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Abstract

NFS has become the dominant standard for file sharing in distributed and data-center environments. Traditionally, NFS

has used TCP or UDP as the underlying transport. However, the overhead of these stacks has limited both the performance

and scalability of NFS. Recently, high-performance network such as InfiniBand have been deployed. These networks provide

low latency of a few microseconds and high bandwidth for large messages up to 20 Gbps. Because of the unique characteris-

tics of NFS protocols, previous designs of NFS with RDMA were unable to exploit the improved bandwidth of networks such

as InfiniBand. Also, they leave the server open to attacks from malicious clients. In this paper, we discuss the design prin-

ciples for implementing NFS/RDMA protocols. We propose, implement and evaluate an alternate design for NFS/RDMA on

InfiniBand, which can significantly improve the security of the server, compared to the previous design. In addition, we eval-

uate the performance bottlenecks of using RDMA operations in NFS protocols. We explore alternative strategies and designs

that can potentially eliminate these bottlenecks. With the best of these strategies and designs, we demonstrate throughput of

700 MB/s on the OpenSolaris NFS/RDMA design and 900 MB/s on the Linux design. Application level evaluation shows an

improvement in performance of up to 50%. We also evaluate the scalability of the RDMA transport in a multi-client setting,

with a RAID array of disks. This evaluation shows that the Linux NFS/RDMA design can provide an aggregate throughput of

900 MB/s to 7 clients, while NFS on a TCP transport saturates at 360 MB/s. We also demonstrate that NFS over an RDMA

transport is constrained by the performance of the back-end file system, while a TCP transport itself becomes a bottleneck

in a multi-client environment. Our design has been integrated into the OpenSolaris kernel and will become available in a

subsequent release of the kernel.
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and #DE-FC02-06ER25749, National Science Foundation grants #CNS-0403342, #CNS-0509452 and #CCF-0702675; grants from Mellanox; and equip-

ment donations from Intel, Mellanox, and SUN Microsystems.
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1. Introduction

The Network File System (NFS) [3] protocol has become the de facto standard for sharing files among users in a distributed

environment. Many sites currently have terabytes of storage data on their I/O servers. I/O servers with petabytes of data have

also debuted. Fast and scalable access to this data is critical. The ability of clients to cache this data for fast and efficient

access is limited, partly because of the demands on main memory on the client, which is usually allocated by memory hungry

application such as in-memory database servers. Also, for medium and large scale clusters and environments, the overhead

of keeping client caches coherent quickly becomes prohibitively expensive. Under these conditions, it becomes important to

provide efficient low-overhead access to data from the NFS servers.

NFS performance has traditionally been constrained by several factors. First, it is based on the single server, multiple

client model. With many clients accessing files from the NFS server, the server may quickly become a bottleneck. Servers

with 64-bit processors commonly have a large amount of main memory, typically 64GB or more. File systems like XFS can

take advantage of the main memory on these servers to aggressively cache and prefetch data from the disk for certain data

access patterns [20]. This mitigates the disk I/O bottleneck to some extent. Second, limitations in the Virtual file system

(VFS) interface, force data copying from the file system to the NFS server. This increases CPU utilization on the server.

Third, traditionally used communication protocols such as TCP and UDP require additional copies in the stack. This further

increases CPU utilization and reduces the operation processing capability of the server. With an increasing number of clients,

protocols like TCP also suffer from problems like incast [6], which forces timeouts in the communication stack, and reduces

overall throughput and response time. Finally, an order of magnitude difference in bandwidth between commonly used

networks like Gigabit Ethernet (125 MB/s) and the typical memory bandwidth of modern servers (2 GB/s or higher) can also

be observed. pNFS design [9] exploits the aggregate bandwidth of multiple data servers, but does not address the problem of

TCP overhead and incast. This limits the stripping width, resulting in more complicated designs to alleviate this problem [6].

Modern high-performance networks such as InfiniBand provide low-latency and high-bandwidth communication. For

example, the current generation Single Data Rate (SDR) NIC from Mellanox has a 4 byte message latency of less than 3µs

and a bi-directional bandwidth of up to 2 GB/s for large messages. Applications can also deploy mechanisms like Remote

Direct Memory Access (RDMA) for low-overhead communication. RDMA operations allow two appropriately authorized

peers to read and write data directly from each others address space. RDMA requires minimal CPU involvement on the

local end, and no CPU involvement on the remote end. Since RDMA can directly move data from the application buffers on

one peer into the applications buffers on another peer, it allows designers to consider zero-copy communication protocols.

Designing the stack with RDMA may eliminate the copy overhead inherent in the TCP and UDP stacks. Additionally, the

load on the CPU can be dramatically reduced. This benefits both the server and the client. Since the utilization on the server

is reduced, the server may potentially process requests at a higher rate. On the client, additional CPU cycles may be allocated

to the application. Finally, an RDMA transport can better exploit the latency and bandwidth of a high-performance network.

An initial design of NFS/RDMA [5] for the OpenSolaris operating system was designed by Callaghan, et.al.. This design
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allowed the client to read data from the server through RDMA Read. An important design consideration for any new transport

is that it should be as secure as a transport based on TCP or UDP. Since RDMA requires buffers to be exposed, it is critical that

only trusted entities be allowed to access these buffers. In most NFS deployments, the server may be considered trustworthy;

the clients cannot be trusted. So, exposing server buffers makes the server vulnerable to snooping and malicious activity

by the client. Callaghan’s design exposed server buffers and therefore suffered from a security vulnerability. Also, inherent

limitations in the design of RDMA Read reduce the number of RDMA Read operations that may be issued by a local peer

to a remote peer. This throttles the number of NFS operations that may be serviced concurrently, limiting performance.

