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ABSTRACT
There have been a number of significant pandemics in hu-
man history such as cholera, influenza, and smallpox. These
pandemics are widespread, highly infectious, and kill a large
number of people. Recently with the outbreak of H5N1 in-
fluenza virus in avian populations, it is speculated that an-
other serious transmissible pandemic might occur because
of the mutations in unstable H5N1 strain. Therefore, it is
essential to be prepared for such a sudden and fatal trans-
missible disease outbreak. In this paper, we develop several
containment strategies or policies to curb such infectious dis-
eases from spreading. As part of this study, we design and
evaluate several vaccination policies which identify individu-
als and locations which are critical in spreading the disease.
We propose a novel quarantining methodology that is based
on hierarchical clustering. We demonstrate the effective-
ness of the proposed strategies using datasets generated by
EpiSims system. We, further, evaluate the robustness of the
policies under various practical constraints such as limited
number of anti-viral drugs, and delay in implementation of
quarantining and vaccination policies.

1. INTRODUCTION
Pandemic diseases such as the avian influenza are ex-

tremely infectious and lethal. This infectious disease is caused
by the type A strains of influenza virus and has now spread
to 13 different countries in Asia and Europe. Outbreak of
pathogenic H5N1 avian influenza or bird flu was first re-
ported in 2003 in South-East Asia. Over a past couple of
years, several cases of influenza virus have been observed
worldwide such as in China, Indonesia, Egypt etc. Till
date, a total of 229 human cases have been reported caus-
ing 131 deaths1. In the year of 2006, cases of bird flu were
also reported in Turkey and Iraq. This was the first time
the presence of this virus was recorded in these countries,
demonstrating the ability of the virus to spread worldwide
and effect individuals across all age groups. Through a pro-
cess of re-assortment events and adaptive mutations in the
influenza virus, outbreak of a fully transmissible large-scale
pandemic is not an improbable postulation. Furthermore,
increase in global transport, urbanization and overcrowded
conditions, can act as catalyst in the spread of the disease.
A combination of these factors can, unfortunately, lead to
serious outbreak of the disease that can spread more quickly
than in the past, overwhelming countries and health systems
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that are not adequately prepared.
Given such a lethal threat, it is essential to be prepared

for the potential pandemic outbreak. A straightforward
and foolproof strategy is to vaccinate the whole population.
However, the cost associated with this approach is extremely
high. Apart from the prohibitive cost, man power and lo-
gistics required to administer a population wide vaccination
makes this policy an impractical option. Please note that
population wide vaccination for diseases like smallpox and
polio is implemented in a very controlled and precise fashion.
The vaccines are given to infants during their early years.
Moreover, since the virus also mutates frequently, the flu
vaccine must be concocted anew each year, which makes
the option of vaccinating the whole population improbable
(if not impossible). Therefore, it is imperative to develop
effective and efficient policies to control the outbreak of new
diseases with limited resources.

Typically, an infected individual is likely to transmit the
disease to a healthy person in close spatial vicinity if there is
an interaction. The actual length and nature of the interac-
tion leading to disease transmission depends on the disease
specific properties. Therefore, understanding and modeling
the interactions among people and their movement in spa-
tially proximate geographic regions is the key for assessing
the transmissibility of the virus and using that information
to develop containment policies. In this paper, we focus on
People-People Interactions(PPI) and People-Location Inter-
actions(PLI).

PPI, as the name suggests, captures the relationships amo-
ng individuals. These interactions are used to find people
who are either more susceptible to the disease or are capa-
ble of infecting several other individuals. In case of limited
vaccines, highest priority should be given to vaccinate these
individuals.

PLI models the relationships between people and loca-
tions. This is used to find locations where the presence of
an infected person can be extremely hazardous. For exam-
ple, an infected individual going to school or mall. Again,
in case of limited resources, these locations should be quar-
antined first. Apart from above mentioned interactions, the
inherent properties of spatial regions can also augment the
disease spread in that region. The importance of this anal-
ysis was exemplified by John Snow2 who traced the source
of Cholera to water sources by studying the disease spread
rate in London during 1854 epidemic.

