
Affine Transformations for Communication Minimal Parallelization and
Locality Optimization of Arbitrarily Nested Loop Sequences

Uday Bondhugula1, Muthu Baskaran1, Sriram Krishnamoorthy1,
J. Ramanujam2, Atanas Rountev1 and P. Sadayappan1

1Dept. of Computer Sci. and Engg. 2Dept. of Electrical & Comp Engg.
The Ohio State University Louisiana State University

2015 Neil Ave. Columbus, OH, USA Baton Rouge, LA
Email: bondhugu@cse.ohio-state.edu

OSU CSE Technical Report
OSU-CISRC-5/07-TR43

Abstract

A long running program often spends most of its time in nested loops. The polyhedral model provides
powerful abstractions to optimize loop nests with regular accesses for parallel execution. Affine transforma-
tions in this model capture a complex sequence of execution-reordering loop transformations that improve
performance by parallelization as well as better locality. Although a significant amount of research has
addressed affine scheduling and partitioning, the problem of automatically finding good affine transforms
for communication-optimized coarse-grained parallelization along with locality optimization for the general
case of arbitrarily-nested loop sequences remains a challenging problem - most frameworks do not treat par-
allelization and locality optimization in an integrated manner, and/or do not optimize across a sequence of
producer-consumer loops.

In this paper, we develop an approach to communication minimization and locality optimization in tiling of
arbitrarily nested loop sequences with affine dependences. We address the minimization of inter-tile commu-
nication volume in the processor space, and minimization of reuse distances for local execution at each node.
The approach can also fuse across a long sequence of loop nests that have a producer/consumer relationship.
Programs requiring one-dimensional versus multi-dimensional time schedules are all handled with the same
algorithm. Synchronization-free parallelism, permutable loops or pipelined parallelism, and inner parallel
loops can be detected. Examples are provided that demonstrate the power of the framework. The algorithm
has been incorporated into a tool chain to generate transformations from C/Fortran code in a fully automatic
fashion.

1 Introduction and Motivation

Current trends in architecture are increasingly towards larger number of processing elements on chip. This
has to led multi-core architectures becoming mainstream along with the emergence of several specialized
parallel architectures or accelerators like the Cell processor, general-purpose GPUs (GPGPUs), FPGAs and
MPSoCs. The difficulty of programming these architectures to effectively tap the potential of multiple on-
chip processing units is a well-known challenge. Among several ways of addressing this issue, one of the
very promising and simultaneously hard approach is automatic parallelization. This requires no effort on part
of the programmer in the process of parallelization and optimization.

Long running computations often spend most of their running time in nested loops. This is particularly
common in scientific applications. The polyhedral model [Fea96] provides a powerful abstraction to reason
about transformations on such loop nests by viewing a dynamic instance (iteration) of each statement as an
integer point in a well-defined space which is the statement’s polyhedron. With such a representation for each
statement and a particular precise view of inter or intra-statement dependences, it is possible to perform and
reason about the correctness and goodness of a sequence of complex loop transformations using machinery
from linear programming and linear algebra. The transformations finally reflect in the generated code as
reordered execution with improved cache locality and/or loops that have been parallelized. The full power of
the polyhedral model is applicable to loop nests in which the data access functions and loop bounds are affine
combinations (linear combination with a constant) of the outer loop variables and parameters. Such code is

1

also often called regular code. Irregular code or code with dynamic control can also be handled, but with
conservative assumptions on some dependences.

Dependence analysis, transformations and code generation are the three major components of an auto-
matic parallelization framework. In the nineties, dependence analysis [Fea91, Pug92] and code genera-
tion [KPR95, GLW98] in the polyhedral model suffered from scalability challenges while no work on au-
tomatically finding good transformations with a reasonable and practical cost model exists to date to the best
of our knowledge. Hence, applicability was mainly limited to very small loop nests. Significant recent ad-
vances in dependence analysis and code generation [VBGC06, QRW00, Bas04, VBC06] have solved these
problems resulting in the polyhedral techniques being applied to code representative of real applications like
the spec2000fp benchmarks. However, current state-of-the-art polyhedral implementations still apply trans-
formations manually and significant time is spent by an expert to determine the best set of transformations
that lead to improved performance [CGP+05, GVB+06]. Our work fills this void and paves the way for a
fully automatic parallelizing compiler.

Tiling and loop fusion are two key transformations in optimizing for parallelism and data locality. There has
been a considerable amount of research into these two transformations, but very few studies have considered
these two transformations in an integrated manner. Tiling has been studied from two perspectives - data
locality optimization and parallelization. Tiling for data locality optimization requires grouping points in an
iteration space into smaller blocks to maximize data reuse. Tiling for parallelism fundamentally involves
partitioning the iteration space into tiles that may be concurrently executed on different processors with a
reduced volume and frequency of inter-processor communication. Loop fusion involves merging a sequence
of two or more loops into a fused loop structure with multiple statements in the loop body. Sequences of
producer/consumer loops are commonly encountered in applications, where a nested loop statement produces
an array that is consumed in a subsequent loop nest. In this context, fusion can greatly reduce the number of
cache misses when the arrays are large - instead of first writing all elements of the array in the producer loop
(forcing capacity misses in the cache) and then reading them in the consumer loop (incurring cache misses),
fusion allows the production and consumption of elements of the array to be interleaved, thereby reducing the
number of cache misses. Hence, one of the key aspects of an automatic transformation framework is to find
good ways of performing tiling and fusion.

The seminal works of Feautrier [Fea88, Fea91, Fea92a, Fea92b] have led to many research efforts on auto-
matic parallelization in the polyhedral model. Existing automatic transformation frameworks [LL98, LCL99,
LLL01, AMP01, Gri04] have one or more drawbacks or restrictions that do not allow them to parallelize/op-
timize long sequences of loop nests. All of them lack a cost model. With the exception of Griebl [Gri04], all
focus on one of the complementary aspects of parallelization or locality optimization. Hence, the problem of
finding good transformations automatically with a cost model in the polyhedral model has not been addressed.
In particular, we are unaware of any reported framework that addresses the following questions:

• What is the best set of tiling hyperplanes, to minimize the volume of communication between tiles (in
processor space) as well as improve reuse at each processor?

• How can fusion be automatically enabled across a long sequence of nested loops with the goal of
reducing the distance between a producer and a consumer?

2

The approach we develop in this report answers the above questions. One of our key contributions is the
development of a powerful cost model within the polyhedral model that captures communication-minimized
parallelism as well as improved reuse in the general case of multiple iteration spaces with affine dependences.

The rest of this report is organized as follows. Section 2 covers the notation and mathematical background
for polyhedral model and affine transformations. In Section 3, we describe our algorithm in detail. Section 4
shows application of our approach through a detailed example. Section 5 outlines the entire end-to-end paral-
lelizing compiler infrastructure we implemented our framework in, and provides experimental results on the
running time of our tool; optimized code generated for some examples is also shown. Section 6 discusses
related work and conclusions are presented in Section 7.

2 Background and Notation

This section provides background information on the polytope/polyhedral model, dependence abstraction,
and affine machinery.

2.1 The polytope model

Definition 1 (Hyperplane) The set X of all vectors x ∈ Zn such that~h.~x = k, for k ∈Q, forms a hyperplane.

The set of parallel hyperplane instances corresponding to different values of k is characterized by the vector
~h which is normal to the hyperplane. Each instance of a hyperplane is an n−1 dimensional subspace of the
n-dimensional space. Two vectors x1 and x2 lie in the same hyperplane if h.x1 = h.x2.

Definition 2 (Polyhedron, polytope) The set of all vectors x ∈ Qn such that Ax + b ≥ 0 defines a (convex)
polyhedron. A polytope is a bounded polyhedron.

Each run-time instance of a statement S is defined by its iteration vector~i which contains values for the
indices of the loops surrounding S, from outermost to innermost. A statement S is associated with a polytope
DS of dimensionality mS. Each point in the polytope is an mS-dimensional iteration vector, and the polytope
is characterized by a set of bounding hyperplanes. This is true when the loop bounds are affine combinations
of outer loop indices and structure parameters (typically, symbolic constants representing the problem side);
our work is focused on programs with this property. Let the hyperplanes bounding the polytope of statement
Sk be given by:

aS,k

(
~i
~n

)
+bS,k ≥ 0, k = 1,mS (1)

where ~n is a vector of the structure parameters. A well-known known result useful in the context of the
polytope model is the affine form of the Farkas lemma.