Finally, Callaghan’s design did not address the issue of multiple buffer copies. Our experiments with the original design of

NFS/RDMA reveal that on two Opteron 2.2 GHz systems with x8 PCI-Express Single Data Rate (SDR) InfiniBand adapters

capable of a unidirectional bandwidth of 900 MegaBytes/s (MB/s), the IOzone [18] multi-threaded Read bandwidth saturates

at just under 375 MB/s.

In this paper, we take on the challenge of designing a high performance NFS over RDMA for OpenSolaris. We discuss

the design principles for designing NFS protocols with RDMA. To this end we take an in-depth look at the security and

buffer management vulnerabilities in the original design of NFS over RDMA on OpenSolaris. We also demonstrate the

performance limitations of this RDMA Read based design. We propose and evaluate an alternate design based on RDMA

Read and RDMA Write. This design eliminates the security risk to the server. We also look at the impact of the new design

on buffer management.

We try to evaluate the bottlenecks that arise while using RDMA as the underlying transport. While RDMA operations may

offer many benefits, they also have several constraints that may essentially limit their performance. These constraints include

the requirement that all buffers meant for communication must be pinned and registered with the HCA. Given that NFS

operations are short lived, bursty and unpredictable, buffers may have to be registered and deregistered on the fly to conserve

system resources and maintain appropriate security restrictions in place on the system. We explore alternative designs that

may potentially reduce registration costs. Specifically, our experiments show that with appropriate registration strategies, an

RDMA Write based design can achieve a peak IOzone Read throughput of over 700 MB/s on OpenSolaris and a peak Read

bandwidth of close to 900 MB/s for Linux. Evaluation with an Online Transaction Processing (OLTP) workload show that

the higher throughput of our proposed design can improve performance up to 50%. We also evaluate the scalability of the

RDMA transport in a multi-client setting, with a RAID array of disks. This evaluation shows that the Linux NFS/RDMA

design can provide an aggregate throughput of 900 MB/s to 7 clients, while NFS on a TCP transport saturates at 360 MB/s.

We also demonstrate that NFS over an RDMA transport is constrained by the performance of the back-end file system, while

a TCP transport itself becomes a bottleneck in a multi-client environment.

In this paper we make the following contributions:

• A comprehensive discussion of the design considerations for implementing NFS/RDMA protocols.

• A high performance implementation of NFS/RDMA for OpenSolaris, and a discussion of its relationship to a similar

implementation for Linux.
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• An in-depth performance evaluation of both designs.

• Design considerations for the relative limitations and potential solutions to the problem of registration overhead.

• Application evaluation of the NFS/RDMA protocols, and the impact of registration schemes such as Fast Memory

Registration and All Physical Registration, and a buffer registration cache design on performance.

• Impact of RDMA on the scalability of NFS protocols with multiple clients and real disks supporting the back-end file

system.

The rest of the paper is presented as follows. Section 2 provides an overview of the InfiniBand Communication model.

Section 3 explores the existing NFS over RDMA architecture on OpenSolaris and the Linux. In Section 4, we propose

our alternate design based on RDMA Read and RDMA Write and compare it to the original design based on RDMA Read

only. Section 5 presents the performance evaluation of the design. We discuss related work in Section 6. Finally, Section 7

concludes the paper and looks at future work.

2 Overview of the InfiniBand Communication Model

InfiniBand uses the Reliable Connection (RC) model. In this model, each initiating node needs to be connected to every

other node it wants to communicate with through a peer-to-peer connection called a queue-pair (send and receive work

queues). The queue pairs are associated with a completion queue (CQ). The connections between different nodes need to be

established before communication can be initiated. Communication operations or Work Queue Requests (WQE) operations

are posted to a work queue. The completion of these communication operations is signaled by completion events on the

completion queue. InfiniBand supports different types of communication primitives. These primitives are discussed next.

2.1 Communication Primitives

InfiniBand supports two-sided communication operations, that require active involvement from both the sender and

receiver. These two-sided operations are known as Channel Semantics. One-sided communication primitives, called Memory

Semantics, do not require involvement by the receiver. Channel and Memory semantics are discussed next.

Channel Semantics: Channel semantics or Send/Receive operations are traditionally used for communication. A receive

descriptor or RDMA Receive (RV) that points to a pre-registered fixed length buffer, is usually posted on the receiver side

to the receive queue before the RDMA Send (RS) can be initiated on the senders side. The receive descriptors are usually

matched with the corresponding send in the order of the descriptor posting. On the sender side, receiving a completion

notification for the send indicates that the buffer used for sending may be reused. On the receiver side, getting a receive

completion indicates that the data has arrived and is available for use. In addition, the receive buffer may be reused for

another operation.

Memory Semantics: Memory semantics or Remote Direct Memory Access (RDMA) are one-sided operations initiated

by one of the peers connected by a queue pair. The peer that initiates the RDMA operation (active peer) requires both an
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address (either virtual or physical), as well as a steering tag to the memory region on the remote peer (passive peer). The

steering tag is obtained through memory registration [10]. To prepare a region for a memory operation, the passive peer may

need to do memory registration. Also a message exchange may be needed between the active and passive peers to obtain the

message buffer addresses and steering tags. RDMA operations are of two types, RDMA Write (RW) and RDMA Read (RR).

RDMA Read obtains the data from the memory area of the passive peer and deposits it in the memory area of the active peer.

RDMA Write operations on the other hand move data from the memory area of the active peer to corresponding locations on

the passive peer.

A comparison of the different communication primitives in terms of Security (Receive Buffer Exposed), Involvement of

the receiver (Receive Buffer Pre-Posted), Buffer protection (Steering Tag) and finally, Peer Message Exchanges for Receive

Buffer Address and Steering Tag (Rendezvous) is shown in Table 1.