The key contribution of this study are:

• We have developed several vaccination and quarantin-
2http://en.wikipedia.org/wiki/John Snow (physician)



ing policies based on PPI and PLI. We evaluated the
effectiveness of these policies by calculating the pre-
vention rate in each case.

• We explored the possibility of combining these policies
to derive hybrid policies which can result in higher
prevention rates.

• We evaluated the proposed strategies under several
practical constraints like limited number of anti-viral
drugs and the delay in implementation of the policies.

• We also employed hierarchical clustering to discover
the spatial regions which require immediate attention
due to high disease spread rate.

This paper is organized as follows: In Section 2, we describe
the simulation and data models. Section 3 presents various
vaccination and quarantining policies. Finally, we present
the study of effectiveness of proposed policies in Section 4
followed by related work and conclusions.

2. DATA AND MODELS
We use the simulation data generated using Episims[6]3 .

EpiSims is a tool for simulating the spread of epidemics at
the level of individuals in a large urban region, taking into
account the realistic contact patterns and the disease trans-
mission characteristics. It simulates the disease dynamics
over an instance of time varying social contact network of
individuals. These simulations are intended to model in-
fluenza virus, and the model assumes that an infected person
can not be re-infected. During the course of simulation, an
infected person can infect other individuals with whom that
person is involved in certain activity (as defined by the con-
tact network). When a person gets infected, the time and
place at which the infection occurred is recorded by the sys-
tem. The dataset used in this paper represent the synthetic
population of the city of Portland, USA and captures the
interactions among individuals. The dataset includes the
following geographical and demographic information about
locations and individuals:

• a set of individuals in the city of Portland with de-
mographic information like gender, age, income, and
house address(id).

• a set of daily activities of each individual.

• a set of aggregated activity locations with associated
geographic information i.e., x, y coordinates.

• a social contact network of people representing the in-
teractions among them. These interactions are tagged
with the duration for which the contact is made.

• a description of disease outbreak and spread that in-
cludes the time and place when a person is infected.
It also contains the information for other individuals
present at that location.

The data consists of 1.6 million people spread over 246, 000
different locations. At any given time during the simula-
tion, an individual is involved in one of the following ac-
tivities: Home (id: 0), Work (1), Shop (2), Visit (3), So-
cial/Recreation (4), Other (5), Pick up (6), School (7) and
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College (8). These activities define the person’s interactions,
if any, with other people. At the start of the simulation, 100
individuals are selected and are marked as diseased. The
system is, then, run to simulate 100 days. With no con-
tainment policies, about 565, 600 people (∼ 35% of whole
population) are infected by the end of 100th day.

The given simulation data can be modeled in many differ-
ent ways. The models should capture the interactions among
people and the interplays between people and locations. We
use two representations, People - Locations Activities Graph
(PLA) and People - People Contacts Network (PPC) (Fig-
ure 1). The models are generic in nature and hence many
graph theoretic algorithms can easily be applied to them.
Though, these two models seem to capture different inter-
actions, one model can be derived from the other. In our
discussion, we chose to differentiate these two models for the
ease of exposition.

The PLA graph, (VP , VL, EP ), is a bi-partite graph and
models the relationship between people and locations in the
city. VP and VL represents the set of all people and locations,
respectively. An edge (Pi, Lj) ∈ EP implies that the person
Pi is connected to the location Lj . Each edge is weighted
with the type, start time, and duration of the corresponding
activity. Therefore, an edge (Pi, Lj) ∈ Ep, weighted with
a, s, and d implies that person Pi was at location Lj for d
hours starting at s to perform activity a.

