
Data-flow and Control-flow Analysis of AspectJ Software for Program Slicing

Guoqing Xu
Ohio State University

Atanas Rountev
Ohio State University

Abstract

We propose an approach for program slicing of AspectJ
software, based on a novel data-flow and control-flow pro-
gram representation. The representation is built at the
source-code level and, unlike previous work, captures the
semantic intricacies of various pointcut designators, mul-
tiple advices per joint point, dynamic advices, exceptions,
and general flow of data to, from, and between advices. We
also present algorithms for dependence analysis, system de-
pendence graph construction, and slicing of AspectJ pro-
grams. These algorithms are built on top of the proposed
representation, and take into account the complex flow of
data and control due to aspect-oriented features. We present
an experimental study on 37 programs, using our AJANA

analysis framework which is based on the abc AspectJ com-
piler. The results show that the representation can be built
efficiently, that it is superior to an approach based on the
woven bytecode, and that slicing is both faster and more
precise. These findings strongly indicate that the proposed
general approach is a promising solution for slicing and
similar analyses of AspectJ software, in various tools for
program comprehension, change impact analysis, program
integration, software testing, and software debugging.

1 Introduction

Program slicing is a popular static analysis technique
with a wide range of applications for program compre-
hension, change impact analysis, program integration, re-
verse engineering, software testing, and software debugging
[5, 9, 6, 7, 16]. The increasing popularity of aspect-oriented
programming presents a serious challenge to analysis de-
signers: how should existing program slicing techniques be
generalized to handle aspect-oriented features?

A key component of program slicing approaches is the
program’s interprocedural control-flow graph (ICFG). In
previous work [20] we proposed an approach for building
the ICFG of an AspectJ program. This effort focused on
control-flow semantics, and did not answer a critical ques-
tion: how should the data-manipulating effects of ICFG
nodes be modeled and analyzed? In this paper we propose a

solution to this problem. As a result, it becomes possible to
perform dependence analysis, program slicing, and a range
of similar interprocedural static analyses for AspectJ.

Since the executable code of an AspectJ program (pro-
duced by an AspectJ compiler) is pure Java bytecode, an
obvious approach is to apply directly existing analyses for
Java to the bytecode. Of course, this requires an analy-
sis to build and preserve a map that associates the effects
of each entity in the bytecode back to those of its corre-
sponding entity in the source code. However, as pointed out
by our previous work [20], there is significant discrepancy
between the Java/AspectJ source code and the woven Java
bytecode. This makes it extremely hard to establish such a
map. For example, calls to proceed in around-advices can
be interpreted as calls to different methods at different join
point shadows, and can sometimes even be interpreted as
the inlining of the body of the crosscut method when that
body is sufficiently simple. Furthermore, the correspon-
dence between source-level and bytecode-level entities is
specific to the weaving compiler being used; different com-
pilers (or different version of the same compiler) can create
completely different mappings.

An alternative approach is to perform analysis on the
source code or some suitable intermediate form derived
from the source code; this is the approach taken in our work.
Analyses are complicated by the semantic complexity of the
pointcut types, by situations where multiple advices may
apply at the same join point, and by the existence of dy-
namic advices which match a join point statically, but may
or may not match it at run time. We propose a novel pro-
gram representation which makes explicit the data that is
exposed during the interactions between advices and base
code, and associates this data with the appropriate ICFG
nodes and edges. Unlike previous work, our approach han-
dles challenging situations such as multiple advices that ap-
ply at the same join point, and the existence of dynamic
advices. It precisely represents the interactions occurring
in join points that can be described by 15 types of point-
cut designators, out of a total of 17 defined in the AspectJ
language (except for cflow and cflowbelow).

We show how the proposed representation can be used
to construct the system dependence graph (SDG) of an As-

1

pectJ program. SDGs are commonly used for program slic-
ing and other techniques that require dependence informa-
tion. We present an interprocedural dependence analysis
and an interprocedural slicing algorithm. This contribution
provides the first general definition of a slicing approach for
AspectJ which takes into account the full complexity of in-
teractions due to aspect-oriented features.

The representation and the slicing algorithm have been
implemented in our AJANA (AspectJ analysis) framework,
built as an extension of the abc AspectJ compiler [2]. We
performed an experimental evaluation of the proposed tech-
niques. Our study indicates that, compared to an approach
based on the woven Java bytecode, (1) the program repre-
sentation and the SDG have significantly smaller sizes, es-
pecially for programs that contain around-advices; (2) more
precise slices can be computed using our SDG; and (3) sig-
nificant reduction in analysis running time can be achieved.

This work makes the following specific contributions:

• Program representation. We propose a data-flow and
control-flow program representation for AspectJ pro-
grams, as basis for interprocedural dependence anal-
ysis, program slicing, and similar static analyses. The
representation is built at the source-code level and cap-
tures the semantic intricacies of 15 pointcut designa-
tors, in the presence of multiple advices per joint point,
dynamic advices, exceptions, and general flow of data
to, from, and between advices.

• Dependence analysis and slicing. We present an ap-
proach for interprocedural dependence analysis, SDG
construction, and program slicing for AspectJ. The ap-
proach is built on top of the program representation,
and provides a general slicing technique which takes
into account the full complexity of data flow and con-
trol flow due to aspect-oriented features.

• Experimental evaluation. We present a study for 37
programs, using our AJANA analysis framework. The
results show that the cost of building the representa-
tion is practical, that ICFG and SDG sizes are reduced
compared to analysis of woven bytecode, and that slic-
ing is both faster and more precise. These findings
strongly indicate that the proposed general approach
is a promising solution for slicing and similar analy-
ses of AspectJ software, in various tools for program
comprehension, change impact analysis, program inte-
gration, software testing, and software debugging.