Table 1. Communication Primitive Properties
Channel Semantics Memory Semantics

Receive Buffer Exposed X

Receive Buffer Pre-Posted X

Steering Tag X

Rendezvous X

3. Overview of NFS/RDMA Architecture

NFS is based on the single server, multiple client model. Communication between the NFS client and the server is via

the Open Network Computing (ONC) remote procedure call (RPC) [3]. RPC is an extension to the local procedure calling

semantics, and allows programs to make calls to nodes on remote nodes as if it were a local procedure call. Callaghan

et.al. designed an initial implementation of RPC over RDMA [4] for NFS. This existing architecture is shown in Figure 1.

The Linux NFS/RDMA implementation has a similar architecture. The architecture was designed to allow transparency for

applications accessing files through the Virtual File System (VFS) layer on the client. Accesses to the file system go through

VFS, and are routed to NFS. For an RDMA mount, NFS will make the RPC call to the server via RPC over RDMA. The

RPC Call generally being small will go as an inline request. Inline requests are discussed in the next section. In the rest of

the paper, we use the terms RPC/RMDA and NFS/RDMA interchangeably.

3.1. Inline Protocol for RPC Call and RPC Reply

The RPC Call and Reply are usually small and within a threshold, typically less than one 1KB. In the RPC/RDMA

protocol the call and reply may be transferred inline via a copy based protocol similar to that used in MPI stacks such as

MVAPICH [1, 13]. The copy based protocol uses the channel semantics of InfiniBand described in Section 2.1. During

startup (at mount time), after the InfiniBand connection is established, the client and server each will establish a pool of send

and receive buffers. The server posts receive buffers from the pool on the connection. The client can send requests to the

server up to the maximum pool size using RDMA Send operations. This exercises a natural upper limit on the number of
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Figure 1. Architecture of the NFS/RDMA stack in OpenSolaris

requests that the client may send to the server. The upper limit can be adjusted dynamically; this may result in better resource

utilization. The OpenSolaris server sets this limit at 128 per client; the Linux server sets it at 32 per client. At the time of

making the RPC Call, the client will prepend an RPC/RDMA header (Figure 2) to the NFS Request passed down to it from

the NFS layer as shown in Figure 1. It will post a receive descriptor from the receive pool for the RPC Call, then issue the

RPC Call to the server through an RDMA Send operation. This will invoke an interrupt handler on the OpenSolaris server

that will copy out the request from the receive buffer and repost it to the connection. (The Linux server does not do the copy,

and reposts the receive descriptor at a somewhat later time.) The request will then be placed in the servers task queue. A

Read Write or Reply
XID Version  Credits

Message 
Type

Transaction ID

Flow Control Field

0: An RPC call or Reply (RDMA_MSG)
1: An RPC call or Reply with no body (RDMA_NOMSG)
2: An RPC call or Reply with padding (RDMA_MSGP)
3: Client signals reply completion (RDMA_DONE)

Chunk List
RPC Call or
Reply Msg

RPC/RDMA Version   

Figure 2. RPC/RDMA header

transport context thread will eventually pick up the request that will then be decoded by the RPC/RDMA layer on the server.

Bulk data transfer chunks will be decoded and stored at this point. The request will then be issued to the NFS layer. The NFS
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layer will then issue the request to the file system. On the return path from the file system, the request will pass through the

NFS layer. The NFS layer will encode the results and make the RPC Reply back to the client. The interrupt handler at the

client will wake up the thread parked on the request and control will eventually return to the application.

3.2. RDMA Protocol for bulk data transfer

NFS procedures such as READ, WRITE, READLINK and READDIR can transfer data whose length is larger than the

inline threshold [3]. Also, the RPC call itself can be larger than the inline data threshold. The bulk data can be transferred in

multiple ways. The existing approach is to use RDMA Read only and is referred to as the Read-Read design. Our approach

is to use a combination of RDMA Read and RDMA Write operations and is called the Read-Write design. We describe both

these approaches in detail. Before we do that, we define some essential terminologies.

Chunk Lists: These lists provide encoding for bulk data whose length is larger than the inline threshold and should be

moved via RDMA. A chunk list consists of a single counted array of segments of one or more lists. Each of these lists is in

turn a counted array of zero or more segments. Each segment encodes a steering tag for a registered buffer, its length and its

offset in the main buffer. Chunks can be of different types; Read chunks, Write chunks and Reply chunks.

• Read chunks used in the Read-Read and Read-Write design encode data that may be RDMA Read from the remote

peer.

• Write chunks used in the Read-Write design are used to RDMA Write data to the remote peer.

• Reply chunks used in the Read-Write design are used for procedures such as READDIR and READLINK, and are used

to RDMA Write the entire NFS response.

The RPC Long Call is typically used when the RPC request itself is larger than the inline threshold. The RPC Long Reply

is used in situations where the RPC Reply is larger than the inline size. Other bulk data transfer operations include READ

and WRITE. All these procedures are discussed in the next section.
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4. Proposed Read-Write Design and Comparison to the Read-Read Design

In this section, we discuss our proposed Read-Write design, which is based on a combination of RDMA Read and

RDMA Write. We also compare with the original Read-Read based design, which is based on RDMA Read. We discuss the

limitations of the Read-Read based design. Following that, we also discuss the advantages of the Read-Write design. We

look at registration strategies and designs in Section 4.3. The Read-Read based design is show in Figure 3. The Read-Write

design is shown in Figure 4.

RPC Long Call: The RPC Long Call is typically used when the RPC request itself is larger than the inline threshold. In

this case, the client encodes a chunk list along with a RDMA NOMSG flag in the header shown in Figure 2. It is always

combined with other NFS operations. The RPC Long Call is identical in both the Read-Read and Read-Write based designs.

