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Abstract

Many applications seek to identify features like ‘handles’and ‘tunnels’ in a shape bordered by a
surface embedded in three dimensions. To this end we define handle and tunnel loops on surfaces which
can help identifying these features. We show that a closed surface of genusg always hasg handle andg
tunnel loops induced by the embedding. For a class of shapes that retract to graphs, we characterize these
loops by a linking condition with these graphs. These characterizations lead to algorithms for detection
and generation of these loops. We provide an implementationwith applications to feature detection and
topology simplification to show the effectiveness of the method.

1 Introduction

Many applications need to identify features such as ‘handles’ and ‘tunnels’ induced by the embedding of a
connected closed surface in three dimensions. We define a class of loopson M, called handle and tunnel
loops, that help identifying these handles and tunnels respectively. Intuitively, a loop is a handle if it spans a
disk (surface) in the bounded space bordered byM. If one cutsM along such a loop and fills the boundary
with that disk, one eliminates a handle. Similarly, a tunnel loop spans a disk (surface) in the unbounded
space bordered byM and its removal eliminates a tunnel. Figure 1 shows three handle and three tunnel
loops on a CAD surface. In this paper we provide a formal definition of handle and tunnel loops in terms
of homology groups and provide topological analyses that lead to the algorithms for their detection and
generation. Our algorithm can be a basis for applications that require to recognize features such as handles
in a shape and tunnels in its complement or to simplify a shape topologically by eliminating insignificant
handles and tunnels [BK05, ESV97, GW01, WHDS04, ZJH07].

Researchers have looked into the problem of computing nontrivial loops on surfaces with various con-
ditions. Vegter and Yap [VY90] and Dey and Schipper [DS95] gave linear time algorithms to compute
polygonal schemas whose removal cuts the surface into a disk. Ericksonand Har-Peled [EHP04] showed
that computing graphs of shortest length whose removal cut the surfaceinto a disk is NP-hard. Verdière
and Lazarus [ECdVL05] gave an algorithm for computing a system of loops on a surface which is shortest
among the homotopy class of a given system. Erickson and Whittlesey [EW05]gave a greedy algorithm to
compute the shortest system of loops, among all systems of loops, relaxing the homotopy condition.

The above works were mainly concerned with computing a set of non trivialloops while optimizing
some metric on the surface. Our goal is different. We seek to compute only specific loops that are handles
and/or tunnels. One fundamental difference is that the aforementioned works do not take into account
the embeddingM → R

3 whereas handle and tunnel loops become meaningful only for embedded surfaces
M ⊂ R

3.
We formalize the ideas of handle and tunnel loops and provide an existenceproof for them. We argue that

the notion of handle and tunnel loops loses its intuitive meaning if the surface has a knotted embedding. We
definegraph retractablesurfaces that avoid these knotted embeddings. These are surfaces whose interiors
and exteriors deformation retract to graphs calledcore graphs. We present algorithms to detect and generate
handle and tunnel loops on such surfaces. Specifically, the main contributions of this paper are:
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Figure 1: Cad gadget: the red loops represent tunnels and the green ones represent handles.

DEFINITION AND EXISTENCE. We provide a formal definition of handle and tunnel loops and prove their
existence.
DETECTION. We characterize handle and tunnel loops on graph retractable surfaces in terms of their linking
with the core graphs. This leads to an algorithm for detecting handle and tunnel loops.
GENERATION. We show that there exist a special class of handle and tunnel loops thatlink minimally with
the core graphs and present an algorithm to compute them.
IMPLEMENTATION. We present an implementation of our algorithm which incorporates the geometry of the
surface more intimately. The results of our implementation show that the method is effective in practice.
APPLICATION. We apply our algorithm to the problem of computing ‘handle’ and ‘tunnel’ features in
shapes which can further be used for topology simplification. Again, the results show the effectiveness of
the method.

2 Preliminaries

We state some standard concepts from topology. For a more detailed introduction, the interested readers
may consult Munkres [Mun93] or Hatcher [Hat02].

Let X be any topological space. A singulark-simplex is defined as a continuous mapσ : ∆k → X where
∆k is the standardk-simplex which is the convex hull of{ei}

k+1
i=1 . Eachei is a vector inR

k+1 and its jth
component isδi j whereδi j = 1 if i = j and 0 otherwise. Ak-chain is a finite linear combination of singular
k-simplices. In this paper we assume the coefficient ring to beZ, the set of integers. The set of allk-chains
forms a chain groupCk(X) under addition. The boundary operator∂ of a singulark-simplexσ takesσ to
a collection of maps that are the restriction ofσ on the boundary facets of∆k, which form a(k−1)-chain.
A boundary operator∂ : Ck(X) → Ck−1(X) can be defined by the linear extension. Ak-chain is called a
k-cycle if its boundary is empty and ak-boundary if it is the boundary of a(k+ 1)-chain. Ak-boundary
must be ak-cycle. LetZk andBk denote the set of allk-cycles andk-boundaries respectively. BothZk andBk

are subgroups ofCk(X). Thekth homology groupof X, denotedHk(X), is the quotient groupZk/Bk. Since
CK(X) is abelian, so isHk(X). If X is a simplicial complex, one could define the simplicial homology group
for X where eachk-simplex plays role of a singulark-simplex. It turns out that these two homology groups
are the same up to isomorphism.