2 Example and Background

For illustration we will use a modified version of the
bean example from the AspectJ distribution. Figure 1 shows
classes Point and Demo. Aspects are used to implement an
event firing mechanism, by invoking propertyChange when

1 class Point {
2 int x = 0, y = 0;
3 int getX() { return x; }
4 int getY() { return y; }
5 void setRectangular(int nX, int nY) {
6 setX(nX); setY(nY);
7 }
8 void setX(int nX) { x = nX; }
9 void setY(int nY) { y = nY; }
10 String toString() { println("X="+x+",Y="+y); }
11 }
12 class Demo implements PropertyChangeListener {
13 void propertyChange(PropertyChangeEvent e) {...}
14 static void main(String[] args) {
15 Point p = new Point();
16 p.addPropertyChangeListener(new Demo());
17 p.setRectangular(5,2); println("p = " + p);
18 p.setX(6); p.setY(3); println("p = " + p);
19 }
20 }

Figure 1: Running example, classes Point and Demo.

a change occurs. A field support and a method addProper-
tyChangeListener are introduced in Point by aspect Bound-
Point, at lines 3–7 in Figure 2. For brevity, helper class
PropertyChangeSupport is not shown.

A join point in AspectJ is a well-defined point in the ex-
ecution that can be monitored. We classify the join point
types in AspectJ into four categories: (1) initialization, in-
cluding both object initialization and class initialization,
(2) method/constructor call and execution (3) field getting
and setting, and (4) exception handling. For a particular
join point, the textual part of the program executed during
the time span of the join point is the shadow of the join
point [4]. We classify shadows in two categories: statement
shadows, for which the program entity that is advised is a
statement (e.g., a call), and body shadows, where the ad-
vised entity is the body of a method or constructor.

A pointcut selects (“picks out”) one or more join points
by imposing run-time restrictions on the basic join point
types, and optionally exposes some of the values from the
execution context. AspectJ defines 17 types of primitive
pointcut designators. We classify them into three cate-
gories: join point selector, run-time condition specifier, and
data exposer. Table 1 shows the classifications of join point
types, pointcut designator types, and their relationship. A
pointcut is dynamic if it has a property of run-time condi-
tion specifier; otherwise, a pointcut is a static one. A com-
bined pointcut is dynamic if at least one of its component
pointcuts is dynamic; otherwise it is static.

� Example. Aspect BoundPoint from Figure 2 defines
two pointcuts: setter and getterX. The shadows of the join
points picked out by setter are the five call sites at lines 6,
17, and 18 in Figure 1. The shadow of the join point picked
out by getterX is the body of method getX. Both pointcuts
are dynamic because they include target(p), which picks out
only run-time objects that are instances of Point. �

2

1 aspect BoundPoint {
2 // add a field ’support’ to class Point
3 PropertyChangeSupport Point.support =
4 new PropertyChangeSupport(this);
5 void Point.addPropertyChangeListener
6 (PropertyChangeListener l)
7 { support.addPropertyChangeListener(l); }
8 void firePropertyChange(Point p, String property,
9 double oldv, double newv) {
10 p.support.firePropertyChange(property,
11 new Double(oldv),new Double(newv));
12 }
13 // ====== pointcuts ======
14 pointcut setter(Point p):
15 call(void Point.set*(*)) && target(p);
16 pointcut getterX(Point p):
17 execution(void Point.getX(*)) && target(p);
18 // ===== advices for pointcut ’setter’ =====
19 before(int x, Point p)
20 : setter(p) && args(x) { // before1
21 if (x < 0) println("Bad set*");
22 }
23 after(Point p) : setter(p) { // after1
24 println("Return from set*");
25 }
26 void around(Point p) : setter(p) { // around1
27 int oldX = p.getX(); proceed(p);
28 firePropertyChange(p,"1",oldX,p.getX());
29 }
30 void around(Point p) : setter(p) { // around2
31 Point p1 = new Point(); proceed(p1);
32 firePropertyChange(p,"2",p.getX(),p1.getX());
33 }
34 // ===== advices for pointcut ’getterX’ =====
35 before(Point p) : getterX(p) { // before2
36 println("Start getX");
37 }
38 after(Point p) returning (int x)
39 : getterX(p) { // afterReturning1
40 println("Return from getX: " + x);
41 }
42 }

Figure 2: Running example, aspect BoundPoint.

An advice declaration consists of an advice kind (be-
fore, after, etc.), a pointcut, and a body of code forming an
advice. Whenever multiple advices apply at the same join
point, precedence rules determine the order in which they
execute [3]. We refer to an advice associated with a dy-
namic pointcut as a dynamic advice.

� Example. In Figure 2, before1, after1, around1,
and around2 may apply at the same join point. Similarly,
before2 and afterReturning1 may apply at the same join
point. The execution order of the first four advices is be-
fore1,around1[around2[cs,after1]] where cs is the advised
call site, and brackets enclose advices that are invoked by
the call to proceed in the preceding around-advice. �
2.1 Control-Flow Representation

In previous work [20] we considered the problem of re-
gression test selection for AspectJ software, and proposed
a control-flow representation for identifying the differences

JP category PC designator PC category

initialization JP selector
initialization preinitialization JP selector

staticinitialization JP selector
call JP selector

call/execution execution JP selector
adviceexecution JP selector

field get/set get JP selector
set JP selector

excpt handling handler JP selector

within condition specifier
withincode condition specifier
this condition specifier
target data exposer,

condition specifier
args data exposer,

condition specifier
if condition specifier
cflow condition specifier
cflowbelow condition specifier

Table 1: Classification of join points and pointcuts.

between two versions of the same program. Using essen-
tially the same approach, one could construct the interpro-
cedural control-flow graph (ICFG) of an AspectJ program.
The rest of this subsection describes some of the details of
the ICFG control-flow representation. Figure 3 shows a sub-
set of the ICFG for the example from Figures 1 and 2.