Lemma 1 (Affine form of Farkas Lemma) Let D be a non-empty polyhedron defined by p affine inequali-
ties or faces

ak.x+bk ≥ 0, k = 1, p

3

Then, an affine form ψ is non-negative everywhere in D iff it is a positive affine combination of the faces:

ψ(x)≡ λ0 +∑
k

λk(akx+bk), λ≥ 0 (2)

The non-negative constants λk are referred to as Farkas multipliers. Proof of the if part is obvious. For the
only if part, see Schrijver [Sch87].

2.2 Dependence Abstraction

Our dependence model is the same as the one used by Feautrier [Fea92a] and Lim et al. [LL98, LCL99].
Dependences are determined precisely through dataflow analysis [Fea91]. The Generalized Dependence
Graph (GDG) is a directed multi-graph represented by the tuple (V , E, D, R), where V is the set of vertices
with each vertex representing a statement, E is the set of edges where an edge from node Si to S j represents
a dependence from an instance of Si to an instance of S j. D is a function from V to the polytopes associated
with the statements. R is a function from E to the corresponding dependence relations. There may be multiple
edges between two statements, as well as a self-edge for a vertex. The notation we use is similar to that in
[Fea92a].

For a dependence from Si to S j characterized by an edge e ∈ E, let Re be the corresponding dependence
relation. Then, exact dependence analysis makes sure that the dependence relation Re can be expressed in a
minimal form. A polyhedron Pe and an affine transformation fe are obtained such that

~p ∈ Dsi , ~q ∈ Ds j , 〈~p,~q〉 ∈ Re ≡ (~p = fe(~q)∧~q ∈ Pe) (3)

where Pe = {~q |~q ∈Ds j , fe(~q) ∈Dsi , 〈 fe(~q),~q〉 ∈ Re} and fe represents the affine function mapping the target
iteration vector ~q to the source ~p. fe is known as the h-transformation and Pe is the dependence polyhedron.
We have such an h-transformation and a dependence polyhedron for every dependence, e ∈ E. Let Pe be
defined by:

ce,k

(
~i
~n

)
+de,k ≥ 0, k = 1,me (4)

2.3 Affine transforms

A one-dimensional affine transform for statement Sk is defined by:

φSk =
[
c1 c2 . . . cmSk

](
~i
)

+ c0 (5)

=
[
c1 c2 . . . cmSk

c0

](~i
1

)
= hSk

~i+ c0

where hSk = [c1,c2, . . . ,cmSk
] with c1,c2, . . . ,cmSk

∈ Z.
A multi-dimensional affine transform can be represented as a matrix and a vector. Each row of the matrix

is a 1-d transform and has mSk columns, each column corresponding to a coefficient of of hSk in that order.

4

do i = 1, n
do j = 1, n

(S1) C[i , j] = 0;
end do

end do

do i = 1, n
do j = 1, n

do k = 1, n
(S2) C[i , j] = C[i , j] + A[i ,k] ∗ B[k, j]

end do
end do

end do

do i = 1, n
do j = 1, n

do k = 1, n
(S3) D[i , j] = D[i , j] + E[i ,k] ∗ C[k, j]

end do
end do

end do

S1 S2 S3
i j const i j k const i j k const

c1 1 0 0 1 0 0 0 0 0 1 0
c2 0 1 0 0 1 0 0 0 1 0 0
c3 0 0 0 0 0 0 0 0 0 0 1
c4 0 0 0 0 0 1 0 1 0 0 0

do c1=1, n
do c2=1, n

C[c1,c2] = 0;
do c4=1, n

C[c1,c2] = C[c1,c2] + A[c1,c4] ∗ B[c4,c2]
end do
do c4=1, n

D[c4,c2] = D[c4,c2] + E[c4,c1] ∗ C[c1,c2]
end do

end do
end do

Figure 1. Statement-wise transformation and the corresponding transformed code

The vector carries the translation constants (c0). Such a transformation matrix defines a one-to-one map from
every point in the original iteration space to a point in the target iteration space if and only the matrix has
full column rank, i.e., there are as many independent rows as the dimensionality of the iteration space of the
corresponding statement. However, the total number of rows in the matrix may be much larger as some rows
serve the purpose of representing partially fused or unfused loops at a level. Such a row has all zeros for the
matrix row, and a particular constant for c0: all statements with the same c0 value are fused at that level and
the unfused sets are placed in the increasing order of their c0s.

We now give an example to show how statement-wise full-ranked affine transforms completely determine
the transformed target loop structure and thus the new execution order. This includes fused, unfused, or
partially fused loops as well as permutation, reversal, relative shifting, and skewing. Consider the code in
Fig. 1. All three statements are transformed to a common space of dimensionality equal to the depth of the
statement with the maximum depth (in this case three). Consider the transformation matrices shown. i loop
of S1, i loop of S2, and k loop of S3 are fused as the new c1 loop. c2 target loop is obtained by fusion of the j
loop of S1, j loop of S2, and j loop of S3. c3 represents a split of S3 from S1, S2. The above transformation
is indeed legal and allows immediate consumption of matrix C and it can be contracted to a scalar. As we will
see later, our framework can enable such an transformation automatically.

The above representation for transformations is similar to that used by many researchers: earlier by
[Fea92b, Kel96], and more recently in a systematic way by [CGP+05, GVB+06] and directly fits with scatter-
ing functions that a code generation tool like CLooG [Bas04, clo] supports. On providing such a representa-
tion, the target code shown can be generated by scanning the statement polyhedra in the global lexicographic
ordering w.r.t the new loops c1,c2, Our problem is thus to find the coefficients of the transformation

5

matrices (along with the vectors) that are best for parallelism and locality.

3 Finding good affine transforms

Let there be a dependence from statement instance ~p of Si to~q of S j corresponding to an edge e of the GDG
of a program. After exact dependence analysis, we obtain,

~p = fe(~q), ~q ∈ Pe

where Pe and fe are the dependence polyhedron and the h-transformation respectively as defined in (3).

Lemma 2 Let φsi be a one-dimensional affine transform for Si. For φs1 , φs2 , . . . , φsk , to be a coordinated valid
tiling hyperplane for all statements, the following should hold for each edge e from Si and S j:

φs j (~q) − φsi (~p) ≥ 0, 〈p,q〉 ∈ Re (6)

φs j (~q) − φsi (fe(~q)) ≥ 0, q ∈ Pe

Proof. Tiling defined by a set of tiling hyperplanes is said to be legal if each tile can be executed atomically
and a valid total ordering of the tiles can be constructed. This implies that there exists no two tiles such that
they both influence each other. Since a dependent iteration is mapped to the same hyperplane or a greater
hyperplane than the source, the set of all iterations that are outside of the tile and are influenced by it always
lie in the forward direction along one of the independent tiling dimensions. Similarly, all outside iterations
influencing a tile are either in that tile or in the backward direction along one or more of the tiling hyperplanes.
Hence, an affine transform that satisfies the above constraint can be executed atomically with communication
needed only before and after its execution. The above argument holds true for inter-statement dependences
too. A dependence from ~p of Si to ~q of S j leads to ~q being mapped to a greater or a hyperplane with the
same value, leading to an interleaved execution of tiles of iteration spaces of each statement (when code is
generated from these mappings). Hence, in the presence of any number of dependences, tiles of S1, S2, . . . ,
Sk defined by φs1 , φs2 , . . . , φsk can be executed in an interleaved fashion atomically.

The above condition was well known for the case of a single-statement perfectly nested loop with constant
dependences from the work on Irigoin and Triolet [IT88] (as H.D ≥ 0). We have generalized it above for
multiple iteration spaces with affine dependences (constant and non-constant) with possibly different dimen-
sionalities. Clearly, this exists a strong relationship between tiling hyperplanes of each statement and they are
found in a coordinated fashion. The interleaved execution also leads to the notion of fusion that we discuss
later in this section.

In the rest of this report, we use the term affine transform (with this property) and tiling hyperplane in-
terchangeably, since after applying the transform, the target loop in the transformed iteration space can be
blocked rectangularly as all dependences have positive components along that hyperplane.

Tiling hyperplanes are used for parallelization as well as for data locality optimization. Our goal is to
find optimal hyperplanes for that purpose for all statements, i.e., the output of our algorithm should be, for
each statement, as many hyperplanes as the dimensionality of its iteration space polytope, forming a spanning

6

basis. Since each hyperplane either carries a dependence or puts it in its null space (due to ≥ 0 in Eqn.6),
and since the set of target hyperplanes span the entire polytope of the statement, every dependence is carried
at some level or the other. This approach of finding spanning bases is different from most works in this area
that obtain good schedules as outer loops and then inner parallel loops. Parallel code generation in both cases
is different; we also address this later.

