different classes of transport services. In current products, Reliable Connection (RC) service
and Unreliable Datagram (UD) service are supported. To use RC service, first a connection needs to be
established between the participating processes. Also, each connection consumes memory resources of
the host.

2.2 Collective Algorithms

In this section we present the different algorithms used for MPI collectives. For very small messages,
MPI_Alltoall uses the Bruck’s Algorithm [3] which is a store and forward algorithm taking log(n) steps.
For small to medium messages, MPI_Alltoall uses a non-blocking algorithm [18] where each node sends
messages to all other nodes. Messages are scattered so that not all messages are directed towards a node
to avoid congestion and hot-spot effects. A simple rule could be a process sends the ith message to pro-
cess whose rank is (my_rank+ i)% n. These are currently used in MPICH [4]. This algorithm works well
for medium messages where the cost of store and forward is absent [18]. MPI_Barrier is implemented
using a dissemination based algorithm which consists of log(n) steps [20]. For MPI_Allreduce, two
algorithms are used depending on the message sizes. For short messages, a pair-wise exchange algo-
rithm is used. As described above, this also consists of log(n) steps where the data between the pairs is
reduced.

2.3 MVAPICH Overview

We now provide a high-level design overview of Point-to-Point and Collective Communication sup-
port in the MVAPICH stack. As shown in Figure 1, the software stack is composed of three main com-
ponents: a. Point-to-Point operations, b. Point-to-Point based Collective operations and c. Optimized
Collective Operations. These are explained briefly below.

Point-to-Point MPI operationsin MVAPICH: The two main protocols used for MPI point-to-point
primitives are the eager and rendezvous protocols. In the eager protocol, the message is copied into
communication buffers at the sender and destination process before it is copied into the user buffer. These
copies are not present if rendezvous protocol is used. However, in this case an extra handshake is required
to exchange user buffer information for zero-copy of the message. For intra-node communication, a
separate shared memory channel is used for communication. In MVAPICH, the shared memory channel
involves each MPI process on a local node attaching itself to a shared memory region at the initialization
phase.
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Figure 1. MVAPICH Design Overview

Point-to-Point based Collective operations. In MVAPICH, all the collective algorithms described
above have default implementations over point-to-point operations. These are derived from MPICH
implementation [20]. However, these algorithms were designed to be optimal for single process clusters.
Also, since these algorithms are based on point-to-point operations, they cannot directly take advantage
of the underlying network features. One such example is that of H/W Multicast.

Optimized Collective Operations. As discussed above, Collective Operations implemented directly
over the point-to-point operations are not optimal. This is especially true for the emerging multicore In-
finiBand clusters where more than one process can be launched on a single node. As the Figure 1 shows
there are two ways of optimizing these operations for these cases. One way of doing this is to directly
use the shared memory together with underlying network features. This is potentially useful for collec-
tive operations which involve large data transfers. Using shared memory together with RDMA primitive
of InfiniBand leads to improved performance as shown by our earlier work [11]. Another alternative is
to use the Point-to-Point based collective operations described above together with shared memory. For
short messages where the copy costs are small, this approach does not place any significant overheads.
Also, this approach is generic and can be easily integrated with the existing point-to-point implementa-
tions of collective operations. In this paper we study this approach for the collectives MPI_Allreduce,
MPI_Barrier and MPI_Alltoall.

3 Motivation

The advent of multicore processors presents several interesting challenges for the emerging cluster
architecture. Due to the availability of multiple processing cores per node, more number of application
processes can be run on each node. This places critical demands on various system components such as
the memory subsystem, communication resources etc. This is especially true with collective operations
which concurrently stress the network interfaces.

Recently, InfiniBand(IBA) has emerged as one of the main stream high performance commodity clus-
ter interconnect. IBA provides for different classes of message transport, the two important ones being
the Reliable Connection (RC) and the Unreliable Datagram (UD). In this paper, we focus on the RC
mode of message transport and understand the implications of its usage on the important collective oper-
ations, MPI_Allreduce, MPI_Alltoall and MPI_Barrier. As discussed earlier, these collective operations
issue multiple concurrent network transactions stressing both the performance and resource consumption
of the underlying interconnect.