This is the first work to define a control-flow representa-
tion for AspectJ which handles multiple advices at the same
join point, the existence of dynamic advices, and excep-
tions. An ICFG contains (1) standard CFGs that model the
control flow within Java classes, within aspects and across
boundaries between aspects and classes through non-advice
method calls, and (2) interaction graphs (IGs) that model
the interactions between methods and advices at join points.
An IG is built for each statement shadow.

� Example. Consider shadow p.setX(6) at line 18 in Fig-
ure 1. In the absence of aspect-oriented features, this call
would be represented by two ICFG nodes: a call-site node
and a return-site node. Interprocedural edges would con-
nect the call-site node with the start node of setX, and the
exit node of setX with the return-site node. For this ex-
ample, advices before1, around1, around2, and after1 ap-
ply at the corresponding join point. In the ICFG the call is
represented by an artificial method ph root (ph stands for
“placeholder”) which represents the top-level logic associ-
ated with the run-time processing of the join point. �

Handling of multiple advices. The precedence rules can
be used to build a helper data structure, the advice nesting
tree, to represents the run-time advice nesting. Each tree
level contains at most one around-advice, which is the root
of all advices in the lower levels. With each around-advice
A the tree associates (1) a possibly-empty set of before-
advices and after-advices, (2) zero or one around-advices,
and potentially (3) the actual call site that could be invoked

3

Figure 3: Advice nesting tree and partial interaction graph for shadow p.setX(6).

by the call to proceed in A. These advices and the call site
appear as if they were nested within A. The nesting tree for
BoundPoint at shadow p.setX(6) is shown in Figure 3.

Nodes at one level of the tree are invoked by the call
to proceed in the around-advice in the upper level of the
tree. A placeholder method ph proceed is used to represent
the proceed call in an around-advice. This method contains
calls to all children advices, including the crosscut call site.
For example, ph proceed1, which represents the proceed
call in around1, contains a call to around2, whose proceed
call is in turn represented by ph proceed2, which then calls
setX (the shadow) and after1. The top-level ph root method
corresponds to the root of the advice nesting tree.

Handling of dynamic advices. For dynamic advices that
may or may not be invoked at the join point, the ICFG uses
an artificial ph decision node to guard the execution. For
a dynamic advice, the ”true” edge leaving this node goes
directly to its call-site node — that is, if the run-time con-
dition evaluates to true, the advice will be invoked. For a
non-around-advice, the ”false” edge goes to the call-site
node for the next advice that could be invoked in the cur-
rent method. For an around-advice, the ”false” edge goes to
a call-site node for its corresponding ph proceed method,
meaning that if this advice is not invoked, the advices that
are nested within it will still be invoked.

Handling of exception-triggered after advices. An ex-
ception thrown by an advice or the crosscut method could
trigger the invocation of an after or after-throwing advice.
Due to space constraints, this paper will not discuss the
treatment of exceptions. Our approach and implementation
do handle exceptional constructs; details of this handling
will be available in a companion technical report.

3 Data-Flow Representation

The representation outlined above captures the control-
flow semantics of aspect-oriented interactions. In order to
apply existing analyses for dependence analysis and pro-
gram slicing, the key problem becomes: what data can flow

in the interaction graph at a join point, and how can it be
represented? This section presents our novel technique for
building an ICFG-based data-flow representation by asso-
ciating data with related ICFG nodes and edges. This is
the first work to consider the full generality of data flow to,
from, and between advices in AspectJ. Our goals are to (1)
make variables that are defined/used during the interaction
explicit for the placeholder methods that reference them; (2)
associate with ph decision nodes the variables that are used
to make run-time decision about dynamic advices; (3) ex-
pose a minimum set of variables, without introducing any
unnecessary variables and extra helper variables in IGs; and
(4) keep a single CFG for each advice declaration, without
replicating graphs for different advice applications.

In this paper we focus the discussion on call join points
(see Table 1), which are the most common join points in As-
pectJ practice. Due to space limitations, we do not discuss
the other types of join points, although our implementation
also handles them. For call joint points, the key goal is to
make explicit the flow of data by creating formal parameters
and actual parameters associated with ICFG nodes, in order
to enable analysis based on this data-flow representation.

Declarations for placeholder methods and non-
around-advices. For a call join point, the variables that can
be referenced are the actuals 〈a1, a2, . . . , an〉 at the call site,
as well as the receiver object reference a0 if the crosscut call
site is an instance invocation. Given an IG, each placeholder
method is parameterized with formals 〈f0, f1, f2, . . . , fn〉
that match the actuals of the shadow. Each such method
is static and has the same return type as the return type
of the method called at the shadow. For example, ph root
in Figure 3 has signature void ph root (Point arg0, int arg1)
where arg0 corresponds to the receiver object reference at
p.setX(6) and arg1 corresponds to the actual parameter. For
a non-around-advice that is called by a placeholder method,
a static void declaration is used with the same formals as in
the source code declaration. For example, before1 in Fig-
ure 2 is declared as void before1(int arg0, Point arg1). An

4

after-returning-advice has one last formal parameter corre-
sponding to the returned value specified in the advice decla-
ration. For example, the signature for afterReturning1 from
Figure 2 is void afterReturning1(Point arg0, int retval).