Consider the perfectly nested version of 1-d Jacobi shown in Fig. 2(a) as an example. This discussion also
applies to the imperfectly nested version, but for convenience we first look at the single-statement perfectly
nested version. We first describe solutions obtained by existing state of the art approaches - Lim and Lam’s
affine partitioning [LL98, LCL99] and Griebl’s space and time tiling with FCO placement [Gri04]. Lim
and Lam define legal time partitions which have the same property of tiling hyperplanes we described in
the previous section. Their algorithm obtains affine partitions that minimize the order of communication
while maximizing the degree of parallelism. Using the validity constraint in Eqn 6, we obtain the constraints:
(ct ≥ 0;ci + c j ≥ 0;ci− c j ≥ 0).

for t = 1,T do
for I = 2,N-1 do

a[t,i] = 0.33*(a[t-1,i] + a[t-1,i-1] + a[t-
1,i+1])

end for
end for

(a) 1-d Jacobi: perfectly nested

for t = 1 to T do
for i = 2 to N-1 do

S1: b[i] = 0.33∗ (a[i−1]+a[i]+a[i+1])
end for
for i = 2 to N-1 do

S2: a[i] = b[i]
end for

end for
(b) 1-d Jacobi: imperfectly nested

Figure 2. 1-d Jacobi

i

t

(1,0) (2,1)

i i

t tP1

P0

P3
P2

(1,1)
(1,0)

seq

(1,1)
(1,0)

parallelseq parallelseqparallel

P1 P2

Figure 3. Communication volume with different valid hyperplanes for 1-d jacobi

There are infinitely many valid solutions with the same order complexity of synchronization, but with
different communication volumes that may impact performance. Although it may seem that the volume
may not effect performance considering the fact that communication startup time on modern interconnects
dominates, for higher dimensional problems like n-d Jacobi, the ratio of communication to computation in-
creases (proportional to tile size raised to n−1). Existing works on tiling [SD90, RS92, Xue97] can find near
communication-optimal tiles for perfectly nested loops with constant dependences, but cannot handle arbi-
trarily nested loops. For 1-d Jacobi, all solutions within the cone formed by the vectors (1,1) and (1,−1) are

7

valid tiling hyperplanes1. For imperfectly nested Jacobi, Lim’s algorithm [LL98] finds two valid independent
solutions without optimizing for any particular criterion. In particular, the solutions found by their algorithm
(Algorithm A in [LL98]) are (2,−1) and (3,−1) which are clearly not the best tiling hyperplanes to minimize
communication volume, though they do minimize the order of synchronization which is O(N) (in this case
any valid hyperplane has O(N) synchronization). Figure 3 shows that the required communication increases
as the hyperplane gets more and more oblique. For a hyperplane with normal (k,1), one would need (k +1)T
values from the neighboring tile.

Using Griebl’s approach, we first find that only space tiling is enabled with Feautrier’s schedule being
θ(t, i) = t. With FCO placement along (1,1), time tiling is enabled that can aggregate iterations into time
tiles thus decreasing the frequency of communication. However, note that communication in the processor
space occurs along (1,1), i.e., two lines of the array are required. However, using (1,0) and (1,1) as tiling
hyperplanes with (1,0) as space and (1,1) as inner time and a tile space schedule of (2,1) leads to only one line
of communication along (1,0). Our algorithm finds such a solution.

We now develop a cost metric for an affine transform that captures reuse distance and communication
volume.

3.1 Cost function

We define an affine form δe:

δe(~q) = φsi(~q)−φs j(fe(~q)), ~q ∈ Pe (7)

The affine form δe(~q) holds much significance. This function is also the number of hyperplanes the depen-
dence e traverses along the hyperplane normal. It gives us a measure of the reuse distance if the hyperplane
is used as time, i.e., if the hyperplanes are executed sequentially. Also, this function is a rough measure of
communication volume if the hyperplane is used to generate tiles for parallelization and used as a processor
space dimension. An upper bound on this function would mean that the number of hyperplanes that would
be communicated as a result of the dependence at the tile boundaries would not exceed this bound. We are
particularly interested if this function can be reduced to a constant amount or zero by choosing a suitable
direction for φ: if this is possible, then that particular dependence leads to a constant or no communication
for this hyperplane. Note that each δe is an affine function of the loop indices. The challenge is to use this
function to obtain a suitable objective for optimization in the affine framework.

3.2 Challenges

The constraints obtained from Eqn 6 above only represent validity (permutability). We discuss below
problems encountered when one tries to apply a performance factor to find a good tile shape out of the several
possibilities.

The Farkas lemma has been used by many approaches in the polyhedral model [Fea92a, Fea92b, LL98,
Gri04, CGP+05, PBCV07] to eliminate loop variables from constraints by getting equivalent linear inequal-
ities. The affine form in the loop variables is expressed equivalently as a positive linear combination of the

1For the imperfectly nested version of 1-d Jacobi, the valid cone is (2,1) and (2,−1)

8

faces of the dependence polyhedron. When this is done, the coefficients of the loop variables on the left and
right hand side are equated to eliminate the constraints of variables. This is done for each of the dependences,
and the constraints obtained are aggregated. The resulting constraints are entirely in the coefficients of the tile
mappings and Farkas multipliers. All Farkas multipliers can be eliminated, some by Gaussian elimination and
the rest by Fourier-Motzkin [Sch87]. However, an attempt to minimize communication volume ends up in an
objective function involving both loop variables and hyperplane coefficients. For example, φ(~q)− φ(fe(~q))
could be c1i+(c2− c3) j, where 1≤ i≤ N ∧1≤ j ≤ N ∧ i≤ j. One could possibly end up with such a form
when one or more of the dependences are not uniform, making it infeasible to construct an objective function
involving only the unknown hyperplane coefficients.

A possible approach touched upon by Feautrier is to visit all vertices of the polyhedron in the hyperplane
coefficients space characterized by the constraints that express validity. It is likely that vertices will dominate
all other points in the solution space. However, this procedure is not scalable beyond the smallest inputs. For
example, for a sequence of two nested loops, each with a 3-d iteration space, the number of coefficients is at
least 14. p unknowns could lead to exploration of up to 2p vertices (hypercube) in the worst case.

It is also plausible that a positive spanning basis to the set of constraints obtained is better than other solu-
tions. This is due to the fact that any valid tiling hyperplane can be expressed as a positive linear combination
of the vectors in the positive spanning basis and that the basis represents the tight extreme vectors for the cone
of solutions. This is indeed true for the perfectly nested 1-d Jacobi for which (1,1) and (1,−1) are good hy-
perplanes. However, we do not know whether this holds in the general case, but clearly they are sub-optimal
when compared to (1,0) and (1,1) for perfectly nested 1-d Jacobi.

3.3 Details of Approach

We first discuss a result that would take us closer to the solution.

Lemma 3 If all iteration spaces are bounded, there exists at least one affine form v in the structure parameters
~n, that bounds δe(~q) for every dependence edge e, i.e., there exists

v(~n) = u.~n+w (8)

such that

v(~n) −
(
φsi(~q)−φs j(fe(~q))

)
≥ 0, ~q ∈ Pe,∀e ∈ E (9)

v(~n) − δe(~q) ≥ 0, ~q ∈ Pe,∀e ∈ E

The idea behind the above is that even if δe involves loop variables, one can find large enough constants in
u that would be sufficient to bound δe(~p). Note that the loop variables themselves are bounded by affine
functions of the parameters, and hence the maximum value taken by δe(~p) will be bounded by such an affine
form. Also, since v(~n) ≥ δe(~p) ≥ 0, v should increase with an increase in the structural parameters, i.e., the
coordinates of u are positive. The reuse distance or communication volume for each dependence is bounded
in this fashion by the same affine form.

9

Now, we apply the Farkas lemma to (9).

v(~n)−δe(~q) ≡ λe0 +
me

∑
k=1

λek

(
cek

(
~i
~n

)
+dek

)
(10)

The above is an identity and the coefficients of each of the loop indices in~i and parameters in ~n on the left
and right hand side can be gathered and equated. We now get linear inequalities entirely in coefficients of
the affine mappings for all statements, components of row vector ~u, and w. The above inequalities can be at
once be solved by finding a lexicographic minimal solution with~u and w in the leading position, and the other
variables following in any order.

minimize≺ {u1,u2, . . . ,uk,w, . . . ,c′is, . . .} (11)

Finding the lexicographic minimal solution is within the reach of the simplex algorithm and can be handled
by the PIP software [Fea88]. Since the structural parameters are quite large, we first want to minimize their
coefficients. We do not lose the optimal solution since an optimal solution would have the smallest possible
values for u’s. Note that the relative ordering of the structural parameters and their values at runtime may
effect the solution, but considering this is beyond the scope of this approach.

The solution gives a hyperplane for each statement. Note that the application of the Farkas lemma to (9)
is not required in all cases. When a dependence is uniform, the corresponding δe is independent of any loop
variables, and application of the Farkas lemma is not required. In such cases, we just have w≥ δe.