In this paper, we are interested in the first homology groupH1(X) which is a set of equivalent classes
of loops defined as continuous maps from circles intoX. Each such class calledhomology classcan be
represented by a loop inX if X is path connected. We let[l ] denote the homology class represented by
a loop l . The topological spaces we consider in this paper are all compact subspaces ofR3. Their first
homology groups are free abelian groups and hence have a basis where every element of the group can be
written uniquely as a finite linear combination of elements in the basis. The elements ina basis are also
referred asgenerators.

A topological spaceX deformation retractsto its subspaceA if there is a continuous mapF : X× [0,1]→
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X satisfying the following conditions

• F(x,0) = x for anyx∈ X

• F(x,1) ∈ A for anyx∈ X

• F(a, t) = a for anya∈ A and anyt ∈ [0,1].

X andA are of the same homotopy type ifX deformation retracts toA. We also use the concepts of cohomol-
ogy, Mayer-Vietoris sequences, and others whose excellent expositions can be found in Hatcher [Hat02].

3 Definition and existence

Let M be a connected, closed (compact and without boundary), and orientable surface. The genusg of
M is the maximum number of disjoint simple loops whose removal does not disconnect M. Two closed,
connected and orientable surfaces are homeomorphic if and only if they have the same genus. To make our
argument simple, letM sit inside a three sphereS3, which is the compactification ofR3. Being embedded
in S

3, the surfaceM has to be orientable. It separatesS
3 into two parts. Given an orientation ofM, we may

designate a connected component, sayI , of S
3\M asinsideand the other, sayO, asoutside. Let

I = I ∪M andO = O∪M.

Notice that bothI andO haveM on their boundary. As a compact orientable surface inS
3, M admits an

open tubular neighborhood inS3, denotedΣ.

Definition 1 A loop on M is atunnel loop if the homology class carried by it is trivial in H1(O) and non
trivial in H1(I).

Definition 2 A loop on M is ahandle loop if the homology class carried by it is trivial in H1(I) and non
trivial in H1(O).

By definition, set of tunnel loops are disjoint from set of handle loops, namely no loop onM can be both
handle and tunnel. In addition, a tunnel loop or a handle loop must be non trivial in H1(M). This is because
the inclusion map fromM to I induces a homomorphism fromH1(M) to H1(I). Similarly the inclusion map
from M to O induces a homomorphism fromH1(M) to H1(O). Hence a loop onM that represents the trivial
element inH1(M) remains representing the trivial element both inH1(I) andH1(O). However, not every
non trivial loop onM is either handle or tunnel. For example, the loop shown in Figure 2 is neither a handle
nor a tunnel since it is non trivial in bothH1(I) andH1(O).

Figure 2: The loop on the torus is neither a handle nor a tunnel.

It is not immediately obvious if a connected closed surface of genusg admitsg handle andg tunnel loops.
In particular, ‘knotted’ embedding of surfaces makes it a non trivial fact as standard surface classification
theorem cannot be applied to derive it.
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Theorem 1 For any connected closed surface M⊂ S
3 of genus g, there exist g handle loops{hi}

g
i=1 forming

a basis for H1(O) and g tunnel loops{ti}
g
i=1 forming a basis for H1(I). Furthermore,{[hi ]}

g
i=1 and{[ti ]}

g
i=1

form a basis for H1(M).

Proof 1 The tubular neighborhoodΣ of M in S
3 satisfies

S
3 = (I∪Σ)∪ (O∪Σ) and

Σ = (I∪Σ)∩ (O∪Σ).

Since bothI∪Σ andO∪Σ are open, we have the following Mayer-Vietors sequence, which is exact.