Concurrent communication suffers from two major bottlenecks depending on the message sizes used.
For small to medium messages, the contention is manifested in terms of start-up costs where as for large
messages, bandwidth becomes the bottleneck. In this paper, we focus on the study of small to medium
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Figure 2. (a) Multi-pair latency (b) Scatter latency

messages whose latencies are dominated by the start-up costs. Figure 2(a) shows the effect of multiple
network transactions occurring between varying pairs of processes. The experiment was conducted
by concurrently running the ping-pong latency test between multiple pairs of processes. Two eight-core
clovertown systems interconnected by InfiniBand adapters were used in the experiment. As shown in the
figure, the latency shows marked degradation with the number of pairs rising to eight. For short message
collective operations like MPI_Barrier, MPI_Allreduce and MPI_Alltoall, this can lead to degradation of
the performance. This is because these collectives typically employ a pair-wise exchange algorithm for
short messages. With multiple processes per node, the inter-node communication phases are prone to
concurrent network accesses similar to the one shown in the Figure 2(a). Thus, it is important to avoid
such hot-spots for these operations.

Apart from these performance bottlenecks, the amount of communication resources utilized in the
collective operation critically affects the scalability of the overall system. For personalized collectives
such as MPI_Alltoall, this is significant as multiple connections need to be established across the partici-
pating processes. Since each connection consumes communication resources, there is an O(n) resource
consumption per process hindering scalability of cluster middleware.

In this paper, we evaluate the shared memory mechanism to overcome the above challenges. Firstly,
shared memory allows for message aggregation. The benefits of this approach can be seen from Fig-
ure 2(b). The figure shows the results of a scatter test where a constant message size is uniformly striped
across varying number of connections. Thus, the fewer the connections used the larger is the message
transmitted over the connection, As shown in the figure, scattering certain message sizes across smaller
connections is beneficial rather than going over larger connections. However, these benefits are depen-
dent on the characteristics of the underlying communication transport and the ability of the upper-layer
communication protocols to fully saturate the pipeline depth. Secondly, shared memory based proto-
cols can cut down the network transactions boosting performance. Finally, shared memory allows for
reducing number of connections that need to be established. This leads to improved resource scalability.

Specifically, in this paper we aim to answer the following questions:

e What is the impact of utilizing shared memory in cutting down the number of network transactions
for important collective operations such as MPI_Allreduce, MPI_Barrier and MPI_Alltoall?

e What are the benefits of aggregating messages across different connections for collective opera-
tions such as MPI_Alltoall?



e What analytical model can be derived for message aggregation over InfiniBand?
e What are the resource optimizations by utilizing shared memory for collective operations?

We explore these issues in the following sections of the paper.

4 L eader-based Collective Operations

In this section we provide the design and implementation details for the three collective operations
studied in this paper: MPI_Barrier, MPI_Allreduce and MPI_Alltoall. The main idea in all of the three
operations is using a single process per node called as the Leader process to do all the inter-node col-
lective protocol processing and progress. As explained below, all the three collective operations are
composed of three steps. Two of these are intra-node where only the local processes participate and one
of them is inter-node where only the Leader process participates. The semantics of each of these steps
varies with the type of collective operation.

Collective step : 1 step : 2 step : 3
MPI_Barrier intra_Gather | inter_Barrier intra_Bcast
MPI_Allreduce | intra_Reduce | inter_Allreduce | intra_Bcast
MPI_Alltoall intra_Gather | inter_Alltoall intra_Scatter

All the intra-node collective operations are performed via shared memory. This is done by making all
the processes local to a node do a mmap of a shared file. However, prior to this step all the processes
participating in the collective call have to be grouped to create a two level hierarchy of communicating
groups. The first level consists of all the local processes to the node and the second level consists
of all the Leader processes from each local group. Please note that all the processes in a particular
group are ranked from O to n — 1 where n is the size of the group. We choose the process with rank
0 of the local group to be the Leader process of that node. Apart from involving in the inter-node
collective communication, the Leader process also performs the intra-node reductions in the case of
MPI_Allreduce. Synchronization operations for these collective operations are performed using separate
shared memory flags.

Packing/Unpacking for MPI _Alltoall: For shared memory based MPI_Alltoall operation, the in-
tra_Gather step involves the packing of the data from all the local processes and the intra_Scatter step
involves the unpacking of the data. We now explain the data layout for the buffers involved in pack-
ing/unpacking data. We assume a two node with two processes per node scenario to present the case.