The PPC network, (VC , EC) captures the social interac-
tions among individuals, where the individual are repre-
sented by nodes and an edge represent an interaction be-
tween two individuals. The edges in this network are weighted
with type, start time and duration of the contact. Contact
type is the purpose of interaction, i.e., it defines the activity
type for which the contact is made. It is one of the 9 differ-
ent activities (mentioned above). Contact hours (0 − 23) is
the duration for which the contact is made. An edge (Pi, Pj)
∈ EC weighted with c, s, h implies that the person Pi is in
contact with Pj for the purpose of c and for the duration of
h hours, starting at s.

We observe that PLA graph and PPC networks are scale-
free networks. Their degree distributions follow the power
law, i.e., number of nodes with degree k falls as k−α for
some constant α. For example, in PLA graph, we observe
the value of α to be between 1.7 − 2.1 for locations and
around 1.8 for people. Interested readers are referred to
Barabasi[1] and Newman[12] for an excellent discussion on
scale-free networks and power law.

Figure 1: Data Models (a) People - Locations Activ-
ities graph and (b) People - People Contacts network

We now present the effect of demographic attributes like



Figure 2: Effect of attributes on disease outbreak (a) Household size (b) Contact Type (c) Age (d) Contact
Hours

age, household size etc. on the disease spread. Such an anal-
ysis can help in developing probability functions which can
aid in gaining better insights into the data. We concentrate
on four attributes viz., household size, contact type, age, and
hours of contact. Figure 2 illustrates the effect of these at-
tributes on disease spread. X-axis in each graph shows the
type of attribute and Y-axis gives the number of people who
got infected. Not surprisingly, an infected person in a larger
household is more infectious than an infected person in a
smaller household, because the person in larger household
can spread the infection to more number of people. For ex-
ample, an infected person in an household of size 14 can
infect 80% of the other household members. Figure 2 (b)
illustrates how the contact type effects the probability of a
person to get infected. All types of contacts are not equally
infectious. Contacts at schools and work places are far more
infectious than other contacts. Similarly, a person’s age can
also effect the susceptibility of the person to the disease.
We can infer that the people who are between the age of 5
and 60 are more susceptible to the infection than the people
from other age groups. This can be explained by the fact
that people from age group 5 - 60 are probable candidates
to visit places with high probability in spreading the infec-
tion like schools and work places. The downward trend at
higher ages should not be mistaken for less number of people
in that age group. The y axis in this case depicts the per-
centage of infected people and not the actual counts. Along
with the activity type, duration of the contact also effects
the person’s susceptibility to the disease. Chances of getting
the infection is directly proportional to the time spent with
the infected person.

Based on this analysis, we develop probability functions
which maps the value of attribute to susceptibility to the
disease. Let us consider the example of contact types. From
figure 2 (b), we can infer that 24% of the people going to
the work and 21% of the people attending the school are
infected. By normalizing the percentages over all the ac-
tivities, we can model the effect of contact type as a dis-
crete probability distribution function. In similar spirit, we

can construct probability mass functions for other attributes
also. Based on a person’s attributes (age, household size
etc.) and the above developed attribute specific functions,
we can derive the probability with which the person gets
infected by simply multiplying the corresponding probabili-
ties. These probabilities can then be used to assign weights
to edges.

3. STRATEGIES
As mentioned earlier, a naive strategy to contain the dis-

ease is by vaccinating the whole population. However, dif-
ficulty in implementing and high cost renders this scheme
practically infeasible. Another seemingly correct approach
is to vaccinate all the household members of the 100 ini-
tially infected people. This strategy is easy to implement
and cheap but not effective. It could only prevent 66, 419
cases out of a total of 565, 685 cases. Therefore, there is
a need for more sophisticated methods which take into ac-
count interactions among people, effect of locations, activity
type and number of contact hours. In this section, we pro-
pose several such policies. Each of the proposed strategy
chooses a set of people to vaccinate from the whole popula-
tion. Intuitively, we would like to choose and vaccinate the
people who are more probable to get infected. Sections 3.1
to 3.5 presents the vaccinating policies, which are based on
people’s interaction network. Vaccinating policy presented
in section 3.6 takes both spatial and temporal dimensions of
people’s movement into consideration. Quarantining poli-
cies are described in section 3.7.