· · · → H2(S
3)

α
→ H1(Σ)

β
→ H1(I∪Σ)⊕H1(O∪Σ)

γ
→ H1(S

3) → ·· ·

Since both H2(S3) and H1(S
3) are trivial, β is an isomorphism induced by the inclusion map. SinceΣ,

I∪Σ, andO∪Σ deformation retract to M,I, andO respectively, there is an isomorphism from H1(M) to
H1(I)⊕H1(O), which is also induced by inclusion. It follows that

rank(H1(I))+ rank(H1(O)) = rank(H1(M)) = 2g. (1)

Also, it is known that (Theorem19 in [Moi77] p. 172)

rank(H1(I)) ≥ g and rank(H1(O)) ≥ g. (2)

Equations 1 and 2 force both the ranks of H1(I) and H1(O) equal g. Now one can choose g elements(ci ,0),
i = 1, ..,g, from a basis in H1(I)⊕H1(O) whose preimage by the inclusion isomorphism provides g elements
in H1(M). These g elements, by definition, are classes of g tunnel loops forming a basis of H1(I). Similar
arguments show existence of g handle loops.

4 Graph retractable surface

Although Theorem 1 assures the existence ofg handle loops andg tunnel loops on all connected closed
surfaces inS3, they do not bear intuitive meaning of handles and tunnels in ‘knotted’ surfaces. Figure 3
shows such a surface. It is obtained by thickening a trefoil knot, namelyM is the boundary of the product,
K ×D, of a trefoil K and a 2-diskD. The red loop in Figure 3(a) is obtained by projecting the trefoil knot
on the surfaceM. In contrary to the natural intuition this loop is not a tunnel loop. It is not trivial in H1(O)
though it generatesH1(I). Actually one can derive that its homology class inH1(O) is 3 times the generator
(the green loop in Figure 3(a)), which explains why the tunnel loop shownin Figure 3(b) contains three
windings.

We want to avoid such ”knotted” surfaces by considering the property that at least one of the spacesI

andO does not deformation retract to a graph. For example, take the above thickened trefoil which can be
considered as a knotted torus. The fundamental group of the complement of K×D in S

3 has the presentation
〈a,b | a2 = b3〉. On the other hand, the fundamental group of any graph is of the form offree product of
Z’s. These two can not be the same. SoO can not be homotopy equivalent to a graph and hence can not
deformation retract to a graph. There is another embedding of the knotted torus where the tunnel is knotted,
e.g., a solid with a knotted tunnel as shown in Figure 4a. In this caseI does not have the same homotopy
type as a graph. Figure 4b is a combination of these two cases where bothI andO do not deformation retract
to a graph.
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(a) (b)

Figure 3: A thickened trefoil: (a) The red loop obtained by projecting the trefoil knot on the surface is not a
tunnel. (b) The red loop with three windings is a tunnel.

(a) (b)

Figure 4: Surfaces that are not graph retractable : (a) a solid with a knotted tunnel; it does not have the
homotopy type of any graph. (b) a knotty cup; both inside and outside are not homotopy equivalent to any
graph.

We consider connected closed surfaces inS
3 for which I andO deformation retract to graphs. We call

themgraph retractablesurfaces. Since tunnel and handle loops on non graph retractable surfaces may not
have natural meaning as we explained, this is not a serious restriction in practice. A large class of surfaces
in practice are graph retractable.

Let Î andÔ denote the two core graphs to whichI andO deformation retract respectively. BothÎ andÔ

are connected. SinceI andO deformation retract to(I\Σ) and(O\Σ) respectively, we can assumeÎ andÔ

lie inside(I\Σ) and(O\Σ) respectively.
We state two related lemmas here which are used later in the proofs.

Lemma 1 Let {ℓ j}
n
j=1 be a set of loops on a topological space X such that{[ℓ j ]}

n
j=1 form a basis for

H1(X). Let A be a path connected subspace of X and i: A→ X be the inclusion map. If the induced map
i∗ : H1(A) → H1(X) is an isomorphism, there exists a set of loops{h j}

n
j=1 in A such that i∗([h j ]) = [ℓ j ] for

1≤ j ≤ n. Hence{[h j ]}
n
j=1 form a basis for H1(A) and if we consider each hj as a loop in X,{[h j ]}

n
j=1 form

a basis for H1(X) too.

Proof 2 Since i∗ is an isomorphism, there exists an element in H1(A), sayτ, such that[ℓ j ] = i∗(τ) for each
j, 1≤ j ≤ n. Since A is path connected, there exists a loop, say hj , such thatτ = [h j ]. The lemma follows.

Lemma 2 Let X ⊂ S
3 be closed. If X deformation retracts to another closed subset A⊂ S

3, then the
inclusion map i: S

3\X → S
3\A induces an isomorphism i∗ : H1(S

3\X) → H1(S
3\A).

Proof 3 We have
H1(S

3\X) ⋍ H1(X) ⋍ H1(A) ⋍ H1(S
3\A)
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where H1(X) and H1(A) are the first cohomology groups of X and A respectively. The left and theright
isomorphisms follow from the Alexander duality. The middle one follows as X deformation retracts to A. In
addition, all three isomorphisms are natural with respect to inclusion. Thelemma follows.