Call sites for non-around-advices. Placeholder meth-
ods contain calls that invoke non-around-advices; to enable
static analysis, the appropriate actuals must be associated
with these calls. For an advice that has declared parameters,
there have to be one or more data exposer pointcut designa-
tors associated with it (i.e., target or args from Table 1). A
helper function cf (fi, p) (short for “corresponding formal”)
can be defined, where p is the type of pointcut and f i is a
formal parameter in the advice declaration. Given f i, cf is
used to obtain the corresponding formal of the caller place-
holder method. This formal should be used as the actual for
fi at the call site. Thus, for an advice adv declared as

adv (t,p1,...,pn) : target(t) && args(p1,...,pn) && ...

a call site of the following form is created

adv(cf (t, target), cf (p1, args), .., cf (pn, args))

For example, in Figure 3, the call to before1 inside ph root
has the form before1(arg1,arg0) where arg0 and arg1 are
formal parameters of ph root.

The IG also contains a call for the shadow. The for-
mals of the caller placeholder method are used as actuals
(or receiver) of this call. If the shadow is an assignment,
a return$val local variable in the placeholder method is as-
signed the return value at the call. For example, for the
invocation of setX inside ph proceed2 in Figure 3, the call
is arg0.setX(arg1) where arg0 and arg1 are the formals of
ph proceed2. For a call to an after-returning-advice, an
additional actual parameter is needed. In the caller place-
holder method, return$val should have already been as-
signed the return value of a call to the crosscut method (or
to another ph proceed method); this local is used as the last
actual parameter at the call to the after-returning-advice.

3.1 Handling of Around-Advices
The complication in handling an around-advice is that its

formals are dependent on the crosscut method and on other
advices that are invoked within the around-advice. First,
the around-advice must have access to all actual parame-
ters of the shadow in order to call the crosscut method or a
ph proceed method. For example, consider ph proceed2 in
Figure 3, which is called from within around2. Because the
formals for ph proceed2 are (Point arg0, int arg1), around2
has to take at least these two types of formals, although it
has only one declared formal (line 26 in Figure 2). Second,
the formals needed by an around-advice could be different
for different shadows that the advice matches, because such
shadows may call different methods due to the use of wild
cards (*) in the pointcut definition. Consider again around2
defined in Figure 2. Due to the setter pointcut, around2 it

can crosscut both setX and setRectangular calls. For shad-
ows that call setX, the formal parameter types needed by
around2 are (Point, int), but for shadows that call setRect-
angular the types needed are (Point, int, int).

One possible approach is to replicate the CFG of an
around-advice for each shadow that the advice matches, and
to create the method declaration and the call site for the
advice on per-shadow basis. Hence, one can have shadow-
specific placeholder methods and around-advices, and glob-
ally unique non-around-advices. In fact, this approach is
being used by the abc compiler [2]. However, this violates
one of our design goals: to keep one CFG per advice, with-
out replicating the CFG per advice application. Such repli-
cation could result in an explosion in the number of ICFG
nodes, and therefore may introduce significant overhead for
subsequent static analyses. In fact, our experiments showed
that for some benchmarks containing around-advices that
match every call site, the approach used by abc can cause
the size of the program to double after compilation.

Declarations and call sites for around-advices. We pro-
pose a different approach which does not replicate around-
advices. For each such advice we consider all shadows
that the advice matches, and construct a globally-valid list
global params that includes parameters that are required at
each shadow. A companion map sp (short for “shadow po-
sition”) maps each shadow to the starting position of its cor-
responding parameters in global params .

� Example. Consider around2 and two of the shadows
it applies to: p.setX(6) and p.setRectangular(5,2) at lines 18
and 17 in Figure 1. The corresponding actuals have types
(Point, int) and (Point, int, int). Hence, global params is
(Point arg0, int arg1, Point arg2, int arg3, int arg4). For
p.setX(6) the starting position in global params is 0, and
for p.setRectangular(5,2) the position is 2. There are three
more shadows at which this advice applies; for brevity, we
omit the details related to these shadows. �

List global params together with the originally declared
parameters of the around-advice define the formals for
this advice. A last formal is added for a decision value
indicating the shadow where the advice is currently ap-
plied. For example, the signature for around2 becomes
void around2(Point arg0, int arg1, Point arg2, int arg3, int
arg4, Point p, int dv) where arg0 through arg4 come from
global params , p is the original declared parameter (line 30
in Figure 2), and dv is the decision value.

In each placeholder method where an around-advice
is called, the call for that advice has non-trivial actu-
als only for (1) formal parameters corresponding to the
currently-active shadow, as defined by the positions in
map sp, (2) the advice’s original formal parameters, and
(3) the last formal parameter dv. For formals corre-
sponding to the shadow, the formals of the caller place-
holder method are used as actuals. For the advice’s orig-

5

inal formal parameters, the actuals are constructed sim-
ilarly to calls to non-around-advices. A unique shadow
ID is used as the actual for formal parameter dv. For
example, for shadow p.setX(6), the call for around2 is
around2(arg0,arg1,null,0,0,arg0,987) where arg0 and arg1
are the formals of ph proceed1, which contains the call site.
The first two actuals correspond to the shadow’s parameters,
while the next-to-last actual corresponds to the declared for-
mal p of around2. Similarly, for p.setRectangular(5,2), the
call site is around2(null,0,arg0,arg1,arg2,arg0,567). The
last actuals in these two call sites (987 and 567) are unique
IDs for the corresponding shadows.

Around-advice calls to placeholder methods. Because
there is a single CFG for an around-advice, the advice
should be able to call different ph proceed methods for dif-
ferent shadows. A pair of call-site and return-site nodes is
created for each placeholder method that the advice could
call; the original call to proceed is replaced with this group
of calls. A placeholder decision node is created to repre-
sent the selection of a placeholder method to be called, and
formal dv is associated with this decision node. Essentially,
this representation is equivalent to a switch statement.