The four processes PO, P1, P2 and P3 are grouped into two groups based on their locality. The two
local groups being node 0:{P0, P1} and node_1:{P2, P3}. Each process has four data items to be sent to
the other processes: P0<d0,d1,d2,d3>, P1<d0,d1,d2,d3>, P2<d0,d1,d2,d3> and P3<d0,d1,d2,d3>.
For packing, data from each local process traveling to the same destination node has to be gathered
to one buffer. In order to do this, the data is packed according to the local ranks of the source and
destination processes. For the scenario considered, the data after packing is of the following form at
each of the nodes:

node_0:{<d0,d1>P0, <d0,d1>P1}, {<d2,d3>P0, <d2,d3>P1}

node_1:{<d0,d1>P2, <d0,d1>P3}, {<d2,d3>P2, <d2,d3>P3}



5 Analytical Model

In this section we explain the analytical model used in this paper. This model is used for estimating
the latencies of the scatter operation using the direct approach i.e. the root sends separate messages to all
the participating processes one after another. This communication pattern forms the basis of the direct
MPI_Alltoall algorithm as described in Section 2. The main objective of this model is the estimation of
the cut-off point where aggregating messages is not beneficial.
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Figure 3. Timing behavior

The basic equation used in our modeling is:

,—rlat = Tserializati(m + Tconstant (1)

The latency of the scatter operation is comprised of two factors, the cost of serialization of the opera-
tions which is dependent on the number of operations issued and an independent factor which remains
constant. The per-operation serialization cost is once again determined by the size of the message used
in the operation. Figure 3, depicts the two scenarios of small messages and large messages. As Case a
in the figure illustrates, for small messages the latency of the operation is serialized by the start-up costs,
shown in the figure as Tstart-up. Please note that Tstart-up is the cost of serializing the start-ups and not
the exact cost of each start-up operation. To determine the total startup costs, an additional constant C is
required. For large messages the latency of the operation is dominated by the serialization of the trans-
mission time, Ttx. As a result, we have two equations describing the total transfer time of the operation
over n processes depending on the size of the message employed.

,—rlat = (n - 1)Tstartup + Ttv"ansmission + C Zf Tstartup > ,—Ttransmission (2)
T‘lat - Tstartup _I' (TL - 1)Eransmission Zf Tstartup < ﬂransmission (3)

Further T}, 4nsmission €an be further broken down into:

Tiransmission = msg_size X ﬁ 4)

where [ is the per byte transmission cost.

The individual parameters for the equation are obtained by profiling scatter latencies of 1 byte and
16384 bytes of data across 32 processes. The experimental testbed details are provided in Section 6. The
parameters obtained for the equations are: Tsiqrtp = 2.098, 8 = 0.000935 and C' = —10. The negative
value of C illustrates that the initial total time was over-estimated. This is because the serialization
overhead is not present for all the transactions. Due to the availability of multiple DMA engines, there
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is some amount of concurrency in the processing of network transactions. Infact, for a 11 node scatter,
the observed latency is 9.9 us. The model without the constant factor C gives 20 us which is around 10
us above the original value.

Figure 4 validates the model for different message sizes. As the figure illustrates, the model closely
captures the behavior of scatter latencies.
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Figure 4. Model Verification:(a)Linear scatter (b) Message aggregation

From this model important conclusions can be drawn. As seen from the model, the benefits of message
aggregation are not present if the serialization costs due to message transmission dominate the start-up
costs. The message size at which this occurs can be obtained by determining the switch-point where
the serialization cost of message transmission exceeds that of the start-up cost. This is shown in the
following equation.

T X ﬁ = Tstartup (5)

By substituting the different parameters, we obtain the values of 2243 as the value of x. Thus, after
this point message aggregation does not yield benefits. This directly applies to MPI_Alltoall where each
node does the scatter operation as discussed in this model. However, the exact latency of MPI_Alltoall is
complicated to model compared to a single scatter operation. Because this involves several parameters
which have to be modeled accurately. Some of these are the hot-spot effects due to network contention,
memory contention for multi-core systems, caching effects etc.

6 Performance Evaluation

In this section we compare the performance of the shared memory enhancement of the three important
collective operations: MPI_Allreduce, MPI_Barrier and MPI_Alltoall. We then evaluate the savings of
connection resources with the leader-based collective operations.