Finding independent solutions. Minimizing the objective function with the simplex algorithm gives us
a single solution to the coefficients of the best mappings for each statement. We need at least as many
independent solutions as the dimensionality of the polytope associated with each statement. Hence, once a
solution is found, we run the LP solver again to find the next solution with the constraints being augmented
by new ones. The new constraints make sure of independence with solutions found so far. Let the rows of HS

represent the solutions found so far for a statement S. Then, the sub-space orthogonal to HS is given by:

J = I−HT
S
(
HSHT

S
)−1

HS (12)

Note that J.HS
T is 0, i.e., the rows of HS are orthogonal to those of J. Any one of the inequalities given by,

J.~h′S >~0 or J.~h′S <~0 gives the necessary constraint to be added for statement S to make sure that h′S has a
non-zero component in the sub-space orthogonal to HS. Note that orthogonality is satisfied if either one of
the constraints in J.~h′S ≥ 1 or J.~h′S ≤ −1 is satisfied for a given statement. Ideally, all cases have to be tried
and the best among those chosen. When the number of statements is large, this leads to a large number of
cases. In such cases, we restrict ourselves to the sub-space of the orthogonal space where all the constraints
are positive. This leads to the addition of the constraints: J.h′S ≥ 0∧∑Ji.h′S ≥ 1, where Ji is a row of J, i.e., a
single case in which a fixed number of constraints is added for each statement. As more independent solutions
are found, the dimensionality of the orthogonal sub-space reduces and the fixed number of constraints added
for each statement decreases. By just considering a particular portion of the orthogonal sub-space, we are

10

mainly discarding solutions that involve loop reversals or combination of reversals with other transformations.
However, in practice, we believe that this may not make a significant difference.

The mappings found are independent on a per-statement basis. When there are statements with different
dimensionalities, the number of such independent mappings found for each statement is equal to the number
of outer loops it has in the original program. Hence, no more orthogonality constraints need be found for
statements for which enough independent solutions have been found (the rest of the rows get automatically
filled with zeros). As mentioned in Sec. 2.3, the number of rows in the transformation matrix is the same for
each statement and the depth of the deepest loop nest in the target loop code is the same as that of the source
loop nest. Overall, a hierarchy of fully permutable loop nests are found, and a lower level in the hierarchy
will not be obtained unless constraints corresponding to dependences that have been carried by the parent
permutable set have been removed.

3.4 Communication and locality optimization unified

From the algorithm described above, both synchronization-free and pipelined parallelism is found. Note
that the best possible solution to Eqn. (11) is with (u = 0,w = 0) and this happens when we find a hyperplane
that has no dependence components along its normal, which is a fully parallel loop requiring no synchroniza-
tion if it is at the outer level (outer parallel); it could be an inner parallel loop if some dependences were
removed previously and so a synchronization is required after the loop is executed in parallel. Thus, in each
of the steps that we find a new independent hyperplane, we end up first finding all synchronization-free hy-
perplanes; these are followed by a set of fully permutable hyperplanes that are tilable and pipelined parallel
requiring constant boundary communication (u = 0;w > 0) w.r.t the tile sizes. In the worst case, we have a
hyperplane with u > 0,w≥ 0 resulting in long communication from non-constant dependences. It is important
to note that the latter are pushed to the innermost level. By bringing in the notion of communication volume
and its minimization, all degrees of parallelism are found in the order of their preference.

From the point of view of data locality, note that the hyperplanes that are used to scan the tile space are
same as the ones that scan points in a tile. Hence, data locality is optimized from two angles: (1) cache misses
at tile boundaries are minimized for local execution (as cache misses at local tile boundaries are equivalent to
communication along processor tile boundaries); (2) by reducing reuse distances, we are increasing the size
of local tiles that would fit in cache. The former is due to selection of good tile shapes and the latter by the
right permutation of hyperplanes (which is implicit in the order in which we find hyperplanes).

3.5 Space and time in transformed iteration space.

By minimizing φ(q)− φ(p) as we find hyperplanes from outermost to innermost, we push dependence
carrying to inner loops and also ensure that no loops have negative dependences components so that all target
loops can be blocked. Once this is done, if the outer loops are used as space (how many ever desired, say k),
and the rest are used as time (note that at least one time loop is required unless all loops are synchronization-
free parallel), communication in the processor space is optimized as the outer space loops are the k best ones.
All loops can be tiled resulting in coarse-grained parallelism as well as better reuse within a tile. Hence, the
same set of hyperplanes are used to scan points in a tile, while a transformation is necessary in the outer tile

11

space loops to get a tile schedule for parallel code generation. This is addressed in Sec. 3.10.

3.6 Fusion in the affine framework

The same affine hyperplane partitioning algorithm described in the previous section can enable fusion
across multiple iteration spaces that are weakly connected, as in sequences of producer-consumer loops.

Consider the sequence of two matrix-vector multiplies in Figure 4(a). Applying our algorithm on it first
gives us only one solution:

φS1 = (1,0), φS2 = (0,1)

This implies fusion of the i loop of S1 and the j loop of S2. Putting the orthogonality constraint now, we
do not obtain any more solutions. Hence, now removing the dependence dismissed by it, and running affine
partitioning again does not yield any solutions as the loops cannot be fused further. The remaining unfused
loops are thus placed lexicographically inside as shown in Figure 4(b).

do i = 1, N
do j = 1, N
S1: x[i] = x[i]+a[i , j]∗y[j]

end do
end do
do i = 1, N

do j = 1, N
S2: y[i] = y[i]+a[i , j]∗x[j]

end do
end do

(a) Original

do c1 = 1, N
do c3 = 1, N
S1: x[c1] = x[c1]+a[c1,c3]∗y[c3]

end do
do c3 = 1, N
S2: y[c3] = y[c3]+a[c3,c1]∗x[c1]

end do
end do

(b) Fused

S1 S2
i j const i j const
1 0 0 0 1 0
0 0 0 0 0 1
0 1 0 1 0 0

(c) Transformation

Figure 4. Two matrix vector multiplies

Solving for hyperplanes for multiple statements leads to a schedule for each statement such that all state-
ments in question are finely interleaved: this is indeed fusion with either a permutation, a skew, and/or a
constant shift. In many cases, we find it to be a permutation (as in Figure 4) or a constant shift (shown for 1-D
imperfectly nested Jacobi later). Hence, a common tiling hyperplane also represents a fused loop, and can be
employed for components that are weakly connected to reduce reuse distances. Note that it is important to
leave the structure parameter~n out of our affine transform definition in 6 for the above to hold true. The set of
valid independent hyperplanes that can be found from our algorithm when multiple statements are involved is
the maximum number of loops that can be fused for those statements.

Consider the sequence of three matrix vector multiplies such as y = Ax; z = By; w = Cz. Together, these
three loop nests do not have a common surrounding loop. However, it is possible to fuse the first two or
the last two. When our algorithm is run on all three components, no valid tiling hyperplane is found. There
exists a valid tiling hyperplane when the algorithm is ran for M1 and M2, or for M2 and M3, similar to that in
Figure 4. With this motivation, we generalize the notion of fusion in the affine framework.

Fusion for a sequence of loop nests. Given the GDG, a set of nodes on a path can be tested for fusion
using our algorithm. Let there be a path of strongly-connected components (a chain of strongly-connected

12

components that are weakly connected) of length n with a maximum nesting depth of m (for some statement
in it). If there exist m independent solutions to our constraints, the statements are fully fusable, i.e., they can
be embedded into a perfectly nested loop. If no valid solution exists (as in the case of three matrix vector
multiply sequences described earlier), there is no common loop for all of the n statements. The number of
solutions found gives the number of fusible loops. If the number of solutions found is less than m, dependences
between two adjacent strongly connected components need to be cut, and these dependences are ignored from
both validity and objective constraints for solutions to be found yet. Note that there are multiple places
where the cut can be placed. Currently, we use a simple heuristic based on the number of dependences
crossing two adjacent strongly connected components. After transformation, the transformed structures need
to be placed one after the other – this is expressed in the transformation matrix by adding a row (to the
matrix of each statement) which maps all statements preceding the point where the cut was made to zero,
and those after to one – i.e., φ(Si) = 0 if i ≤ u and φ(Si) = 1 if i ≥ v, where Su and Sv are the first and last
statements respectively in the two strongly connected components between which the cut was made. The
process is repeated recursively till as many independent solutions are found for the deepest statement as its
nesting depth. Thus, the transformation matrix found for every statement has full column rank. Rows of
the transformation matrix are in a suitable form to be expressed as scattering functions to a code generation
tool like CLooG [clo, Bas04]. For example, for the sequence of matrix-vector multiplies, the transformation
matrices corresponding to the transformation in Fig. 4 are below.