The actual parameters for the calls to the placeholder
methods can be defined similarly to the actuals for calls to
around advices — the formals corresponding to the shadow
are identified in the around-advice’s list of formals, and are
used as actual parameters at the call site. However, ad-
ditional transformations are necessary: actuals that corre-
spond to the originally declared parameters of the around-
advice must be replaced with the actuals for the original call
to proceed in this around-advice. This is necessary for cases
when proceed is called with values other than the formals of
the around-advice, in which case the new values need to be
propagated to the ph proceed methods as well.

� Example. Advice around2 needs to call ph proceed2
at shadow p.setX(6) and another placeholder method (e.g.,
named ph proceed2 2) at shadow p.setRectangular(5,2).
The following pseudocode illustrates the representation:
static void around2(Point arg0, int arg1,
Point arg2, int arg3, int arg4, Point p, int dv) {

Point p1 = new Point();
switch(dv) {

// used to be ph_proceed2(arg0,arg1)
case 0: ph_proceed2(p1,arg1);
// used to be ph_proceed2_2(arg2,arg3,arg4)
case 1: ph_proceed2_2(p1,arg3,arg4);

}
}

The “used to be” comments show the calls before taking
into account the fact that the original call to proceed (line
31 in Figure 2) uses p1 and not p as an actual parameter. �

After creating the call sites, redundant formals that are
not used by the advice can be eliminated. For example, af-
ter such a removal, the signature of around2 becomes void
around2(int arg1, int arg3, int arg4, Point p, int dv).

3.2 Data for Placeholder Decision Nodes

For a placeholder decision node that guards a call-site
node for an advice, we need to associate the data that con-
tributes to the decision making. There are two kinds of such
decision nodes: (1) a shadow-based selection decision node
in an around-advice (e.g., switch(dv) in the example from
above), and (2) a decision node that guards a dynamic ad-
vice. For the first kind, the associated data is the formal dv.
For the second kind, there has to be a run-time condition
specifier associated with the guarded dynamic advice. As
shown in Table 1, there are eight kinds of such designators
in AspectJ. For within and withincode, one can statically de-
termine if the pointcut matches. For target and args, which
are also data-exposer designators, the needed data are the
parameters specified in the pointcut. A this designator in-
dicates that the receiver object at the shadow must be an
instance of the type specified by the pointcut; the needed
data is a reference to the object. The if pointcut can only
reference parameters introduced by data-exposer pointcuts.
For cflow and cflowbelow, there does not exist an explicit
value that affects decision making. Our tool currently ig-
nores these two kinds of pointcuts; future work will have to
develop static analysis techniques for handling them.

� Example. Consider the placeholder decision node in
ph root that guards the call to around1 (shown in Figure 3).
The run-time condition specifier in around1’s setter point-
cut (line 15 in Figure 2) is target. Therefore, the data that
should be associated with this decision node is the formal
of ph root that corresponds to the receiver object — that is,
formal parameter arg0. �

4 Slicing AspectJ Programs
The novel data-flow and control-flow representation de-

scribed earlier can be used to define the first general slicing
algorithm for AspectJ software. It is important to note that
this algorithm takes full advantage of the information in the
program representation: for example, it correctly and pre-
cisely tracks the data dependencies at a joint point at which
multiple advices are applied (taking into account the order
of advice execution), as well as the control dependencies
due to the AspectJ semantics for run-time decisions and
their guarded dynamic advices. Due to space constraints,
we describe the algorithm at a high level and omit a number
of technical details.

The dependence analysis used in our technique is rep-
resentative of flow- and context-sensitive dataflow analy-
sis algorithms; all such algorithms require the information
encoded in our representation. In the current implementa-
tion we do not model the effects of library calls; a precom-
puted library summary is needed for interprocedural analy-
ses [14], and the problem of library summary generation is
outside of the scope of this paper. The implementation uses
a simple alias analysis, and determines call and return edges

6

1:entry

around2

p1 = new Point 2:ph_decision

3:ph_proceed2

4:ph_proceed2_2

act1_in act2_in

return
return

act1_out
act2_out

arg1

arg3
arg4

p

dv

5:entry

ph_proceed2

f1_in
f2_in 6:setX

receiver_in act1_in

return

receiver_out act1_out

7:ph_decision

8:after1

act1-in

arg1_out

arg3_out
arg4_out p_out

dv_out

exit

around2

exit

ph_proceed2

f1_out f2_out

return

1. static void around2(int arg1,
 int arg3, int arg4, Point p, int dv)
2. associated data: dv 6. call f1_in.setX(f2_in)
3. call ph_proceed2(p1,arg1) 7. associated data: f1_in
 for shadow p.setX(6) 8. call after1(f1_in)
4. call ph_proceed2_2(p1,arg3,arg4)
 for shadow p.setRectangular(5,2)
5. static void ph_proceed2(Point f1_in, int f2_in)

control dependence

act1-out

data dependence

parameter flow

call/return

summary edge

Figure 4: Partial SDG for around2.

using class hierarchy analysis.
Building the system dependence graph (SDG). Given

the program representation, the SDG of an AspectJ program
can be constructed relatively easily. The SDG contains data-
dependence and control-dependence edges between ICFG
nodes, together with special nodes and edges to represent
the effects of calls. We use the algorithm by Horwitz et al.
[10] to build the SDG. A key feature of this algorithm is the
computation of summary edges that represent transitive de-
pendencies along same-level interprocedurally-valid ICFG
paths [12]. We construct such edges using a bottom-up in-
terprocedural dependence analysis which takes full advan-
tage of the rich semantic information embedded in the pro-
gram representation.