3.1 Random Vaccination
This strategy randomly chooses the set of people to vacci-

nate. A simple random sampling without replacement (SR-
SWR) is employed for this purpose. Random numbers are
generated using a Uniform distribution.

3.2 Contacts Driven Vaccination
Another vaccinating policy is to select the people who

are directly in contact with an infected person. One can



continue to higher levels by choosing the people who are
in direct contact with the contacts of infected person, and
so on. In graph theoretic terms, this algorithm is same as
Breadth-First Search (BFS). We start the BFS from each of
the 100 people who are initially infected (sources of BFS).
At level i, we select nodes which are connected to the source
by i − 1 nodes or i edges.

3.3 Sociability Driven Vaccination
This vaccinating policy is based on the sociability of in-

dividuals. Intuitively, a more sociable person has higher
chances of getting infected than a person who is less so-
ciable. We use the degree of a person in PPC graph (i.e.,
the number of contacts) as a measure of person’s sociability.
As mentioned in section 2, PPC network is a scale-free net-
work. The distinguishing feature of a scale free networks is
the presence of centrally located and highly connected nodes
known as hubs. In the PPC network, vertex degrees (i.e.,
number of contacts) varies from 0 to 277 with the µ = 39
and the σ2 = 33.28. There are 956 people (0.06% of pop-
ulation) with number of contacts ≥ to 200. These hubs
correspond to people who are much more societal compared
to others. A straight forward strategy will be to vaccinate
these hubs to control the outbreak. But, vaccinating these
956 people could only prevent 4655 cases, which is less than
1% of total number of infected people. Vaccinating people
with number of contacts ≥ 150 could prevent only 12% of
the cases. Therefore, vaccinating just the hubs is not very
effective in containing the spread of the disease. Instead of
concentrating on just the hubs, we propose to vaccinate all
the nodes with degree greater than a fixed cutoff degree. The
cutoff degree should be chosen carefully. Ineffective policy of
vaccinating hubs corresponds to the choice of higher d. Too
small of a cutoff degree will amount to vaccinating a very
large percentage of the population, which will be cost inef-
fective. However, it can lead to better prevention rate. We
discuss the detailed results highlighting the effect of chosen
degree on the prevention rate in section 4.

3.4 Profile Based Vaccination
People with similar contact networks have similar prob-

abilities of getting infected. In this strategy, we vaccinate
the set of people whose contact network is similar to the
contact network of an infected person. We make use of ran-
dom walks on the PPC network to select the set of such
people. Random walk is a process consisting of sequence of
discrete steps of fixed length. In our context, each discrete
step corresponds to traversing an edge of the graph. Ran-
dom walk starts at a node (i.e., person) referred to as source
of the walk. At each step, next node in the walk is chosen
randomly from all the nodes, which are adjacent (connected
directly) to the current node. Multiple random walks from a
given node can be performed using restarts, i.e., at each step
during the walk we can restart from the source with certain
probability known as restarting probability. Two people are
considered to have similar profiles if their contact networks
are similar. Sun et. al [13] have demonstrated, in context
of bi-partite graphs, that random walk with restarts is very
effective in determining nodes which are most relevant (i.e.,
more similar) to the source node. If the source is an infected
person, random walk visits a set of people who have simi-
lar profile as of the source. Therefore, people visited during
such random walks are more susceptible to the infection and

should be vaccinated first.
We treat each of the 100 initially infected people as sources

of the random walks. In traditional random walk, probabil-
ity of an edge to be taken is same for all the edges incident
on a given node. From Figure 2(b), we know that the con-
tact type and hours of contact effects a person’s susceptibil-
ity to infection. Each edge in the contact network is thus
weighted based on the probability distributions constructed
for attributes, contact type and the duration of contact (as
described in section 2). Assume that v is an intermediate
node in the random walk and Ev = {e1, e2, ..., en} is the
set of edges incident on v. Let edge ei corresponds to one
of the v’s contact with type X and duration H. Assume
that px and ph are the probabilities of getting infected for
contact type X and the duration of contact H, respectively.
Each edge ei is then weighted with the product px ×ph. We
normalize the weights of all the edges incident on v such
that the sum of weights is 1. With such weighing method,
higher edge weights implies higher probability of getting in-
fected. These edge weights are, then, used in choosing the
nodes to be visited and, subsequently, vaccinated. In effect,
the node selection process is biased towards the individuals
with higher susceptibility.