If the RPC Call message is larger than the inline size, the RPC Call from the client includes a Read Chunk List. The message

type in the header in Figure 2 is set to RDMA NOMSG. When the server sees an RDMA NOMSG message type, it decodes

the read chunks encoded in the RPC/RDMA header and issues RDMA Reads to fetch these chunks from the client. The data

from these chunks constitutes the remainder of the header (the fields Read, Write or Reply Chunk List onwards in Figure 2,

which are overwritten by the incoming data). The remainder of the header usually constitutes other NFS procedures as

discussed in Section 3.2 is then decoded.

NFS Procedure WRITE: The NFS Procedure WRITE is similar in both the Read-Read and Read-Write based designs.

For an NFS procedure WRITE, the client encodes a Read chunk list. On the server side, these read chunks are decoded, the

RDMA Reads corresponding to each segment are issued and the server thread blocks till the RDMA Reads complete. The

operation is then handled by the NFS layer. Once the operation completes, control is returned to the RPC layer, that sends an

RPC Reply via the inline protocol described in Section 3.1. In the simplest case, an NFS Procedure WRITE would generate

an RPC Call (RS) from the client to the server, followed by the WRITE (RR) issued by the server to fetch the data from the

client, and finally, the RPC Reply (RS) from the server to the client.

NFS Procedure READ: In the Read-Read design the NFS server needs to encode a Read chunk list in the RPC Reply

for an NFS READ Procedure. The RPC Reply is then returned to the client via the inline protocol in Section 3.1. The

client decodes the Read chunk lists and issues the RDMA Reads. Once the RDMA Reads complete, the client issues an

RDMA DONE to the server, that allows it to free its pre-registered buffers. So, the simplest possible sequence of operations

for an NFS Procedure READ is; RPC Call (RS) from the client to the server, followed by an RPC Reply (RS) from the server

to the client, then a READ (RR) issued by the client to fetch the data from the server, and finally, an RDMA DONE (RS)

from the client to the server.

In the Read-Write design, for a NFS READ procedure, the client needs to encode a Write chunk list in the RPC Call. The

server decodes and stores the Write chunk list. When the NFS procedure READ returns, the data is RDMA written back to

the client. The server then sends the RPC Reply back to the client with an encoded Write Chunk List. The client uses this

Write chunk list to determine how much data was returned in the READ call. So, the simplest possible protocol operations
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would be; RPC Call from the client to the server, then a Read (RW) from the server to the client, and finally, an RPC Reply

(RS) from the server to the client.

NFS Procedure READDIR and READLINK (RPC Long Reply): The RPC Long Reply is typically used when the

RPC Reply is larger than the inline size. The RPC Long Reply is used in both the Read-Read and Read-Write designs but the

mechanisms are different. It may either be used independently, or combined with other NFS operations.

The design of the NFS procedure READDIR/READLINK in the Read-Read design is similar to the NFS Procedure READ

in the Read-Read design. The server encodes a Read chunk list in the RPC Reply, that the client decodes. The client then

issues RDMA Read to fetch the data from the server. Once the RDMA Reads complete, the client issues an RDMA DONE

to the server which allows the server to free its pre-registered buffers.

NFS Procedure READDIR and READLINK in the Read-Write design follows the design of the NFS READ procedure in

the Read-Write design. The client needs to encode a Long Reply chunk list in the RPC Call. The server decodes and stores

the Long Reply chunk list. When the NFS procedure returns, the server uses the long reply chunk to RDMA Write the data

back to the client. The server then sends the RPC Reply back to the client with an encoded Long Reply Chunk List. The

client uses this chunk list to determine how much data was returned in the READDIR/READLINK call. In the simplest case,

an RPC Long Reply would entail the following sequence; RPC Call from the client to the server, then a Long Reply (RW)

from the server to the client, and finally, an RPC Reply (RS) from the server to the client.

Zero Copy Path for Direct I/O for the NFS READ procedure: In addition to the basic design, we also introduce a zero

copy mechanism for user space addresses on the NFS READ procedure path. This eliminates copies on the client side and

translates into reduced CPU utilization on the client.

4.1. Limitations in the Read-Read Design

The Read-Read design has a number of limitations in terms of Security and Performance, and we discuss these issues in

detail.

Security:

Server buffers exposed: An important design consideration for an RDMA enabled RPC transport is that it must not be less

secure than other transports such as TCP. In the Read-Read design, the server side buffers are exposed for RDMA operations

from the client. Since the steering tags are 32-bits [10] in length, a misbehaving or malicious client might attempt to guess

them and thereby possibly read a buffer for which it did not have access to.

Malicious or Malfunctioning clients: The client needs to send an RDMA DONE message to the server to indicate that the

buffers used for a Read or Reply chunk may be freed up. A malicious of malfunctioning client may never send the RDMA

Done message, essentially tying up the server resources.

Performance:
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Synchronous RDMA Read Limitations: The RDMA Read issued from the NFS/RDMA server are synchronous operation.

Once posted, the server typically has to wait for the RDMA Read operation to complete. This is because the InfiniBand

specification does not guarantee ordering between a RDMA Read and a RDMA Send on the same connection [10]. This may

add considerable latency to the server thread.

Outstanding RDMA Reads: The number of RDMA Read that can be typically serviced on a connection is governed by

two parameters, the Inbound RDMA Read Queue Depth (IRD) and the Outbound RDMA Read Queue Depth (ORD) [10].