Multi-dimensional schedules. Code for which other techniques in the literature come up with multidimen-
sional schedules (i.e., code that does not accept one-dimensional schedules), are handled with our algorithm
without any special treatment.

do i = 1, N
do j = 1, N

s = s + a[i , j];
end do

end do

Consider the above example from the literature [Fea92b]. Using our algorithm, (1,0) is the first and the
only hyperplane found that satisfies the permutability constraint for all dependences. Unless dependences
carried by it are removed, we cannot find another solution. When this is done, the dependence (i, j)→ (i′, j′)
where i′ = i+1∧ j = N∧ j′ = 1 is removed; subsequently, (0,1) is found as the next hyperplane.

A loop nest is not amenable to any parallelization if a single solution to the mapping coefficients is obtained
repeatedly at every level, and the last loop also carries a dependence. This corresponds to a completely se-
quential loop nest or multiple loop nests that have only one common surrounding loop (carrying a dependence)
at any level.

3.7 Summary

We can broadly conclude the following from this section. For affine partitioning on a path in the GDG, the
set of independent solutions obtained from our algorithm have the following properties.

13

If k independent solutions are found at any level by our algorithm, the following are equivalent:

1. There exist k fully permutable loops at that level

2. There exist at least k−1 degrees of parallelism

3. There exist k tilable loops at that level

4. There exist k common (fused) surrounding loops at that level

Our entire algorithm is summarized below.

Algorithm 1 Affine transformation algorithm
Input Generalized dependence graph (includes h-transformations and dependence polyhedra)

1: for each dependence d do
2: Build legality constraints: if the dependence is not an intra-statement uniform dependence, apply

Farkas lemma on φ(~q)−φ(fd(~q))≥ 0 under ~q ∈ Pd , and eliminate all Farkas multipliers
3: Build communication volume/reuse distance bounding constraints: apply Farkas lemma to v(~n)−

(φ(~q)−φ(fd(~q))≥ 0 under ~q ∈ Pd , and eliminate all Farkas multipliers
4: Aggregate constraints from the above two into Cd(i)
5: end for
6: repeat
7: C← /0

8: for each dependence d that is not carried do
9: C ← C ∪ Cd(i)

10: end for
11: Find as many independent solutions as possible to C (lexmin with u’s coefficients in the leading posi-

tion); orthogonality constraints are added after each soln is found
12: if no solutions were found then
13: Cut dependences between two strongly-connected components in the GDG and insert the appropriate

splitter in the transformation matrices of the statements
14: end if
15: Remove dependences carried by solutions found above
16: until Enough independent solutions for the statement with maximum iteration space dimensionality are

found
Output A transformation matrix for each statement

3.8 Accuracy of metric and refinement.

The metric we presented here can be refined while keeping the problem within ILP. The motivation behind
taking a max is to avoid multiple counting of the same set of points that need to be communicated for different
dependences. This happens when all dependences originate from the same data space and the same order
volume of communication is required for each of them. Using the sum of max’es on a per-array basis is a
more accurate metric. Also, even for a single array, sets of points with very less overlap or no overlap may
have to be communicated for different dependences. Also, different dependences may have source dependence
polytopes of different dimensionalities. Note that the image of the source dependence polytope under the data
access function associated with the dependence gives the actual set of points to be communicated. Hence, just

14

using the communication rate (number of hyperplanes on the tile boundary) as the metric may not be accurate
enough. This can be taken care of by having different communication volume bounds for dependences with
different orders of communication, and using the bound coefficients for dependences with higher orders of
communication as the leading coefficients while finding the lexicographic minimal solution. Hence, the metric
can be easily refined within the linear cost model we have.

3.9 Limitations

Trade-off between fusion and parallelization. Consider the sequence of matrix vector multiplies shown in
Fig. 4. Fusing it allows better reuse, however it leads to loss of parallelism. Both loop nests can be parallelized
in a synchronization-free fashion when each of them is treated separately, and a synchronization is needed
between them. However, after fusion we only get an inner level of parallelism from the inner loop of S2. Our
approach cannot select the better of these two. It would always fuse if it is legal.

Concurrent start. The choice of space loops in the transformed space need not be just made based on
communication volume. When there is a pipelined start-up processor space, the pipelined start-up can be
eliminated in some cases [KBB+07]. For 1-D Jacobi, it happens that concurrent start can be enabled by split
or overlapped tiling along (1,1), but not along (1,0); using (1,1) as space with split tiling is shown to provide
better performance [KBB+07].

3.10 Parallel code generation

Code generation under multiple affine mappings was first addressed by Kelly et al. [KPR95]. Significant
advances were made by Quilleré et al [QRW00] and more recently by Bastoul [Bas04] and Vasilache et
al [VBC06], and have been implemented into a freely available tool, CLooG [clo]. The transformations we
produce can be readily given to CLooG as scattering functions. Unlike most other works, since we find sets
of fully permutable loops, there may not be a single loop in the transformed space that carries all dependences
(even if the code admits a one dimensional schedule). The outer loops we find are space loops and care
has to be taken in the parallel code generation when these loops are pipelined parallel. Our approach to
coarse-grained (tiled) parallel code generation is as follows.

1. At any level we have a set of fully permutable loops in the transformed space. Tile all loops in each
such set.

2. Perform the following unimodular transformation on only the outer tile loops that step through the tile
space (for each set):
(l1, l2, . . . , lk)→ (l1 + l2 + · · ·+ lk, l2, . . . , lk). This gives us an outer loop that is a valid tile schedule

3. Place a barrier at the end of the tile schedule loop (inside it) - one barrier for each set of permutable
loops found.

15

Fig. 5 shows this for a simple example with tiling hyperplanes (1,0) and (0,1). Since each target loop
has a non-negative component for every dependence and since all dependence are carried at some level or
the other, the sum of all φ’s satisfies is a valid tile schedule. Note that communication still happens along
boundaries of l1, l2, . . . , ls, and the same old hyperplanes l1, l2, . . . , lk are used to scan a tile. Hence, reuse
distances are minimized while scanning a tile and communication in the processor space is minimal. Note
that obtaining an affine schedule and then enabling time tiling would still lead to communication along a
non-optimal hyperplane.

do i = 1, N do
do j = 1, N do

a[i , j] = a[i−1,j] + a[i , j−1]
end do

end do

(a) Original

do t=2, 2n, B
doall P=max(1,t−N), min(t−1,N), B do

do tT=t−p, min(t−p+B,N), 1
do pT = p, min(p+B,N), 1

a[tT,pT] = a[tT−1,pT]+a[tT,pT−1];
end do

end do

end doall
barrier

end do

(b) Coarse-grained parallel barrier

Figure 5. Shared memory parallel code generation example

4 Examples

In this section, we apply our algorithm on different examples.

4.1 Example 1: Non-constant dependences

Figure 6 shows an example from the literature [DV97] with affine non-constant dependences. We ex-
clude the constant c0 from the inequalities as we have a single statement. Dependence analysis produces the
following h-transformations and dependence polyhedra:

do i = 1, N
do j = 2, N
a[i , j] = a[j , i]+a[i , j−1]

end do
end do

P0 P3

P3 P4P2

P3

j

i

P1

P0 P1

P1 P2

P2

P2

P4

P5

spacetime

Figure 6. Example 1: Non-constant dependences

16

flow : a[i′, j′]→ a[i, j−1]

h : i′ = i, j′ = j−1; P1 : 2≤ j ≤ N,1≤ i≤ N

flow : a[i′, j′]→ a[j, i]

h : i′ = j, j′ = i; P2 : 2≤ j ≤ N, 1≤ i≤ N, i− j ≥ 1

anti : a[j′, i′]→ a[i, j]

h : j′ = i, i′ = j P3 : 2≤ j ≤ N, 1≤ i≤ N, i− j ≥ 1

Dependence 1: Tiling legality constraint:

cii+ c j j− cii− c j(j−1)≥ 0 ⇒ c j ≥ 0

Since this is a constant dependence, the volume bounding constraint gives:

w− c j ≥ 0

Dependence 2: Tiling legality constraint:

(cii+ c j j)− (ci j + c ji) ≥ 0, (i, j) ∈ P2

Applying Farkas lemma, we have:

(ci− c j)i + (c j− ci) j

≡ λ0 +λ1(N− i)+λ2(N− j)

+λ3(j− i−1)+λ4(i−1)+λ5(j−1) (13)

λ1,λ2,λ3,λ4,λ5 ≥ 0

LHS and RHS coefficients for i, j, N and the constants are equated in (13) and the Farkas multipliers are
eliminated through Fourier-Motzkin. The reader may verify that doing this yields:

ci− c j ≥ 0

Volume bounding constraint:

u1N +w− (ci j + c ji− cii− c j j)≥ 0, (i, j) ∈ P2

17

Application of Farkas lemma in a similar way as above and elimination of the multipliers yields:

u1 ≥ 0

u1− ci + c j ≥ 0 (14)

3u1 +w− ci + c j ≥ 0

Dependence 3: Due to symmetry with respect to i and j, the third dependence does not give anything more
than the second one.