A decision node is created for each virtual call site; each
control-dependence edge leaving this node goes to a call-
site node for a possible method that could be invoked at run
time. For these and other placeholder decision nodes, the
variable associated with the node is considered used (i.e.,
read). The technique from [1] is used to handle exceptions.

� Example. Figure 4 illustrates a partial SDG for the
running example, again with focus on shadow p.setX(6).
Since relevant data is associated with placeholder decision
nodes, the algorithm can take into account the data depen-
dencies between such nodes and the nodes that define the
data. For example, the proceed-selection decision node 2

Program #LOC #Versions #Methods #Shadows

bean 296 7 40 11
tracing 1059 7 44 32
telecom 870 7 96 19
quicksort 111 3 18 15
nullcheck 2991 5 196 146
lod 3075 3 220 1103
dcm 3423 4 249 359
spacewar 3053 1 288 369

Table 2: Analyzed programs.

in the SDG is data dependent on the formal dv. Similarly,
decision node 7 is data dependent on formal f1 in, which is
a reference to the receiver object of the crosscut call site,
because this node represents the target pointcut that guards
the execution of dynamic advice after1. �

Slicing AspectJ software. Graph-reachbility-based slic-
ing [10] can be directly used on the SDG. Each statement
in the source code, except calls to proceed, corresponds to
one ICFG node. For computing a forward or backward slice
for any non-proceed statement, the slicing algorithm is ex-
ecuted starting from the corresponding ICFG node. A call
to proceed in an around advice may correspond to a group
of call-site nodes in the ICFG, each one of which calls a
ph proceed method for one shadow. In this case a slice is
computed for each call-site node, and the union of the re-
sulting slices forms the complete slice of the call to proceed.

5 Empirical Evaluation

To evaluate the proposed techniques, we performed a
study which focused on the following questions: What are
sizes of the ICFG and the SDG built with our approach,
compared to the ones built from the woven bytecode? What
is the effect on program slicing with respect to slice size
and computation time, compared to slicing on the woven
bytecode? What is the cost of building the representation?

Implementation. The data-flow and control-flow repre-
sentation and the program slicer were implemented in our
AJANA analysis framework. The framework is built on top
of the abc AspectJ compiler [2]; details on the weaving per-
formed by abc can be found in [4]. AJANA uses the Jimple
intermediate representation produced by the static weaving
component of the compiler, before the actual advice weav-
ing process starts. At this point the inter-type fields and
methods introduced by aspects have been added to their host
classes, and static shadows have been identified, which sig-
nificantly facilitates our analysis.

Analyzed programs. Our study used the eight AspectJ
programs shown in Table 2. The first seven program were
used in our previous work to evaluate a technique for regres-
sion test selection [20]; in that work, the original version of
each program was used as basis to create several modified
versions. The last benchmark was taken from the AspectJ

7

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7

bean

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5

nullcheck

300

1000

1700

2400

3100

3800

4500

5200

5900

1 2 3 4 5 6 7

tracing

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3

lod

400

700

1000

1300

1600

1900

2200

2500

2800

1 2 3 4 5 6 7

telecom

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4

dcm

200

300

400

500

600

700

800

900

1 2 3

quicksort

0

3000

6000

9000

12000

15000

18000

21000

24000

1

spacewar

Figure 5: Number of ICFG edges �/�, control dependence edges ♦/�, and data dependence edges � /	 constructed from
woven bytecode (�, . . .) and by AJANA (�, . . .).

example package. This group of benchmarks have also been
used by other researchers to evaluate their work on test case
generation [18] and on measuring the performance of As-
pectJ programs [8]. For each program, Table 2 shows the
number of lines of code, methods, and shadows in the orig-
inal version, plus the number of modified versions. Consid-
ering the different versions of the same program, the study
used a total of 37 experimental subjects.

Study 1: ICFG/SDG size and cost. Our first study inves-
tigated the sizes of the ICFG and the SDG. Figure 5 shows
a comparison between the graphs built with the proposed
representation and the graphs constructed from the woven
bytecode. The figure shows the number of ICFG edges, the
number of SDG control-dependence edges, and the number
of SDG data-dependence edges. We consider edges rather
than nodes, because the number of edges is a more impor-
tant factor that affects the running time of subsequent anal-
yses such as program slicing and change impact analysis.

For some simple program versions (e.g., for benchmarks
bean and telecom), our approach produces more ICFG
edges. We investigated these occurrences, and determined
that in these versions some advice bodies contain only a few
statements, and the weaving process inlines these bodies at
their shadows. In these cases, inlining eliminates interpro-
cedural edges that are explicit in our representation. Except
for such cases, the number of ICFG edges in our represen-
tation is lower — for example, by at least a factor of two for
tracing.7, nullcheck, lod, dcm, and spacewar.

For most versions, the SDGs built by our technique have
slightly more control-dependence edges, due to the artificial

decision nodes in the representation. On the other hand, the
number of SDG data-dependence edges constructed from
the woven bytecode is often dramatically higher that the
corresponding number in AJANA. For example, this num-
ber is more than 7 times higher for nullcheck.5, and more
than 30 times higher for two versions of lod. We inspected
the versions with significant differences, and found that all
of them contain around-advices, and many of these advices
crosscut every call site in the base program. In such cases,
any analysis based on data dependencies is likely to incur
significant overhead unless it employs our representation.