The IRD governs the number of RDMA Read that can be active at the remote peer; the ORD governs the number of RDMA

Read that might be actively issued concurrently from the local peer. In the current Mellanox implementation of InfiniBand,

the maximum allowed value for IRD and ORD is typically 8 [15]. So, parallelism is reduced at the server, especially for

multi-threaded workloads.

4.2. Potential Advantages of the Read-Write Design

The key design difference between the Read-Read (Figure 3) and Read-Write (Figure 4) protocol is that RPC long replies

and NFS READ data may be directly issued from the server. To enable these, the client needs to encode either a Write chunk

list or a long reply chunk list (Section 3.2). Moving from a Read-Read based design to a Read-Write based design has several

advantages. The Mellanox InfiniBand HCA has the ability to issue many RDMA Write operations in parallel [15]. This

reduces the bottleneck for multi-threaded workloads. Also, since completion ordering between RDMA Write and RDMA

Sends is guaranteed in InfiniBand [10], the server does not have to wait for the RDMA Writes from the long reply or the

NFS READ operation to complete. The completion generated by the RDMA Send for the RPC Reply will guarantee that

the earlier RDMA Writes have completed. This optimization also helps reduce the number of interrupts generated on the

server. The RDMA DONE message and its resulting interrupt is also eliminated. The generation of the send completion

interrupt on the server is sufficient to guarantee that the RDMA operations from the buffers have completed and they may

be deregistered. A similar guarantee also exists at the client, when an RPC Call message is received. The elimination of an

additional message helps improve performance. Since the server buffers are no longer exposed and the client cannot initiate

any RDMA operations to the server, the security of the server is now enhanced. One potential disadvantage of the Read-Write

design is that the client buffers are now exposed and may be corrupted by the server. Since the server is usually a trusted

entity in an NFS deployment, this issue is less of a concern. The final advantage of the Read-Write design is that the server

no longer has to depend on the RDMA DONE message from the client to deregister and release it buffers.

4.3. Proposed Registration Strategies For the Read-Write Protocol

InfiniBand requires memory areas to be registered for communication operations [10, 16]. Registration is a multi-stage

operation. Registration involves assigning physical pages to the virtual area. Once physical pages have been assigned to

the virtual area, the virtual to physical address translation needs to be determined. In addition, the physical pages need to be
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prepared for DMA operations initiated by the HCA. This involves making the pages unswappable by the operating system, by

pinning them. The virtual memory system may perform both these operations. In addition, the HCA needs to be made aware

of the translation of the virtual to physical addresses. The HCA also needs to assign a steering tag that may be sent to remote

peers for accessing the memory region in RDMA operations. The virtual to physical translation and the steering tag are stored

in the HCA’s Translation Protection Table (TPT). This involves one transaction across the I/O bus. However, the response

time of the HCA may be quite high, depending on the load on the HCA, the organization of the TPT, allocation strategies,

overhead in the TPT, and so on [16]. Because of the combination of these factors, registration is an expensive operation and

may constitute a considerable overhead, especially when it is in the critical path. Deregistering a buffer requires the actions

from registration to be done in reverse. The virtual and physical translations and steering tags need to be flushed from the

TPT (this involves a transaction across the I/O bus). Once the TPT entries are invalidated, each of them is released. The

pages may then be unpinned. If the physical pages were assigned to the virtual memory region at the time of registration, this

mapping is torn down and the physical pages are released back into the memory pool.

Figure 6 shows the half ping-pong latency at the InfiniBand Transport Layer (IBTL) on OpenSolaris of a message with

and without registration costs included (the setup is the same as described in Section 1). Half ping-pong latency is measured

by using two nodes. Node 1 sends a message (ping) of the appropriate size to node 2. Node 2 then responds with a message

of the same size (pong). The latency of the entire operation over 1000 iterations is measured, averaged out and then divided

by 2. The latency without registration is measured by registering a buffer of the appropriate size on both sides before starting

the communication loop (that is timed). The latency with registration is measured by registering and unregistering the buffer

on both nodes inside the communication loop.
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Figure 6. Latency and Registration costs in InfiniBand on OpenSolaris

The registration/deregistration points in the RDMA transport are shown in Figure 5. For example, an NFS procedure

READ in the Read-Write protocol described earlier, requires a buffer registration at points 2 and 5, and a deregistration at

points 8 and 10. From Figure 5, we can see that the registration overhead comes about mainly because the transport has to

register the buffer and deregister the buffer on every operation at the client and server. The registration occurs once at the

client, and then at the server in the RPC call path. Following that, deregistration happens once at the server, and then once at

the client. To reduce the cost of memory registration, different optimizations and registration modes have been introduced.
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These include Fast Memory Registration [16, 10] and Physical Registration [10]. In addition, we propose a buffer registration

cache. We discuss these next.

Fast Memory Registration (FMR): Fast Memory Registration [16, 10] allows for the allocation of the TPT entries and

steering tags at initialization, instead of at registration time. The other operations of memory pinning, virtual to physical

memory address translations and updating the HCA’s TPT entries remain the same. The allocated entries in the TPT cache

are then mapped to a virtual memory area. This technique is therefore not dependent on the response time of the HCA

to allocate and update the TPT entries and consequently, may be considerably faster than a regular registration call. The

limitations of FMR include the fact that it is restricted to privileged consumers (kernel), and the fact that the maximum

registration area is fixed at initialization.

The Mellanox implementation of FMR [16] introduces additional optimizations to the InfiniBand specification [10]. Sim-

ilar to the specification [10], it defines a pool of steering tags that may be associated with a virtual memory area at the time

of registration. The difference arises at deregistration. The steering tag and virtual memory address is placed on a queue.