Finding the transformation. Aggregating legality and volume bounding constraints for all dependences,
we obtain:

c j ≥ 0

w− c j ≥ 0

ci− c j ≥ 0

u1 ≥ 0

u1− ci + c j ≥ 0 (15)

3u1 +w− ci + c j ≥ 0

minimize≺ (u1,w,ci,c j)

The lexicographic minimal solution for the vector (u1,w,ci,c j) = (0,1,1,1)2. Hence, we get ci = c j = 1.
Note that ci = 1 and c j = 0 is not obtained even though it is a valid tiling hyperplane as it involves more
communication: it requires u1 to be positive.

The next solution is forced to have a positive component in the subspace orthogonal to (1,1) given by (12)
as (1,-1). This leads to the addition of the constraint ci− c j ≥ 1 or ci− c j ≤ −1 to the existing formulation.
Adding ci− c j ≥ 1 to (15), the lexicographic minimal solution is (1, 0, 1, 0), i.e., u1 = 1,w = 0,ci = 1,c j = 0
(u1 = 0 is no longer valid). Hence, (1,1) and (1,0) are the best tiling hyperplanes. (1,1) is used as space with
one line of communication between processors, and the hyperplane (1,0) is used as time in a tile. The outer
tile schedule is (2,1) (= (1,0) + (1,1)).

This transformation is in contrast to other approaches based on schedules which obtain a schedule and then
the rest of the transformation matrix. Feautrier’s greedy heuristic gives the schedule θ(i, j) = 2i+ j−3 which
carries all dependences. However, using this as either space or time does not lead to communication or locality
optimization. The (2,1) hyperplane has non-constant communication along it. In fact, the only hyperplane
that has constant communication along it is (1,1). This is the best hyperplane to be used as a space loop if
the nest is to be parallelized, and is the first solution that our algorithm finds. The (1,0) hyperplane is used
as time leading to a solution with one degree of pipelined parallelism with one line per tile of near-neighbor
communication (along (1,1)) as shown in Fig. 4.1. Hence, a good schedule that tries to carry all dependences
(or as many as possible) is not necessarily a good loop for the transformed iteration space.

2The zero vector is a trivial solution and is avoided

18

4.2 Example 2: Imperfectly Nested 1-d Jacobi

Consider the code in Figure 2(b). The affine dependences and the dependence polyhedra are as follows:

(S1,b[i])→ (S2,b[j]) t = t ′∧ j = i

(S2,b[j])→ (S1,b[i]) t = t ′+1∧ j = i

(S2,a[j])→ (S1,a[i]) t = t ′+1∧ j = i

(S1,a[i])→ (S2,a[j]) t = t ′∧ j = i

(S1,a[i+1])→ (S2,b[j]) t = t ′∧ j = i+1

(S1,a[i−1])→ (S2,b[j]) t = t ′∧ j = i−1

(S2,a[j])→ (S1,a[i+1]) t = t ′+1∧ j = i+1

(S2,a[j])→ (S1,a[i−1]) t = t ′+1∧ j = i−1

Our algorithm obtains (ct ,ci) = (1,0) with c0 = 0, followed by (ct ,ci) = (2,1) with c0 = 1, and c′t = ct and
c′i = ci. The solution is thus given by:

φs1 =

 1 0
2 1
0 0

(t
i

)
φs2 =

 1 0
2 1
0 0

(t ′

j

)
+

 0
1
1

Both iteration spaces have the same hyperplanes, with (2,1) hyperplane of S2 having a constant shift; the

resulting transformation is equivalent to a constant shift of S2 relative to S1, fusion and skewing the i loop
with respect to the t loop by a factor of 2. The (1,0) hyperplane has the least communication: no dependence
crosses more than one hyperplane instance along it.

5 Implementation

We have implemented our transformation framework using PipLib 1.3.3 [Fea88] and Polylib 5.22.3 [pol].
Our tool takes as input dependence information (dependence polyhedra and h-transformations) from LooPo’s [loo]
dependence tester and generates statement-wise affine transformations. Flow, anti and output dependences are
considered for legality as well as the minimization objective. The transforms generated by our tool are pro-
vided to CLooG [Bas04] as scattering functions. Fig. 7 shows the flow. The goal is to get tiled shared memory
parallel code, for example, OpenMP code for multi-core architectures.

Figure 7. Implementation status

19

The following are transformations obtained by our tool automatically from C/Fortran source code. The
transformed code was generated using CLooG 0.14.0 [clo]. Note that for examples that follow, CLooG was
run with options to not optimize control so that all statements are embedded into the innermost nest wherever
possible; this is to show that the loops can be blocked in a straightforward fashion (since our framework
finds permutable loops). This adds additional conditional guards which would affect performance; we do not
intend to use these options for final tiled code generation. The original code is shown on the left while the
transformed code with the transformation matrices is on the right. Note that the tiled code is not shown (but
all loop nests are transformed to a tree of fully permutable nests). doall/forall indicates a fully parallel loop
while doallpp/forallpp represents a pipelined parallel loop (a set of pipelined parallel space loops along with
one time loop can enable pipelined parallelism).

5.1 2-d imperfectly nested jacobi

do t=1, n
do i=2,n−1

do j=2,n−1
b[i , j] = a[i−1,j]+a[i , j]+a[i+1, j]

+ a[i , j−1]+a[i, j +1];
end do

end do
do k=2,n−1

do l=2,n−1
a[k, l] = b[k, l];

end do
end do

end do

forallpp (c1=1;c1<=n;c1++){
forallpp (c2=2∗c1+2;c2<=2∗c1+n;c2++){

for (c3=max(c2−n+3,2∗c1+2);
c3<=min(c2+n−3,2∗c1+n);c3++){

if (c1 >= max(ceild(c3−n+1,2),ceild (c2−n+1,2))){
S1(t=c1, i=−2∗c1+c3, j=−2∗c1+c2);
}
if (c1 <= min(floord(c2−3,2), floord (c3−3,2))){

S2(t=c1, i=−2∗c1+c3−1, j=−2∗c1+c2−1);
}
}
}
}

S1 S2
t i j const t k l const
1 0 0 0 1 0 0 0
2 1 0 0 2 1 0 1
2 0 1 0 2 0 1 1

Figure 8. Imperfectly nested 2-d Jacobi

Fig. 8 shows the code and the transformation. The transformation implies shifting the i and j loop of
statement S2 by one iteration each, fusion with S1, skewing of the fused i and j loops with respect to the time
loop by two. This allows tiling of all three loops and extraction of two degrees of pipelined parallelism.

5.2 LU decomposition

Fig. 9 shows the original and transformed code.

5.3 Sequence of Matrix-Matrix multiplies

For the sequence of matrix-matrix multiplies in Fig. 10, each of the original loop nests can be parallelized,
but a synchronization is needed after the first loop nest is executed. The transformed loop nest has one outer

20

do k=1, n
do j=k+1,n

S1: a[k, j] = a[k, j]/ a[k,k];
end do
do i=k+1,n

do j=k+1,n
S2: a[i , j] = a[i , j]
− a[i ,k]∗a[k, j];

end do
end do

end do

doallpp c1=1, n−1
doallpp c2=c1+1, n

S1(k = c1, j = c2)
do c3=c1+1, n

S2(k = c1, i = c3, j = c2)
end do

end do
end do

S1 S2
k j const k i j const
1 0 0 1 0 0 0
0 1 0 0 0 1 0
1 0 0 0 1 0 0

Figure 9. LU decomposition

parallel loop (c1), but reuse is improved as each element of matrix C is consumed immediately after it is
produced (C can be contracted to a single scalar). This transformation is non-trivial and cannot be obtained
from existing frameworks.

5.4 Multiple statement stencils

This code (Fig. 11) is representative of multimedia applications. The transformed code enables immediate
reuse of data produced by each statement at the next statement.

5.5 TCE four-index transform

This is a sequence of four nested loops, each of depth five (Fig. 12), occurring in Tensor Contraction
Expressions that appear in computational quantum chemistry problems [CS90]. Our tool transforms the code
as shown where the producing/consuming distances between the loops have been reduced.