5 Graph complement basis through linking

Since we assume bothI andO deformation retract to core graphs, we study the first homology groups of
graphs and their complements inS

3. Consider a knot1 K ⊂ S
3. SinceK is homeomorphic to a circleS1, one

can assign an orientation to it. It is known thatH1(K) = Z and[K] is the generator forH1(K). We also know
thatH1(S

3\K) = Z. Let J be another knot inS3 that is disjoint fromK. The unionJ∪K is a link. Consider
a regular projection of linkJ∪K to a plane. Each point at whichJ crosses underK locally projects to one
of the crossings in Figure 5. We count+1 for the crossing on the left and−1 for the one on the right. The
linking number, denoted bylk(K,J), is defined to be the sum of these crossings counted as+1 or−1.

K K

JJ

+ −

Figure 5: The two types of crossings.

Lemma 3 (Rolfsen [Rol76]) The homology class carried by J equals nr for some generator r of H1(S
3\K)

if and only if lk(K,J) = n.

It follows from the above lemma that iflk(K,J) = ±1, then[J] is a generator forH1(S
3\K).

Let G be a finite, possibly disconnected, graph inS
3. Let T be a spanning forest ofG. Let {ei}

n
i=1 be

the set of edges ofG that are not inT. Adding any edgeei to T form a simple loop,Ki , see Figure 6a. Each
loopKi is free of self intersections and hence can be considered as a knot. Theset of knots{Ki}

n
i=1 may not

be disjoint but generatesH1(G).
Let δi j denote the Kronecker delta, that is,δi j = 1 if i = j and 0 otherwise. LetJi be a knot disjoint from

all Ki ’s and lk(K j ,Ji) = δi j , see Figure 6b. It follows from Lemma 3 that[Ji ] is a generator ofH1(S
3 \Ki)

and is trivial inH1(S
3\K j) for j 6= i.

e3

K1 K2

K3

J1
e2 J2e1

J3
K4 e4

T

J4

Figure 6: A graph with two components. The bold edges and the black nodesform the spanning forest.

Theorem 2 {[Ji ]}
n
i=1 form a basis for H1(S3\G).

Proof 4 Let Li = Ki ∪T. By Lemma 2, the inclusion map fromS3 \Li to S
3 \Ki induces an isomorphism

between H1(S3\Li) and H1(S
3\Ki). Since Ji avoids G,[Ji ] is the generator forS3\Li but is trivial in S

3\L j

for any j 6= i.

1We only consider tame knots
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We prove the theorem by induction on n. Let G1 = ∪n−1
i=1 Li . Consider G and T as union and intersection

of G1 and Ln respectively. Then,

S
3\G = (S3\G1)∩ (S3\Ln) and

S
3\T = (S3\G1)∪ (S3\Ln).

By induction hypothesis,{[Ji ]}
n−1
i=1 form a basis for H1(S3 \G1) and are all trivial in H1(S

3 \Ln). Clearly,
[Jn] is the generator for H1(S3 \Ln) and is trivial in H1(S

3 \G1). Hence{[Ji ]}
n
i=1 form a basis for H1(S3 \

G1)⊕H1(S
3\Ln). Consider the following Mayer-Vietoris sequence.

· · · → H2(S
3\T)

α
→ H1(S

3\G)

β
→ H1(S

3\G1)⊕H1(S
3\Ln)

γ
→ H1(S

3\T) → ·· ·

Since H1(S
3\T) = 0 and H2(S

3\T) = 0, β is an isomorphism, which is induced by the inclusion map. The
theorem follows as{[Ji ]}

n
i=1 form a basis for H1(S3\G1)⊕H1(S

3\Ln).

The proof of Theorem 2 implies thatH1(S
3 \G)

i∗
⋍ ⊕n

i=1H1(S
3 \Ki), which with Lemma 3 leads to the

following corollary.

Corollary 4 Let ℓ be a loop inS
3\G. One has[ℓ] = ∑n

i=1ai [Ji ] if and only if lk(ℓ,Ki) = ai for each i where
ai is an integer.

6 Minimally linked loops

In this section, we give more constructive statements about the handle and tunnel loops for a graph re-
tractable surface. These statements relate the linking numbers of the loops withthe core graphs to their
characterization and existence. Theorem 3 characterizes the handle and tunnel loops in terms of linking
numbers. Theorem 4 provides the existence of a special class of handleand tunnel loops which link min-
imally with the core graphs. This leads to an algorithm to compute a set of 2g loops forming a minimally
linked basis forH1(M) whereg of them are handle and the otherg are tunnel.

Consider the union of two core graphsÎ∪ Ô as a single graph with two connected components. From
the previous discussion, we can compute a set of knots, denoted{Ki}

2g
i=1, which generateH1(̂I∪ Ô). Let

{KI
j}

g
j=1 denote the loops from̂I and{KO

j }
g
j=1 denote the loops from̂O.