6.1 Experimental Testbed

We have used three different clusters with varying characteristics to carry out in-depth performance
evaluation and associated benefits of the proposed schemes.

Cluster A: Each node of the testbed is a duel Intel Xeon Clovertown processor with quad core. The
nodes are interconnected by MT25208 HCAs in DDR mode. The operating system used is Redhat Linux
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AS4. Our results were taken on four of such systems with a total of 32 cores. We have evaluated our
designs on varying configurations such as 4x2(i.e. four processes on each of the two nodes), 4x4 and
4x8.

Cluster B: Each node of the testbed has two 3.6 GHz Intel processor and 2 GB main memory. The
CPUs support the EM64T technology and run in 64 bit mode. The nodes are equipped with MT25208
HCAs with PCI Express interfaces. A 144-port DDR switch is used to connect all the nodes. The operat-
ing system used was RedHat Linux AS4. We have evaluated our designs on 16x2, 32x2 configurations.

6.2 MPI_Barrier Latency

Figure 5(a) shows the latency of the barrier operation on Cluster A. As shown in the figure, per-
formance improvements up to a factor of 3 are observed for 32 processes. This significant speed-up
in the performance is due to the lowering of network contention. As discussed in earlier sections 2,
MPI_Barrier uses a pair-wise exchange algorithm. During the inter-node phases of the barrier, all the
eight processes contend for the network interface thereby causing the performance to drop. Using shared
memory alleviates this problem and causes only one network transaction between a pair of nodes. Sim-
ilar trends can also be observed for Cluster B, Figure 5(b).
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Figure 5. Barrier Latency:(a)Cluster A (b) Cluster B

6.3 MPI_Allreduce Latency

Figures 6 show the latency of the shared memory based allreduce on the clovertown multicore sys-
tems. As shown from the figure, the latency of the operation is significantly lowered upto a factor of
three for short messages and up to 33% for large messages. The performance gain for short message
allreduce is due to the cutting down of network transactions akin to barrier operation. However, simi-
lar performance gains are not observed for large data messages. This is because MPI_Allreduce uses a
highly parallelized algorithm for large messages:Reduce-scatter followed by allgather. This is explained
in detail in [20]. This offsets the performance gains obtained from following the leader-based design.
Figure 7 shows the same behavior for a two-way SMP cluster.

6.4 MPI_Alltoall Latency

In this section we compare the different schemes of implementing MPI_Alltoall. These are outlined
below:
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Direct without Packing: This is the default implementation of Direct Alltoall over the point-to-

[ ]
point operations

e Direct with Packing: This is the shared memory based Direct Alltoall implementation discussed
in this paper

e Brucks without Packing: This is the default implementation of Bruck’s Alltoall over the point-to-
point operations

e Brucks with Packing: This is the shared memory based implementation of Alltoall using the

Brucks algorithm

In the first part of this section we outline the impact of highly concurrent network operations using
Direct MPI_Alltoall. We compare the two Direct schemes: with/without Packing and analyze the trends.
We then compare the Brucks implementation with the Direct approach.
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Figure 8(a) shows the behavior of Direct Alltoall on four eight-core clovertown nodes. With Direct
without packing, a total of (24*8) connections are established from a node with the same order of mes-
sage exchanged between the nodes. This places heavy demands on the network interface as shown from
the figure where the latencies are of two orders of magnitude higher than the packing based approaches
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where only one leader process communicates with the other four nodes. This drastically reduces the
contention and provides very significant performance gains.

Also note that as shown from the analytical modeling, the packing and no packing show no benefit
beyond 2243 bytes of message size. However, the exact cut-off point depends on several factors such
as contention in the memory subsystem, hot-spot effects. This can be seen from Figure 8(b) where the
cut-off point is between 1024 and 2048 where as in Figure 8(a) it is 2048.

Figures 9 shows the latencies of the three schemes in which Direct with packing shows better or equal
performance to all the three other schemes. But Brucks with packing is worse compared to the other
schemes in both the scenarios. This is because the cost of pack/unpack offsets the performance gains
due to message aggregation.