The representation can be built in practical time. For
example, for nullcheck, lod, dcm and spacewar, which are
the largest among the eight benchmarks, the analysis ran
in 156.4, 159.4, 417.75, and 250 ms respectively, whereas
the corresponding times for ICFG building from the wo-
ven bytecode were 122.0, 122.0, 535.5, and 110 ms. Even
though the building of our representation can be slower than
building the ICFG for the woven bytecode, these differences
will be offset by savings in subsequent analyses; such sav-
ings are evident in our study of slicing, presented below.

In addition to size and cost, another significant benefit
of our representation is its independence from the particular
weaving techniques used to create the final Java bytecode.
An analysis built with this representation depends only on
the semantics of the AspectJ language, but not on the spe-
cific low-level implementation details of the weaving com-
piler. Such independence has critical advantages when re-
lating the analysis results back to the original program (e.g.,
in tools for comprehension and testing), and when consider-

8

Program Ver Size (nodes) RelRat (%) Time (sec)

bean v4 367 / 618 98.2 / 54.7 2.2 / 2.6
tracing v7 829 / 1443 98.7 / 77.2 5.8 / 24.2
telecom v7 387 / 230 98.5 / 85.3 2.0 / 1.3
quicksort v2 309 / 325 98.0 / 44.5 0.3 / 0.8
nullcheck v2 836 / 5852 97.8 / 37.7 15.9 / 542.7

v5 3313 / 7203 96.1 / 46.0 21.1 / 762.1
lod v1 926 / 3593 97.2 / 64.9 32.0 / 105.1

v2 652 / 3623 97.9 / 60.1 21.2 / 956.7
dcm v2 1444 / 8654 98.2 / 44.3 19.7 / 1011.7
spacewar v1 169 / 1687 97.6 / 68.6 3.9 / 62.8

Table 3: Slice size, relevance ratio, and slicing time.

ing different weaving compilers or different versions of the
same compiler. Furthermore, an analysis may employ tech-
niques that are specialized for precise semantic modeling of
aspect-oriented features; such techniques cannot be used at
the lower abstraction level of the woven bytecode.

Study 2: Program slicing. Our second study investi-
gated the proposed slicing algorithm. One of the major mo-
tivations of computing a slice for a program entity is to un-
derstand its dependencies on other program entities. Con-
sider a slice S and the set of all SDG nodes included in
S. From the point of view of a programmer, only nodes
that correspond to entities from the original program source
code (both from the Java base code and from the advices)
are of any relevance for program comprehension through
slicing. Therefore, an interesting question is the following:
how many SDG nodes in S correspond to statements in the
original AspectJ code? We will refer to the number of such
nodes, relative to the total number of nodes in S, as the rel-
evance ratio of the slice.

We implemented and ran the standard slicing algorithm
[10] on the SDG built by AJANA and on the SDG built from
the woven bytecode. For each benchmark, we choose the
most complex versions, in the sense that they contained the
most complex advice interactions. We computed a slice for
each node in the SDGs of these versions, and determined
the relevance ratios for all slices. Table 3 summarizes the
results of this experiment. Column “Ver” shows the pro-
gram versions that were used. Column “Size” contains the
average number of nodes in a slice; a slash “/” separates
the result obtained with our representation from the one ob-
tained with the woven bytecode. Using a similar format,
column “RelRat” shows the average value of the relevance
ratios for the computed slices, and column “Time” shows
the total time of the computation, including SDG building.

For calculating the relevance ratios of the slices, the key
is to determine the set of SDG nodes that do not have corre-
sponding statements in the AspectJ source code. For slices
based on our representation, these nodes are all placeholder
decision nodes as well as all call-site and return-site nodes
for placeholder methods. For slices based on the woven

bytecode, it is not obvious how to identify such nodes, due
to the difficulty in establishing a map between the source
code and the woven code. As an approximation, we define
this set to contain all nodes in compiler-introduced meth-
ods. In fact, the relevance ratios shown in Table 3 may be
too high for the bytecode-based approach, because even in
methods whose declarations are not changed by the com-
piler, there may be compiler-introduced statements.

Clearly, our technique achieves significantly better rel-
evance ratios, which means that the slices it computes are
much closer to the original AspectJ source code. Further-
more, for all programs except telecom, smaller slices are
built and the running time for SDG building and slicing
is reduced. Especially for large programs (such as the last
four), our technique achieves impressive time savings. We
manually inspected the woven bytecode for telecom and de-
termined that inlining done by the weaving process was the
reason for the reduced cost of SDG construction and slicing.

Conclusions. For analyzing AspectJ software, espe-
cially larger AspectJ applications, the source-code-based
representation proposed in this paper is practical to build,
easier to understand, contains significantly fewer nodes and
edges, and can dramatically speed up subsequent program
slicing and similar interprocedural analyses.

6 Related Work

Analysis and testing for AOP software. The abc com-
piler group [2] developed the AspectBench Compiler [4]
for AspectJ which provides a variety of static analyses and
optimizations. Their work focuses on optimizations of the
generated bytecode to reduce execution overhead, whereas
the focus of our work is representation and analysis at the
source-code level, abstracting away compiler-specific de-
tails. We implemented AJANA as an extension to the abc
compiler, building the ICFG between the static weaving
phase and the advice weaving phase.

Rinard et al. [13] classify the interactions between meth-
ods and advices, in order to enable developers to recognize
interactions that support modular reasoning and to focus on
the causes of potentially non-modular interactions, by em-
ploying a pointer and escape analysis [17]. Pioneering work
by Zhao [23, 21, 22, 24] defines program representations for
a variety of testing and analysis tasks for aspect-oriented
programs. These initial results do not consider more com-
plex situations such as multiple advices per join point or
dynamic advices, and do not perform experimental evalua-
tion. Our work builds on these earlier advances and defines
several new theoretical and experimental contributions.