Theorem 3 A loop ℓ on a graph retractable surface M is a handle if and only if lk(ℓ,KI
i ) 6= 0 for at least

one of KI
i ’s and lk(ℓ,KO

i ) = 0 for all the KO

i ’s. A loopℓ on M is a tunnel if and only if lk(ℓ,KO

i ) 6= 0 for at
least one of KOi ’s and lk(ℓ,KI

i ) = 0 for all the KI
i ’s.

Proof 5 Recall thatΣ denotes a tubular neighborhood of M inS3. We have

H1(O)
i∗
⋍ H1(S

3\ (I\Σ))
i∗
⋍ H1(S

3\ Î). (3)

The first isomorphism holds sinceS3 \ (I \Σ) deformation retracts toO. The second isomorphism follows
from Lemma 2 as(I\Σ) deformation retracts tôI. In addition, both isomorphisms are induced by inclusion
maps. Symmetrically we have

H1(I)
i∗
⋍ H1(S

3\ (O\Σ))
i∗
⋍ H1(S

3\ Ô). (4)
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By definition, a loopℓ on M is a handle one if and only if[ℓ] is trivial in H1(I) and non trivial in H1(O),
which means, by Equation 3 and 4, it is trivial in H1(S

3 \ Ô) and non trivial in H1(S
3 \ Î). From Corollary

4, the homology class ofℓ in H1(S
3 \ Ô) is trivial if and only if lk(ℓ,KO

i ) = 0 for each1 ≤ i ≤ g, and the
homology class ofℓ in S

3 \ Î is non trivial if and only if at least one of lk(ℓ,KI
i ) is non zero. A similar

argument applies to tunnel loops.

Next, we prove the existence of a set of 2g loops onM which link the core graphs in a minimal sense.
We will prove that these loops generate all the handles and tunnels in theorem 4.

Definition 3 A loopℓ on surface M isminimally linked if ∑2g
j=1 |lk(ℓ,K j)| = 1.

Intuitively, minimal linking forbids the loops to wind around the surface multiple timesthereby produc-
ing more meaningful handle and tunnel loops.

Lemma 5 There exists a minimally linked set of loops{Ji}
2g
i=1 on a graph retractable surface M where

{[Ji ]}
2g
i=1 form a basis for H1(M).

Proof 6 It is obvious that there exists a set of loops inS
3\ (̂I∪Ô), denoted{ℓi}

2g
i=1, such that|lk(ℓi ,K j)|= δi j

for any1≤ i, j ≤ 2g. For example,ℓi can be chosen arbitrarily close to Ki to loop around it once and avoid
linking any other Kj , j 6= i. From Theorem 2,{[ℓi ]}

n
i=1 form a basis for H1(S3\ (̂I∪ Ô)). We have

H1(M)
i∗
⋍ H1(Σ)

i∗
⋍ H1(S

3\ (̂I∪ Ô)). (5)

The first isomorphism holds sinceΣ is a tubular neighborhood of M. The second isomorphism follows from
Lemma 2 as(I \Σ)∪ (O \Σ) deformation retracts tôI∪ Ô. In addition both isomorphisms are induced by
inclusion maps. From Lemma 1, there exists a loop Ji on M for1≤ i ≤ n such that[Ji ] = [ℓi ]. Hence we have
|lk(Ji ,K j)| = |lk(ℓi ,K j)| = δi j . Furthermore{[Ji ]}

n
i=1 form a basis for H1(M).

We observe that the above lemma holds even if we requireJi to pass through a specific point, sayp.
This is because we assume surfaceM is connected and hence path connected. LetJi be a loop guaranteed
by Lemma 5. Leth be the path fromp to a point onJi andh̄ be the reverse ofh. Then the loopℓ formed by
concatenatingh, Ji andh̄ can be taken as newJi that passes throughp. Furthermore, whenM is a polygonal
mesh, one can restrict eachJi to the edges ofM. This is because we can perform a finite sequence of
deformation each of which is within a polygon to deform aJi in a general position to the one along the edges
without changing its homology class.

The set of loops{Jj}
2g
j=1 defined in Lemma 5 can be classified into two groups:{JI

j}
g
j=1 with |lk(JI

j ,K
I
j )|=

1 for 1≤ j ≤ g, and{JO

j }
g
j=1 with |lk(JO

j ,KO

j )| = 1 for 1≤ j ≤ g. The homology classes{[KI
j ]}

g
j=1,

{[JI
j ]}

g
j=1, {[KO

j ]}g
j=1 and{[JO

j ]}g
j=1 form a basis forH1(̂I), H1(S

3\ Î), H1(Ô) andH1(S
3\ Ô), respectively.