When the number of entries in the queue crosses a certain threshold called the dirty watermark, the invalidations for the

entries are flushed to the HCA. This invalidates the TPT entries for the particular set of steering tags and virtual addresses

in the queue. While this optimization can potentially improve performance, this introduces a security restriction. While the

entries in the queue have not been flushed, there is a window of vulnerability after the deregistration call is made. During this

window, a remote peer with the steering tag can access the virtual memory area. We have incorporated FMR calls (Mellanox

FMR [16]) in the regular registration path in RPC/RDMA. To allow FMR to work transparently, we use a fall-back path to

regular registration calls in case the memory region to be registered is too large.

Design of the Buffer Registration Cache: An alternate registration strategy is to create a buffer registration cache. A

registration cache [21] has been shown to considerably improve communication performance. Most registration caches have

been implemented at the user level and cache virtual addresses. Caching virtual addresses has been shown to cause incorrect

behavior in some cases [17]. Also, unless static limits are placed on the number of entries in the registration cache, the cache

tends to expand endlessly, particularly in the face of applications with poor buffer reuse patterns. Finally, static limits may

perform poorly depending on the dynamics of the application.

To alleviate some of these deficiencies, we have designed an alternate buffer registration cache on the server. As discussed

earlier in Section 3, the NFS server state machine is split into two parts. The first part is on the RPC Call receive path where

the NFS call is received and is issued to the file system. The second component is on return of control from the file system.

Buffer allocation is done when the request is received on the server side and registration is executed when control returns

from the file system. To model this behavior, we override the buffer allocation and registration calls and feed them to the

registration cache module. This module allocates buffers of the appropriate size from a slab cache [11], for the request and

then registers them when the registration request is made. If the buffer from the cache is already registered, no registration

cost is encountered. The advantages of this setup are that the cache is no longer based on virtual address, and it is also linked
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to the systems slab cache, that may reclaim memory as needed. Since the server never sends a virtual address or steering tag

to the client for any buffers in the registration cache, this is as secure as regular registration.

The server registration cache scheme described above can also be applied to the client side. However, in order to use the

system slab cache, data needs to be copied from the application buffer to an intermediate NFS buffer. Therefore, compared

with the zero-copy path mentioned in Section 4, there is an extra data movement involved in the registration cache scheme,

and we need to carefully study the trade-off between data copy and memory registration. Since a malfunctioning server may

compromise the integrity of the clients buffers, this approach should be used in which the server buffers are well tested.

All Physical Memory Registration: In addition to virtual addresses, communication in InfiniBand may also take place

through physical addresses. Physical Registration takes two different forms, i.e. mapping all of physical memory and

the Global Steering Tag optimization. Mapping all of physical memory involves updating the HCA’s TPT entries to map

all physical pages in the system with steering tags. This operation places a considerable burden on the HCA in modern

systems which may have GigaBytes of main memory and is usually not supported. The Global Steering Tag available to

privileged consumers (such as kernel processes) allows communication operations to use a special remote steering tag. The

communication operation must use a physical addresses. The consumer must pin the memory before communication starts

and obtain a virtual to physical mapping, but does not need to register the mapping with the HCA.

Physical Registration can considerably reduce the impact of memory registration on communication, but is restricted

to privileged consumers. The issue of security also needs to be considered. The Global Steering Tag potentially allows

unfettered access to remote peers, that may have obtained the Remote Steering Tag through earlier communication with the

peer. It should be used in environments where a level of trust exists between the peers. In addition, the issue of integrity

should be considered. The HCA is unable to do checks on incoming requests with physical addresses and an associated

remote steering tag. Given that the peers can corrupt each others memory areas through a communication operation with

an invalid physical address, the Global Steering Tag should be used in environments where sufficient confidence exists

in the correctness of the communication sub-system. In the Linux implementation, we allocate a Global Steering Tag at

initialization. By using the Global Steering Tag, we only need to do virtual to physical address translation when actually

registering memory.

5. Experimental Evaluation

In this section, we evaluate our proposed RDMA design with NFSv3. We first compare the Read-Write design with

the existing Read-Read design on OpenSolaris in Section 5.1 (Linux did not have a Read-Read design). Following that,

Section 5.2 discusses the impact of different registration strategies on NFS/RDMA performance, both at the microbenchmark

and at the application-level. Finally, in Section 5.3 we discuss how RDMA affects the scalability of NFS protocols in an

environment where the server stores the data on a back-end RAID array and services multiple clients. limitations, we do

not discuss the evaluation of NFS procedures READDIR and READLINK. Evaluation of READDIR and READLINK is
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discussed in [18].

5.1. Comparison of the Read-Read and Read-Write Design

Figures 7 and 8 show the IOzone [18] Read and Write bandwidth respectively with direct I/O on OpenSolaris. Perfor-

mance of the Read-Read design are shown as RR. Performance of Read-Write design are shown as RW. The results were

taken on dual Opteron x2100’s with 2GB memory and Single Data Rate (SDR) x8 PCI-Express InfiniBand Adapters [15].

These systems were running OpenSolaris build version 33. The back-end file system used was tmpfs which is a memory

based file system. The IOzone file size used was 128 MegaBytes to accommodate reasonable multi-threaded workloads

(IOzone creates a separate file for each thread). The IOzone record size was varied from 128KB to 1MB. From the figure,

we make the following observations. For both the Read-Read and Read-Write design, the bandwidth increases with record
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Figure 7. IOzone Read Bandwidth on Solaris
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size. The RPC/RDMA layer in OpenSolaris does not fragment individual record sizes. The size on the wire corresponds

exactly to the record size passed down from IOzone to the NFS layer. Larger messages have better bandwidth in InfiniBand.

This translates into better IOzone bandwidth for larger record sizes. Since the size of the file is constant, the number of NFS

operations is lower for larger record sizes. So, the improvement in bandwidth with larger record sizes is modest.