5.6 Experimental results on running time

Table 5.6 shows the running times of a preliminary implementation of our transformation framework for
five different compute kernels - imperfectly-nested 2-d Jacobi, Haar’s 1-d discrete wavelet transform, LU
decomposition, TCE 4-index transform and swim kernel (from spec2000fp). Running times were measured
on an Intel Core 2 Duo 2.4 GHz processor (2 MB L2 cache) running Linux kernel version 2.6.20. Results
show that the tool with preliminary optimizations already runs very fast. The number of loops shown in the
table is the sum of the number of outer loops of all statements in the original code. We plan an extensive study
on performance achieved with codes generated by the developed framework - this will require additional
work, including some adaptations to CLooG to generate OpenMP code for the loops we detect as parallel
(with barrier’s placed where necessary) and tile size determination and fusion structure selection through use
of an empirical search engine. Given the current speed of the tool, we are confident that the model can be
further refined to any degree if needed to enable transformations that work best.

21

do i = 1, n
do j = 1, n

do k = 1, n
S1: C[i , j] = C[i , j] + A[i ,k] ∗ B[k, j]

end do
end do

end do

do i = 1, n
do j = 1, n

do k = 1, n
S2: D[i , j] = D[i , j] + E[i ,k] ∗ C[k, j]

end do
end do

end do

doall c1 = 1, n
do c2 = 1, n

do c4 = 1, n
S1(i=c1, j=c2, k=c4)

end do
do c4 = 1, n

S2(i=c4, j=c2, k=c1)
end do

end do
end do

S1 S2
i j k const i j k const
1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0

Figure 10. Sequence of MMs

Code Num of Num of Num of Running
statements loops deps time

2-d Jacobi 2 6 20 0.05s
Haar 1-d 3 5 12 0.018s

LU 2 5 10 0.022s
TCE 4-index 4 20 15 0.20s

Swim 58 110 639 20.9s

Table 1. Transformation tool running time (preliminary)

6 Related work

Iteration space tiling [IT88, Wol89, WL91, RS92] is a standard approach for aggregating a set of loop
iterations into tiles, with each tile being executed atomically. In addition, researchers have considered the
problem of selecting tile shape and size to minimize communication, improve locality or minimize fin-
ish time [SD90, RS92, BDRR94, Xue97, HCF97, HCF99, HS02, RR04]. These works are restricted to
single perfectly nested loops with uniform dependences. Some of these works (especially those in the
nineties) [SD90, RS92, BDRR94, Xue97, HCF97] gave key insights into the notion of partitioning and its
implication on parallel performance. However, such input are toy examples by current standards given the
need to optimize real world code.

Loop parallelization has been studied extensively. The reader is referred to [BDSV98] for a detailed survey
of older parallelization algorithms which accepted restricted input and/or are based on weaker dependence
abstractions outside of the polyhedral model. Kelly and Pugh’s algorithm finds one dimension of parallelism
for programs with arbitrary nesting and sequences of loops [KP93, KP96]. Their program transforms in-
clude loop permutations and reversals, but not loop skewing. The exclusion of loop skewing enables them to
enumerate all the possible transformation choices and select the best one based on communication cost.

Scheduling with affine functions using faces of the polytope by application of the Farkas algorithm was

22

do i = 2, n−1
a1[i] = a0[i−1] + a0[i] + a0[i +1];

end do
do i = 2, n−1

a2[i] = a1[i−1] + a1[i] + a1[i +1];
end do
do i = 2, n−1

a3[i] = a2[i−1] + a2[i] + a2[i +1];
end do
do i = 2, n−1

a4[i] = a3[i−1] + a3[i] + a3[i +1];
end do
do i = 2, n−1

a5[i] = a4[i−1] + a4[i] + a4[i +1];
end do

do c1=2, n+3
if (c1 <= n−1) then

S1(i = c1)
end if
if ((c1 >= 3) .and. (c1 <= n)) then

S2(i = c1−1)
end if
if ((c1 >= 4) .and. (c1 <= n+1)) then

S3(i = c1−2)
end if
if ((c1 >= 5) .and. (c1 <= n+2)) then

S4(i = c1−3)
end if
if (c1 >= 6) then

S5(i = c1−4)
end if

end do

S1 S2 S3 S4 S5
i const i const i const i const i const
1 0 1 1 1 2 1 3 1 4

Figure 11. Multi statement stencil

first proposed by Feautrier [Fea92a]. Feautrier explored various possible approaches to obtain good affine
schedules that minimize latency. The one-dimensional schedules (wherever they can be found) carry all
dependences and so all the inner loops are parallel. Using reasonable heuristics usually yields good solutions.
However, transforming to permutable loops that are amenable to tiling or detecting outer parallel loops is
not addressed. As discussed and shown in Sec. 3, using this schedule as one of the loops for parallel code
generation does not necessarily optimize communication or locality. Hence, schedules need not be good
hyperplanes for tiling. Several works [Gri04, CGP+05, PBCV07] make use of such schedules. Though
this approach yields maximal inner parallelism, tiling the time loop is not possible unless communication
in the space loops is in the forward direction (dependences have positive components along all dimensions).
Enforcing (6) for each dependence while finding hyperplanes enables detection of fully permutable loop nest
sets as well as allows us to put the minimization objective for synchronization and reuse distances. Our
algorithm ends up finding inner parallel loops only if permutable loops are not available. Overall, Feautrier’s
works [Fea92a, Fea92b] are geared towards finding minimum latency schedules and maximum fine-grained
parallelism as opposed to tilability for coarse-grained parallelization with minimized communication and
better locality.

Lim and Lam [LL98, LCL99] use the same exact dependence model as us and propose an affine framework
that identifies outer parallel loops (communication-free space partitions) and permutable loops (pipelined
parallel or tilable loops) with the goal of minimizing the order of synchronization. They employ the same
machinery for blocking [LLL01]. Several (infinitely many) solutions equivalent in terms of the criterion they
optimize for result from their algorithm, and these significantly differ in communication cost; no metric is

23

provided to differentiate between these solutions. Also, tiling for locality is not handled in an integrated
way with parallelization. Fusion across a sequence of weakly connected components to optimize a sequence
of producer/consumer loops is not addressed. The structure of the transformation matrices in the presence
of statements with different dimensionalities, partially fused loops and the associated code generation is not
discussed. Our solution addresses all of these aspects.

Ahmed et al. [AMP01] propose a framework for data locality optimization of imperfectly nested loops
for sequential execution. The approach determines the embedding for each statement into a product space,
which is then considered for locality optimization through another transformation matrix. Their framework
was among the first to address tiling of imperfectly nested loops. However, the technique used for minimizing
reuse distances is based on a rather ad-hoc heuristic that does not guarantee good solutions or even a solu-
tion. The reuse distances in the target space for some dependences are set to zero with the goal of obtaining
solutions to the embedding function/transformation matrix coefficients. However, the choice of the depen-
dences and the number (which is crucial) is determined heuristically. Moreover, setting some reuse classes to
zero (or a constant) need not completely determine the embedding function or transformation matrix coeffi-
cients. Exploring all possibilities is infeasible. Overall, the automatability of the approach is unclear from the
description.

Griebl [Gri04] presents an integrated framework for optimizing data locality and parallelism with space and
time tiling. Though Griebl’s approach enables time tiling by using a forward communication-only placement
with an existing schedule, it does not necessarily lead to communication/locality-optimized solutions. This
is mainly due to tiling being modeled and enabled as a post-processing as opposed to being integrated into a
transformation framework. Also, loop fusion is not addressed. Overall, as described earlier (Sec. 3), using
schedules as time loops (even with some post-processing) is not best for coarse-grained parallelization.

Cohen et al., Girbal et al. [CGP+05, GVB+06] proposed and developed a framework (URUK/WRAP-IT) to
compose sequences of transformations in a semi-automatic fashion. Transformations are manually specified
by an expert and are applied automatically. Pouchet et al. [PBCV07] searches the space of transformations
to find good ones through iterative optimization by employing performance counters. This is because the
space of valid transformations for loop nests is very large. Our approach automatically and directly obtains
good transformations without search. However, in many cases empirical and iterative optimization is required
to choose transforms that work best in practice. This is true, for example, when we need to choose among
several different fusion structures and our algorithm cannot differentiate between them, or when there is a
trade-off between fusion and parallelization (Sec. 3.6). Also, effective determination of tile sizes and unroll
factors for transformed whole-programs may only be possible through empirical search through performance
measurement. A combination of our affine transformation algorithm and empirical search in a smaller space
is an interesting approach to pursue. Alternatively, more powerful cost models like computing Ehrhart poly-
nomials [VSB+04] can be employed once solutions in a smaller space can be enumerated.