Furthermore, due to Corollary 4 each[JI
j ] is trivial in H1(S

3 \ Ô) and so is each[JO

j ] in H1(S
3 \ Î). Next

theorem formally establishes that there exist minimally linked handle and tunnel loops forming a basis forI
andO respectively.

Theorem 4 There exist a set of minimally linked handle loops on a graph retractable surface which form a
basis for H1(O). Similarly, there is a set of minimally linked tunnel loops which form a basis for H1(I).

Proof 7 Consider the loops{[JI
j ]}

g
j=1 and{JO

j }
g
j=1. By Equation 3,{[JI

j ]}
g
j=1 form a basis for H1(S3 \ Î)

and hence for H1(O) while{[JO

j ]}g
j=1 are trivial in H1(S

3\ Î) and hence are trivial in H1(O). Symmetrically

by Equation 4, we have that{[JI
j ]}

g
j=1 are trivial in H1(I) while {[JO

j ]}g
j=1 form a basis for H1(I). The

theorem follows from the definitions of tunnel loop and handle loop.
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7 Topological algorithms

In this section, we present algorithms todetectandgeneratehandle and tunnel loops for a graph retractable
surface.

AssumêI andÔ are given. In a preprocessing step we compute a set of knots{Ki}
2g
i=1 from Î andÔ using

their spanning trees as indicated in section 5. Assuming thatÎ andÔ havet edges altogether, computation
of Kis takeO(t) time.

DETECTION: Let ℓ be any given loop withsedges onM. By Theorem 3, ifℓ links Î and notÔ, it is a handle
loop. If ℓ links Ô and not̂I, it is a tunnel loop. If none of these conditions holds,ℓ is neither a handle nor a
tunnel. The time complexity of this detection is dominated by the linking number computation. The linking
numbers can be determined by computing the intersections between edges ofℓ andKis projected on a plane.
It can be done in timeO(t +s+x) log(t +s+x) wherex is the number of total intersections.

GENERATION: Here we compute a set of minimally linkedg handle and tunnel loops whose homology
classes form a basis forH1(O) andH1(I) respectively. Because of minimal linking property, the handle and
tunnel loops cannot wind around the surface arbitrarily, a property that goes with the intuitive meaning of
handles and tunnels. Assume thatM hasn edges. We use any of theO(n) algorithms [DS95, VY90] to
compute a system of 2g loops onM, {ℓi}

2g
i=1, through a fixed pointp. The homology classes carried by these

loops form a basis forH1(M). For each loopℓi , we compute the linking numberlk(ℓi ,K j) for eachK j . Let
{Jj}

2g
j=1 be the loops guaranteed by Theorem 4. It follows from Corollary 4 that

[ℓi ] =
2g

∑
j=1

lk(ℓi ,K j)[Jj ].

Let A be the matrix{lk(ℓi ,K j)}, ~L be the vector[ [ℓ1], · · · , [ℓ2g] ]t and ~J be the vector[ [J1], · · · , [J2g] ]t .
We have

~L = A ~J .

Since both{[ℓi ]}
2g
i=1 and{[Ji ]}

2g
i=1 are bases forH1(M), A is invertible. LetA−1 = {ai j}. For 1≤ i ≤ 2g, Ji

can be uniquely expressed as

[Ji ] =
2g

∑
j=1

ai j [ℓ j ].

Observe that[Ji ] is some linear combination of[ℓ j ]’s with integer coefficients. So the entries inA−1 must be
integers.

Since allℓ j ’s have the same base point, we can concatenate any two of them, sayℓi andℓ j , into a new
loop, denotedℓi + ℓ j . For an integerz, let zℓi denote the loop formed by concatenating|z| copies ofℓi if
z> 0 or |z| copies of the reverse ofℓi if z< 0. Then we can takeJi as∑2g

j=1ai j ℓ j for each 1≤ i ≤ 2g. From

Theorem 3, we knowJi is a handle loop ifKi is in Î or is a tunnel loop ifKi is in Ô.
The time complexity of the generation algorithm is dominated by the linking number computation and

the matrix inversion which takeO((gn+ t +x) log(gn+ t +x)+g3) time since eachℓi hasO(n) edges.

8 Incorporating geometry

In this section, we give an implementation of the algorithm assuming thatM is presented as a piecewise
linear surface. The algorithm described in section 7 computes topologically correct handle and tunnel loops
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without considering any geometric information. Hence the computed loops may not be very good geomet-
rically. The implementation presented in this section incorporates geometry into thealgorithm, namely it
computes two sets of loops with small size. Although it does not guarantee thatthe computed set of handle
or tunnel loops is the shortest, the experiments show that they are geometrically meaningful.