IOzone Write bandwidth is the same in both cases. This is to be expected as the NFS WRITE path through the RPC/RDMA

layer is the same on the client and server for both the Read-Read and Read-Write designs. The WRITE bandwidth is slightly

higher than the READ bandwidth is both designs because the server has to do additional work for READ procedures than for

WRITE procedures, affecting its operation processing rate.

The Read-Write design performs better than the Read-Read design for all record sizes, for the READ procedure. The

improvement in performance is approximately 47% with one thread at a record size of 128 KB, but decreases to about 5%

at 8 threads. This improvement is primarily due to the elimination of the RDMA DONE message as well as the improved

parallelism of issued RDMA Writes from the server. The READ bandwidth for the Read-Read design saturates at 375 MB/s;
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the Read-Write design saturates at 400 MB/s. The bandwidth in both cases seems to saturate with an increasing number of

threads, though the saturation in the case of the RDMA-Write design takes place much earlier than that of the Read-Read

design.

Client CPU utilization was measured using the IOzone [18] +u option. The utilization corresponds to the percentage of the

time the CPU is busy over the lifetime of the throughput test. Since the CPU utilization for different record sizes is the same,

we show only a single line for the Read-Read and Read-Write designs in Figures 7 and 8. Client CPU utilization is lower for

Read-Write than for Read-Read for the NFS READ procedure. In addition, the CPU utilization for the Read-Write design

remains flat starting at only 2% at 1 thread increasing to about 5% at 8 threads. On the other hand, the CPU utilization for the

Read-Read design increases from about 4% at 1 thread to about 24% at 8 threads. This is primarily because of elimination

of data copies on the client direct I/O path. Due to the data copy from tmpfs to NFS across the VFS layer, server utilization

is close to 100%. So, we do not present server CPU utilization numbers in the graph.

5.2. Impact of Registration Strategies

From Section 4.3, we see that registration can constitute a substantial overhead in the RPC/RDMA transport. We evaluate

the impact of Fast Memory Registration (FMR) and buffer registration cache at the micro-benchmark and application-level.

We also look at the performance benefits from the All Physical Registration mode in Linux.

Fast Memory Registration (FMR): We now look at the impact of FMR discussed in Section 4.3 on RPC/RDMA perfor-

mance. The maximum size of the registered area was set to be 1MB. In addition, the FMR pool size was set to 512, which is

sufficient for up to 512 parallel requests of 1MB. We evaluate the IOzone read and write bandwidth. Since the bandwidth from

the different record sizes are similar, we present results with only a 128KB record size and a 128 MB file size. The results are

shown in Figure 9 and figure 10. FMR can help improve Read bandwidth from about 350 MB/s to approximately 400 MB/s,

though this comes at the cost of increased client CPU utilization (Figure 9 shows an upper bound to CPU utilization shown by

the legend CPU-Cache-Solaris. CPU Utilization for FMR is between that of CPU-Cache-Solaris and CPU-Register-Solaris).

This increased client CPU utilization is to be expected, since the client is able to place more operations per second on the

wire, due to the better operation response time from the server. Improvement in write bandwidth is modest, mainly because

the time saving from the reduction in registration cost is dwarfed by the serialization of RDMA Reads, due to the limitation

in the number of outstanding RDMA Reads (Section 4.1).

Buffer Registration Cache: The performance impact of the server registration cache on the IOzone Read and Write

bandwidth is shown in Figure 9 and Figure 10 respectively. The registration cache dramatically improves performance for

both the Read and Write bandwidth which goes up to 730 MB/s and 515 MB/s respectively. The client CPU utilization is

also increased, though this is to be expected with an increasing operation rate from the client. Again, the limited number of

outstanding RDMA Reads bounds the improvement in Write throughput. Figure 11 shows the impact of the client registration

cache scheme on IOzone multi-thread Read test. From the figure we can see that it is beneficial to use the client registration

cache when the record size is small. The peak Read throughput doubles for 2KB record size by using registration cache. For

15



1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800
Ba

nd
wi

dt
h 

(M
B/

s)

Threads

RW−Register−Solaris
RW−FMR−Solaris
RW−Cache−Solaris

        
0

10

20

30

40

50

60

70

80

90

100

CP
U 

Ut
iliz

at
io

n 
(%

)

Figure 9. IOzone Read Bandwidth with different
registration strategies on OpenSolaris
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large record size, the dynamic registration scheme yields higher throughput for 1-4 threads, because large memory copy is

more expensive than registration. Since there is an extra data copy involved, the client registration cache scheme consumes

more CPU cycles as expected.
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Impact of registration schemes on application performance: To evaluate the impact of memory registration schemes

on application performance, we have conducted experiments using the online transaction processing (oltp) workload from

FileBench [18]. We tune the workload to use the mean I/O size equal to 128KB. The results are shown in Figure 12. The

bars represent the throughput (operations/sec) and the lines represent the client CPU utilization (us cpu/operation). From

Figure 12 we can see that the registration cache scheme improves throughput by up to 50% compared with the dynamic

16



registration scheme. This indicates that the improvement in raw read/write bandwidth has been translated into application

performance. The CPU utilization is slightly higher because client registration cache involves an additional memory copy, as

discussed above. The FMR scheme performs comparably with the dynamic registration scheme in this benchmark.

All Physical Memory Registration: From figure 13 we can see that the all physical memory registration mode yields

the best Read throughput on Linux. It degrades the Write performance compared with the FMR mode as shown in figure 14

because in all-physical mode the client cannot do local scatter/gather and so has to build more read chunks, therefore,

each write request issues multiple RDMA Reads from the server that hits the limit of incoming/outgoing RDMA Reads in

InfiniBand.
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Figure 13. IOzone Read Bandwidth with differ-

ent registration strategies on Linux
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5.3. Multiple Clients and Real Disks

In this section, we discuss the impact of RDMA on an NFS setup with multiple clients. We start with a description of the

multi-client setup. Following that, we look at the performance with two different server configurations.