6.5 Savings in Communication Resources

In this section we explain the savings obtained by doing shared memory based collectives. Please
note that we have evaluated our implementation over the RC transport of InfiniBand. As discussed in
earlier sections, an explicit connection needs to be established before communication. Each connection
consumes memory resources for storing connection context data structures and communication buffers.
These have been studied in [10, 7, 17, 19]. The following table gives the savings in total number of
connections per node while using Shared memory(Shmem) alone: n refers to the total number of nodes
and m is the number of cores on each node.

Without Shmem | With Shmem | Savings
MPI_Alltoall | O ((n—1)m?) | O(n—1) O (m?)
MPI _Barrier O (mlog(n)) O (log(n)) O (m)
MPI_Allreduce | O (mlog(n)) O (log(n)) 0 (m)

Please note that earlier studies [ 10] have shown the benefits of memory savings using the UD-transport
of InfiniBand. However, these were studied over with single process/node scenarios. A thorough analysis
of both the transports is needed for multicore systems to evaluate the optimal method both in terms of
performance and memory consumption. Also, please note that utilizing the scheme mentioned in this
paper will not be optimal for all messages in the case of MPI_Alltoall. Especially for large messages,
the cost of packing/unpacking would be high. Thus, pipelining techniques have to be explored and the
benefits studied. We intend to carry out these studies as part of our future work.

7 Reated Work

Utilizing shared memory for implementing collective communication has been a well studied prob-
lem in the past. In [21], the authors propose using remote memory operations across the cluster and
shared memory within the cluster to develop efficient collective operations. They apply their solutions
to Reduce, Bcast and Allreduce operation. The authors evaluate their approach on IBM-SP systems. In
this paper, we evaluate the SMP-based MPI_Allreduce, MPI_Barrier and MPI_Alltoall focusing on the
impact of small message network contention on InfiniBand network interfaces. Especially techniques
such as message aggregation have been analytically modeled and the switch-points identified. Message
aggregation and the associated models for communication have been discussed by Panda et AL in [1].
These have been designed over wormhole routed using multi-destination message passing. These have
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been analyzed over torus topologies. In [2, 14], the authors implement collective operations over Sun
systems. In [23], the authors improve the performance of send and recv operations over shared memory
and also apply the techniques for group data movement. Collectives for single process per node over
InfiniBand have been studied for MPI_Barrier, MPI_AlltoAll, MPI_Allgather, [6, 13, 18, 16] based on
RDMA techniques. Shared memory collectives using RDMA have been explored in [11]. The benefits
obtained here were due to savings from avoiding copy costs.

8 Conclusions and Future Work

The emergence of multicore clusters places several challenges for the next-generation cluster architec-
ture. Due to the availability of multiple processing cores per node, more number of application processes
can be run on each node. In this context, the scalability of the cluster communication middleware like
MPI is important for the overall performance of large scale applications.

As the MPI collective operations are widely used by many applications it is imperative that these
operations scale both with respect to the protocols used and the communication resources employed for
multicore clusters. SMP-aware collective optimizations have been well-researched in the past. However,
these have been done over customized MPPs such as the IBM-SP and Sun Starfire. InfiniBand has
emerged as the main stream high performance interconnect for commodity clusters. One of the important
forms of message transport used by InfiniBand is the Reliable Connection (RC) mode. With these
clusters going multicore, multiple issues need to be taken into account to design a scalable and high
performance collective communication system. One of these issues which is especially significant is the
impact of concurrent network transactions over RC transport of InfiniBand. Further, the scalability of
RC mode in terms of communication resources is also equally important.

In this paper, we study the utility of shared memory to enhance several aspects relating to performance
and resource consumption. Specifically, we study the impact of cutting down of network transactions
for important collective operations such as MPI_Barrier, MPI_Allreduce for multicore architectures. For
MPI_Alltoall, we evaluated message aggregation techniques and used Analytical Modeling to obtain
valuable insights. We also explained the savings obtained in the connection resources for RC transport
of InfiniBand. We have evaluated our designs over the quad-core Intel Xeon Clovertown systems. Our re-
sults show that an improvement by a factor of three can be achieved for MPI_Barrier and MPI_Allreduce.
For MPI_Alltoall, we observe high degradation in performance without using shared memory message
aggregation techniques.

For the future we would like to evaluate the shared memory collectives over the UD transport and
understand the benefits and potential limitations. We would also like to evaluate the benefits at the
application level using the optimizations studied in this paper.
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