A body of work considers testing of aspect-oriented pro-
grams. Souter et al. [15] develop a test selection technique
based on concerns. Xu and Xu [19] present a specification-
based testing approach for aspect-oriented programs. Xie
and Zhao [18] describe a wrapper class synthesis technique

9

and a framework for generating test inputs for AspectJ pro-
grams. These previous efforts focus on techniques to enable
the testing of aspect-related features, whereas our work de-
velops general representation and analysis of data flow and
control flow, which could facilitate future work on data-flow
and control-flow-based testing of AspectJ programs.

Our previous work proposed a static control-flow model
for AspectJ software [20] which serves as the basis for the
ICFG used in this paper. This earlier work developed a new
graph-traversal algorithm for selecting regression tests for
AspectJ software. However, this approach did not include
any data-flow representation or analysis.

Dataflow analysis and program slicing. Interprocedural
dataflow analyses have been investigated extensively. The
work presented in this paper opens up the opportunity to
apply these techniques to AspectJ software. In particular,
a natural direction for future work is to consider graph-
reachability-based analyses for IFDS [12] dataflow prob-
lems. In fact, the dependence analysis used in our work
is an instance of this general category.

There is a large body of existing work on program slic-
ing [5, 9, 6, 7, 16]. Slicing algorithms for aspect-oriented
programs have been proposed in [22, 11]. These impor-
tant early contributions do not consider the full complexity
of the flow of data and control at join points, or the gener-
ality of AspectJ language features. Furthermore, it is not
clear how interprocedural dependence analysis would be
performed, and such analysis is not implemented or evalu-
ated. Our work continues this line of investigation by defin-
ing and evaluating experimentally a general data-flow and
control-flow representation which can be used for depen-
dence analysis and a variety of other interprocedural analy-
ses (e.g., the general family of dataflow analyses from [12]).

7 Conclusions
This paper describes a general approach for construct-

ing a static data-flow and control-flow representation for
AspectJ software, for the purposes of dependence analysis,
program slicing, and similar interprocedural analyses. Our
experiments clearly show that, compared to analysis of the
woven bytecode, this representation is much better suited
as foundation for subsequent static analyses. The proposed
approach creates promising opportunities for a large body
of future work on adapting existing analyses to AspectJ and
on designing novel AspectJ-specific analyses, for use in var-
ious tools for program comprehension, impact analysis, and
software testing and debugging.

References
[1] M. Allen and S. Horwitz. Slicing Java programs that throw

and catch exceptions. In Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, 2003.

[2] AspectBench Compiler. abc.comlab.ox.ac.uk.
[3] AspectJ Compiler. www.aspectj.org.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. abc: An extensible AspectJ compiler.
In Int. Conf. Aspect-Oriented Software Development, 2005.

[5] D. Binkley and K. Gallagher. Program slicing. Advances in
Computers, 43:1–50, 1996.

[6] D. Binkley and M. Harman. A survey of empirical results
on program slicing. Advances in Computers, 62:105–178,
2004.

[7] A. De Lucia. Program slicing: Methods and applications. In
IEEE International Workshop on Source Code Analysis and
Manipulation, pages 142–149, 2001.

[8] B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittam-
palam, and C. Verbrugge. Measuring the dynamic behaviour
of AspectJ programs. In Conf. Object-Oriented Program-
ming Systems, Languages, and Applications, 2004.

[9] M. Harman and R. Hierons. An overview of program slicing.
Software Focus, 2(3):85–92, 2001.

[10] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Tran. Programming Lan-
guages and Systems, 12(1):26–60, 1990.

[11] T. Ishio, S. Kusumoto, and K. Inoue. Debugging support for
aspect-oriented program based on program slicing and call
graph. In Int. Conf. Software Maintenance, 2004.

[12] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Symp. Principles
of Programming Languages, pages 49–61, 1995.

[13] M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs. In Symp.
Foundations of Software Engineering, pages 147–158, 2004.

[14] A. Rountev, S. Kagan, and T. Marlowe. Interprocedural
dataflow analysis in the presence of large libraries. In Int.
Conf. Compiler Construction, pages 2–16, 2006.

[15] A. Souter, D. Shepherd, and L. Pollock. Testing with respect
to concerns. In Int. Conf. Software Maintenance, 2003.

[16] F. Tip. A survey of program slicing techniques. J. Program-
ming Languages, 3:121–189, 1995.

[17] J. Whaley and M. Rinard. Compositional pointer and es-
cape analysis for Java programs. In Conf. Object-Oriented
Programming Systems, Languages, and Applications, 1999.

[18] T. Xie and J. Zhao. A framework and tool supports for gen-
erating test inputs of AspectJ programs. In Int. Conf. Aspect-
Oriented Software Development, pages 190–201, 2006.

[19] D. Xu and W. Xu. State-based incremental testing of aspect-
oriented programs. In Int. Conf. Aspect-Oriented Software
Development, pages 180–189, 2006.

[20] G. Xu and A. Rountev. Regression test selection for AspectJ
software. In Int. Conf. Software Engineering, 2007.

[21] J. Zhao. Change impact analysis for aspect-oriented soft-
ware evolution. In Int. Workshop on Principles of Software
Evolution, pages 108–112, 2002.

[22] J. Zhao. Slicing aspect-oriented software. In Int. Workshop
on Program Comprehension, pages 251–260, 2002.

[23] J. Zhao. Data-flow-based unit testing of aspect-oriented pro-
grams. In Int. Computer Software and Applications Conf.,
page 188, 2003.

[24] J. Zhao and M. Rinard. System dependence graph con-
struction for aspect oriented programs. In MIT-LCS-TR-891,
2003.

10