Multi-client Experimental Setup: We use the Linux NFS/RDMA design with the All Physical Memory Registration

mode described in Section 4.3 for multiple client experiments. The server and clients are dual Intel 3.6 Xeon boxes with an

InfiniBand DDR HCA. The clients have 4GB of memory. The server was configured with 4GB and 8GB of memory for each

of the experiments below. The server has eight HighPoint SCSI disks with RAID-0 stripping. The disk array is formatted

with the XFS file system [20]. For each disk, the single threaded read bandwidth with direct I/O and a record size of 4 KB

(NFS/RDMA fragments data requests into 4 KB chunks in the All Physical Memory Registration Mode) for a 1GB file is

approximately 30 MB/s. We use a single IOzone process per client. A 1GB file size per process with a 1MB record size is

used for all the experiments. We compare the aggregate Read bandwidth of the Linux NFS/RDMA (RDMA) implementation

with the regular NFS implementation over TCP on InfiniBand (IPoIB) and Gigabit Ethernet (GigE).
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Server with 4GB of main memory: Figure 15 shows the IOzone read bandwidth with multiple clients and a server with

4GB main memory. RDMA and IPoIB reach a peak aggregate bandwidth at three processes. RDMA peaks at 883 MB/s,

while IPoIB reaches 326 MB/s. In comparison, GigE saturates at 107 MB/s with a single process and then the aggregate

bandwidth goes down as the number of processes increases. The limited bandwidth of Gigabit Ethernet (peak theoretical

bandwidth of 125 MB/s) may become a bottleneck with future high performance disks and server with large amounts of

memory. Analysis with the help of the System Activity Reporter (SAR) tool show that the underlying XFS file system on the

server is able to cache the data in memory up to three processes. So, RDMA is able to achieve the best performance mainly

because of elimination of data copies at the client and server. IPoIB needs additional data copies in the TCP stack that limits

the potential number of NFS operations that may be in transit at any point in time. As the number of threads increases beyond

three, some or all the data must be fetched from the disk. This results in a significant drop in bandwidth. Since, requests

from different clients use different files, a disk seek needs to be performed for each request. So, disk seek times dominate

and contribute to the overall reduction in throughput.

Server with 8GB of main memory: Figure 16 shows the IOzone read bandwidth with 8GB on the server. Clearly, XFS

is able to take advantage of the larger memory and cache data for multiple processes. RDMA is able to maintain a peak

bandwidth of above 900 MB/s up to seven threads, while IPoIB saturates at about 360 MB/s. At eight threads, the RDMA

aggregate bandwidth drops to 624.38 MB/s, while the IPoIB bandwidth drops to 300 MB/s. From Figures 15 and 16, we can

conclude that NFS/RDMA is limited by the ability of the back-end server to service data requests. NFS/TCP is a bottleneck

on current generation systems. With servers with 64GB and larger main memories, NFS/RDMA is likely to be the obvious

choice for a scalable deployment.
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6. Related Work

The emergence of high speed networks with direct access protocols such as RDMA lead to both the design of new network

file system and the revision of traditional network file systems to enable file accesses over RDMA-capable networks. For

example, iSER was recently proposed by IETF as an extension for Internet Small Computer Systems Interface (iSCSI)

protocol [12, 19]. DAFS [7, 14] designed a user space file system library that allows applications to bypass operating system

kernel and take advantage of high performance user-level network directly. Memory registration optimizations, such as pre-

registered buffers, are used in DAFS. Goglin et. al. [8] replaced the RPC protocol of NFS with Myrinet GM protocol to

achieve Optimized Remote File System Accesses (ORFA). Callaghan et. al. [4] provided an initial implementation NFS over

RDMA on Solaris. An RDMA Read based RPC transport is implemented as a proof of concept to show the performance

benefit of NFS over RDMA compared to TCP. This work has identified the security and performance shortcomings in the

work done by Callaghan et. al. [4]. We have also proposed an alternate design based on RDMA Read and RDMA Write

which addresses several of these security shortcomings. We also proposed and designed several registration mechanisms that

greatly impact performance of the protocols. Finally, we have evaluated the scalability of NFS/RDMA with multiple clients.

7 Conclusions and Future Work

In this paper, we have designed and evaluated an NFS/RDMA protocol for high performance RDMA networks such as

InfiniBand. This design is based on a combination of RDMA Read and RDMA Write. The design principles considered

include NFS server security, performance and scalability. To improve performance of the protocol, we have incorporated

several different registration mechanisms into our design. Our evaluations show that, the NFS/RDMA design can achieve

throughput, close to that of the underlying network. We also evaluated our design with an OLTP workload. Our design can

improve throughput of the OLTP workload by 50%. Finally, we also studied the scalability of NFS/RDMA with multiple

clients. This evaluation shows that the Linux NFS/RDMA design can provide an aggregate throughput of 900 MB/s to 7

clients, while NFS on a TCP transport saturates at 360 MB/s. We observe that a TCP transport is itself a bottleneck when

servicing multiple clients. By comparison, NFS/RDMA is able to maintain throughput even with multiple clients; provided

the back-end file system is able to sustain it. As part of future work, we would like to study buffer management and credit

flow control schemes to further enhance the multi-client scalability of our NFS/RDMA design.

Software Distribution: The proposed NFS/RDMA design has been incorporated into the OpenSolaris kernel, and will be

made available in a future release of the kernel. The source code can be downloaded from [2].
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