7 Conclusions

We have presented a single affine transformation framework that can optimize imperfectly nested loop
sequences for parallelism and locality simultaneously. Our framework is also more advanced than previous
frameworks on each of the two complementary aspects of coarse-grained parallelization and locality. The

24

approach also enables fusion in the presence of producing-consuming loops. The framework has been imple-
mented into a tool to perform transformations in a fully automatic way from C/Fortran code.

Acknowledgments

We would like to thank Martin Griebl and team (FMI, Universität Passau, Germany) for the LooPo infras-
tructure. We would also like to thank Cédric Bastoul (Paris-Sud XI University) and all other contributors for
CLooG. This work is supported in part by the U.S. National Science Foundation through grants 0121676,
0121706, 0403342, 0509442, and 0509467.

References

[AMP01] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Synthesizing transformations for locality
enhancement of imperfectly-nested loop nests. International Journal of Parallel Programming,
29(5), October 2001.

[Bas04] Cédric Bastoul. Code generation in the polyhedral model is easier than you think. In IEEE
Conference on Parallel Architecture and Compilation Techniques, pages 7–16, September 2004.

[BDRR94] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling? Integration,
the VLSI Journal, 17(1):33–51, 1994.

[BDSV98] Pierre Boulet, Alain Darte, Georges-André Silber, and Frédéric Vivien. Loop parallelization
algorithms: From parallelism extraction to code generation. Parallel Computing, 24(3–4):421–
444, 1998.

[CGP+05] Albert Cohen, Sylvain Girbal, David Parello, M. Sigler, Olivier Temam, and Nicolas Vasilache.
Facilitating the search for compositions of program transformations. In ACM ICS, pages 151–160,
June 2005.

[clo] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[CS90] Lawrence A. Covick and Kenneth M. Sando. Four-index transformation on distributed-memory
parallel computers. Journal of Computational Chemistry, pages 1151 – 1159, November 1990.

[DV97] Alain Darte and Frederic Vivien. Optimal fine and medium grain parallelism detection in polyhe-
dral reduced dependence graphs. Int. J. Parallel Programming, 25(6):447–496, December 1997.

[Fea88] P. Feautrier. Parametric integer programming. Operationnelle/Operations Research, 22(3):243–
268, 1988.

[Fea91] Paul Feautrier. Dataflow analysis of array and scalar references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[Fea92a] Paul Feautrier. Some efficient solutions to the affine scheduling problem: I. one-dimensional
time. International Journal of Parallel Programming, 21(5):313–348, 1992.

25

[Fea92b] Paul Feautrier. Some efficient solutions to the affine scheduling problem. part II. multidimensional
time. International Journal of Parallel Programming, 21(6):389–420, 1992.

[Fea96] Paul Feautrier. Automatic parallelization in the polytope model. In The Data Parallel Program-
ming Model, pages 79–103, 1996.

[GLW98] Martin Griebl, Christian Lengauer, and S. Wetzel. Code generation in the polytope model. In
IEEE PACT, pages 106–111, 1998.

[Gri04] Martin Griebl. Automatic Parallelization of Loop Programs for Distributed Memory Architec-
tures. FMI, University of Passau, 2004. Habilitation Thesis.

[GVB+06] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and
Olivier Temam. Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. Intl J. of Parallel Programming, 34(3):261–317, June 2006.

[HCF97] K. Högstedt, Larry Carter, and Jeanne Ferrante. Determining the idle time of a tiling. In Proceed-
ings of PoPL ’97, pages 160–173, 1997.

[HCF99] Karin Hogstedt, Larry Carter, and Jeanne Ferrante. Selecting tile shape for minimal execution
time. In SPAA, pages 201–211, 1999.

[HS02] Edin Hodzic and Weijia Shang. On time optimal supernode shape. IEEE Trans. Par. & Dist. Sys.,
13(12):1220–1233, 2002.

[IT88] F. Irigoin and R. Triolet. Supernode partitioning. In PoPL, pages 319–329, 1988.

[KBB+07] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam, A. Rountev, and
P. Sadayappan. Effective Automatic Parallelization of Stencil Computations. In ACM SIGPLAN
PLDI 2007, July 2007.

[Kel96] Wayne Kelly. Optimization within a unified transformation framework. Technical Report CS-
TR-3725, 1996.

[KP93] W. Kelly and W. Pugh. Determining schedules based on performance estimation. Technical
Report UMIACS-TR-9367, University of Maryland, College Park, December 1993.

[KP96] Wayne Kelly and William Pugh. Minimizing communication while preserving parallelism. In
ICS, pages 52–60, 1996.

[KPR95] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In FRONTIERS ’95:
Proceedings of Symposium on the Frontiers of Massively Parallel Computation, page 332, 1995.

[LCL99] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. An affine partitioning algorithm to maxi-
mize parallelism and minimize communication. In ACM ICS, pages 228–237, 1999.

26

[LL98] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchronization with
affine partitions. Parallel Computing, 24(3-4):445–475, 1998. Extended version of PoPL’97
paper.

[LLL01] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across arbitrarily nested loops
using affine partitioning. In ACM SIGPLAN PPoPP, pages 103–112, 2001.

[loo] LooPo - Loop parallelization in the polytope model. http://www.fmi.uni-passau.de/loopo.

[PBCV07] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhedral
model: Part I, one-dimensional time. In ACM CGO, March 2007.

[pol] PolyLib - A library of polyhedral functions.
http://icps.u-strasbg.fr/polylib/.

[Pug92] W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. Communications of the ACM, 8:102–114, August 1992.

[QRW00] Fabien Quilleré, Sanjay V. Rajopadhye, and Doran Wilde. Generation of efficient nested loops
from polyhedra. Intl J. of Parallel Programming, 28(5):469–498, 2000.

[RR04] L. Renganarayana and Sanjay Rajopadhye. A geometric programming framework for optimal
multi-level tiling. In SC, 2004.

[RS92] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicomputers.
Journal of Parallel and Distributed Computing, 16(2):108–230, 1992.

[Sch87] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1987. SchRI a 87:1
1.Ex.

[SD90] R. Schreiber and J. Dongarra. Automatic blocking of nested loops. Technical report, University
of Tennessee, Knoxville, TN, August 1990.

[VBC06] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhedral code generation in the real
world. In International Conference on Compiler Construction (ETAPS CC’06), pages 185–201,
March 2006.

[VBGC06] Nicolas Vasilache, Cédric Bastoul, Sylvain Girbal, and Albert Cohen. Violated dependence anal-
ysis. In ACM ICS, June 2006.

[VSB+04] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe.
Analytical computation of ehrhart polynomials: enabling more compiler analyses and optimiza-
tions. In CASES, pages 248–258, September 2004.

[WL91] Michael Wolf and Monica S. Lam. A data locality optimizing algorithm. In PLDI ’91, pages
30–44, 1991.

27

[Wol89] M. Wolf. More iteration space tiling. In Proceedings of Supercomputing ’89, pages 655–664,
1989.

[Xue97] Jingling Xue. Communication-minimal tiling of uniform dependence loops. Journal of Parallel
and Distributed Computing, 42(1):42–59, 1997.

28

do a = 1, N
do q = 1, N

do r = 1, N
do s = 1, N

do p = 1, N
T1[a,q, r , s] = T1[a,q, r , s]

+ A[p,q, r , s]∗C4[p,a]
end do

end do
end do

end do
end do

do a = 1, N
do b = 1, N

do r = 1, N
do s = 1, N

do q = 1, N
T2[a,b, r , s] = T2[a,b, r , s]

+ T1[a,q, r , s]∗C3[q,b]
end do

end do
end do

end do
end do

do a = 1, N
do b = 1, N

do c = 1, N
do s = 1, N

do r = 1, N
T3[a,b,c , s] = T3[a,b,c , s]

+ T2[a,b, r , s]∗C2[r,c]
end do

end do
end do

end do
end do

do a = 1, N
do b = 1, N

do c = 1, N
do d = 1, N

do s = 1, N
B[a,b,c ,d] = B[a,b,c ,d] + T3[a,b,c , s]∗C1[s,d]

end do
end do

end do
end do

end do

(a) Original

doall c1=1, N
do c2=1, N

doall c4=1, N
doall c5=1, N

do c7=1, N
S1(i = c1, j = c5,k = c4, l = c2,m = c7)

end do
do c7=1, N

S2(i = c1, j = c7,k = c4, l = c2,m = c5)
end do

end do
end do
doall c4=1, N

doall c5=1, N
do c7=1, N

S3(i = c1, j = c5,k = c4, l = c2,m = c7)
end do
do c7=1, N

S4(i = c1, j = c5,k = c4, l = c7,m = c2)
end do

end do
end do

end do
end do

(b) Transformed code

Figure 12. TCE 4-index transform

29