8.1 Computing core graphs and{Ki}
2g
i=1

We use Voronoi diagrams for computingÎ andÔ. Let V be the set of vertices inM and VorV denote the
Voronoi diagram ofV. Let I andO denote the bounded and unbounded spaces respectively bordered by M
as defined earlier. Consider the 2-complexµI formed by the Voronoi facets and its lower dimensional faces
that lie completely inI. Similarly defineµO corresponding toO. It is known that ifV samplesM densely,
µI andµO are homotopy equivalent toI andO respectively [CL04, GRS06].

The basic idea to computêI andÔ is to collapseµI andµO respectively from their boundaries. A basic
collapse operation deletes a pair of faces preserving a homotopy equivalence between the spaces before and
after the collapse. At the end of all possible collapses, we obtain two graphs that are homotopy equivalent
to I andO. These two graphs can be taken asÎ andÔ.

Although any collapse order is permissible, we use a specific one proposed in Dey and Sun [DS06]
for computing the so called curve-skeletons. These curve-skeletons are graphs that reside roughly in the
‘middle’ of I andO thereby capturing shape geometry better. A real valued function calledmedial geodesic
defined on the faces ofµI andµO guides the collapse. For each Voronoi facetf , the value is the shortest
geodesic distance onM between the end points of the Delaunay edge dual tof . The Voronoi edges and ver-
tices get a value which is maximal among all values of the Voronoi facets incident to them. After collapsing
µI andµO ordered with increasing medial geodesic values, one obtains the edges ofthe curve-skeletons.
Each such edge gets associated with an additional value called geodesic size which indicates the local size
of M. We use the curve-skeletons and this additional value to compute handle andtunnel loops of small
size.

In our implementation, the geodesic distance between two points onM is approximated by the Dijkstra’s
shortest path over the graph consisting of the edges ofM. Each skeleton edge on the resulting curve skeletons
is a Voronoi edge whose dual Delaunay triangle has three vertices on surfaceM. The geodesic paths between
each pair of them together form a ‘circle’, called the geodesic circle. Its length is the geodesic size associated
with the corresponding skeleton edge, which indicates how big the shape is locally.

We obtain̂I andÔ by imposing a graph structure on both curve-skeletons, namely, taking the vertices
of degree more than two as the graph nodes and forming a graph edge by asequence of connected skeleton
edges in between two such nodes.

There are surfaces for which one can not compute graphsÎ andÔ by collapsingµI andµO respectively
even when bothI andO deformation retract to graphs. As mentioned in [DS06], one such example can be
derived from the famous “house with two rooms” [Hat02]. ComputingÎ andÔ for such pathological cases
remains an open question.

Define the geodesic size for a graph edgeE ∈ Î∪ Ô as the smallest geodesic size among the skeleton
edges contained in that graph edge, i.e.,

g(E) = min{g(e) : e is a skeleton edge in E}

whereg(e) is the geodesic size associated with the skeleton edgee. We obtain maximal spanning trees forÎ

andÔ, which form a spanning forest for̂I∪ Ô. We haveg edges left in̂I andg edges left inÔ. Let {Ei}
2g
i=1

denote these edges. As discussed in Section 5, addingEi , i = 1, ...,2g, back to the spanning forest form a set
of knotsKi , i = 1, ...,2g.
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8.2 Computing handle and tunnel loops{Ji}
2g
i=1

All Ji ’s computed by the algorithm in Section 7 pass through an arbitrarily chosen common point. Hence
their sizes are usually not small. Of course, one can use the algorithm of Lazarus and Verdière [ECdVL05]
to compute a set of shortest loops with the same homotopy type of the loops computed by the algorithm in
Section 7. However, the restriction that they have to pass through a single base point make them usually
long. In our implementation, we compute eachJi at different places corresponding to the skeleton edges
with small geodesic size. As a result these loops tend to be small. To computeJi , we considerEi . Let e be
the skeleton edge inEi having the smallest geodesic size. The edgee is a Voronoi edge. Letp be one of the
vertices of the dual Delaunay triangle ofe. Use the method proposed by Erickson and Whittlesey [EW05]
to compute a system of loops throughp and follow the algorithm stated in Section 7 to obtainJi . Hence for
eachi, 1≤ i ≤ 2g, we compute aJi with lk(Ji ,K j) = δi j . By Theorem 4, we have computed a set ofg handle
loops andg tunnel loops.

Erickson and Whittlesey present two methods to obtain a system of loops through a fixed point. One of
these methods computes these 2g loops one by one in the following way. It runs the Dijkstra’s shortest-path
algorithm with starting pointp. Whenever the wave front of equi-distant vertices touches itself as it sweeps
across the surface, a loop is formed by the two paths fromp to the touching point. The algorithm checks
whether this loop is contractible. If not, it continues to propagate the wave front until a non contractible
loop is found. This loop, denotedℓ1, is actually the shortest non contractible loop throughp. The surface
is cut alongℓ1 and then the algorithm computes another non contractible loop, denotedℓ2, from one copy
of p to the other onM \ ℓ1. This process of finding and cutting is repeated to find 2g loops, which form a
system of loops throughp. In our implementation, we computelk(ℓ j ,Ki) for 1≤ i ≤ 2g immediately after
we obtainℓ j . In most practical cases, someℓ j itself satisfies the condition to beJi , namelylk(ℓ j ,Ki) = ±1
andlk(ℓ j ,Km) = 0 with m 6= i. In such case, we do not need to continue to compute the remainingℓ j ’s.

The way we choose the starting pointp makes sure that the computedℓ j ’s are of small size. Figure 7
shows the tunnel loops and the handle loops together withÎ andÔ computed by the above implementation.
Notice that the models shown in the second row are both double torus. Notice how the difference in their
embedding makes a difference in the detected tunnel loops. As one can observe, both tunnel loops for
DoubleTorus 2 manage to link only with one loop from̂O.

Figure 8 and Figure 10 show only the tunnel and the handle loops for some more complicated models.
As we can see, the reconstructed Buddha model contains three extra smallholes.

9 Application

In this section we apply handle and tunnel loops to compute actual handle or tunnel features for shapes
which can further be used for removing insignificant topologies.

Feature detection. The basic idea is to sweep the handle or tunnel loops over the surface appropriately. To
compute a tunnel feature, we start with a tunnel loop. We run Dijkstra’s shortest path algorithm for multiple
sources where the starting points are the vertices on the tunnel loop. At any generic step Dijkstra’s algorithm
maintains a wave front of shortest distant on each side of the tunnel loop.We keep propagating these two
wave fronts until one of the following conditions does not hold.

• The wave front links the core graph exactly the same way as the initial tunnelloop does, i.e., ifℓ and
t denote the wave front and the tunnel respectively, thenlk(ℓ,Ki) = lk(t,Ki) for eachKi .

• The ratio between the length of the wave front and that of the initial tunnel loop does not exceed a
given threshold.
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Cad gadget Vase

DoubleTorus 1 DoubleTorus 2

Figure 7: The handle loops (green) and the tunnel loops (red) togetherwith Î andÔ. Those edges in̂O
connected to the infinite point are routed to a point outside the bounding boxes of the objects.

Casting (g=9) Hub (g=33)

Figure 8: The handle loops (green) and the tunnel loops (red).

We take the region swept by these two fronts as the tunnel feature corresponding to the initial tunnel loop.
Similarly one can compute a handle feature by starting from a handle loop. Figure 9 shows the resulting
tunnel and handle features. The ratio threshold is set to be 1.2 for all the examples.

Topology simplification. We observe that our method can be extended further to remove (insignificant)
topologies from a shape [BK05, ESV97, GW01, WHDS04, ZJH07]. We first identify handle or tunnel
features that need to be removed. For example, one may consider the lengths of the handle and tunnel loops
to determine which features to be removed. We assume that the surface is a Delaunay subcomplex made
out of Delaunay triangles. Many algorithms in surface reconstruction andmesh generation produce such
surfaces. Even non Delaunay surfaces can be converted to a Delaunay one by resampling and remeshing
techniques. The Delaunay tetrahendra inside the shape represents its volume. To fill a small tunnel, we add
those tetrahendra back to the volume that have all four vertices on the corresponding tunnel feature. Figure
9 and Figure 10 show that holes get filled by this method for Casting, Fusee and Buddha. Similarly we
can cut a handle by deleting those tetrahendra with all four vertices on thathandle feature from the volume
representation. Figure 9 shows such a removal of handles from Vase.
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Casting Fusee Vase

Figure 9: Top row: the tunnel features for Casting and Fusee and the handle features for Vase. Bottom row:
small tunnels are filled for Casting and Fusee ; both handles in Vase are removed.

10 Conclusions and future work

In this work we define and prove the existence of loops on surfaces which represent handles and tunnels for
the shape bordered by the surface. We characterize these loops on graph retractable surfaces using linking
with core graphs. These characterizations lead to algorithms for detecting and generating handle and tunnel
loops.

Several open questions arise as a result of this research. Our implementation does not guarantee that the
computed tunnel or handle loops are the shortest in length. Computing a set of shortest handle and tunnel
loops among all possible such loops remains an open challenge. Another natural question is to compute
handle and tunnel loops on non graph retractable surfaces. Our definition of handle and tunnel loops depend
on the fact that the surface has no boundary. Is it possible to extend theideas of this paper to surfaces with
boundaries?
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