3.5 Hybrid Policies
The above mentioned policies exploits the properties of

the data models, PPC network and PLA graph, in devis-
ing effective containment policies. Each of these policies
enjoy certain advantages and also suffers from some limita-
tions. For example, sociability driven vaccination presented
in section 3.3 is simple as it only depends on the sociabil-
ity (degree) alone. In the context of more generic models
such as time-varying social networks, such simplicity makes
the policy implementation a difficult task. Hybrid strate-
gies can be developed by combining two or more policies.
These hybrid policies can leverage the positive features of
each policy while reducing the detrimental effects of the in-
dividual policies. Above described four fundamental poli-
cies can be combined in many different ways. We present
only the most effective combinations viz. sociability driven
vaccination combined with profile and contacts based vacci-
nation schemes. We also evaluated other combinations such
as “Random + Sociability based scheme” and “Random +
Profile based scheme” but we observed these combinations
to be not as effective.

3.5.1 Profile + Sociability Based Vaccination
As described in sections 3.4 and 3.3, the profile based

scheme locates the people with similar contact networks
and the sociability driven policy selects the people solely
based on their degree. When these two policies are com-
bined, cutoff degree d can be considered as a constraint on
random walks i.e., a random walk started from an initially
infected person visits a node v in PPC network only if the
degree(v) ≥ d. Alternatively, sociability driven policy can
also be considered as a post-processing step on the resulting
set of nodes from the profile based policy. At any point dur-
ing the random walk, the next node to be visited is solely
based on the vertices adjacent to the current node. When
the walk encounters a node v where most of the adjacent
nodes of v have degree < d, the algorithm spends a lot of
time in finding the nodes with degree ≥ d. Such difficulty
is not encountered when the cutoff degree is applied as a



filtering criterion in the post-processing step. Effectiveness
of the second approach is thus slightly better than the first
approach even though both of these alternatives seem iden-
tical.

3.5.2 Contacts + Sociability Based Vaccination
Approaches similar to the ones mentioned above (section

3.5.1) can also be applied to combine contacts based and
sociability driven vaccination policies. Contacts based vac-
cination policy can first be used to get a candidate set of
people to vaccinate. Sociability driven policy can then be
used to choose people from the candidate set based on the
cutoff degree and vaccine. The sociability constraint can
also be incorporated in contacts based policy by making the
BFS to visit a node only if that node’s degree is ≥ d.

3.6 Location Based Vaccination
Till now, we have presented vaccination policies which are

based on the contact network of people. In this section, we
propose a policy based on locations. In order to study the
people-locations relationship, we make use of PLA graph.
We first identify the critical locations based on the number
of cases reported at each location. Assume that a location,
L is connected to PL number of people (i.e., the degree of
L in PLA graph) out of which IL are infected. We calcu-
late the measure Infection Ratio at location L as on day D,
IRD

L = IL

PL

to quantify each locations infectiousness. A loca-

tion is declared as critical if IRD
L exceeds a certain threshold

value, ThresholdIR. D is referred to as Policy Effective Date
(PED). Even though IRD

L can be calculated every time IL

changes, we calculate IRD
L at the end of each day for com-

putational efficiency. It is important to note that the cases
reported till policy effective day can not be prevented. Once
the critical locations are identified, people visiting the loca-
tions can be vaccinated in various ways. One possible way
is to vaccinate all the people who are connected to critical
locations through some activity. This method can easily be
extended to employ more sophisticated policies. For exam-
ple, the concept of IRD

L can be extended to take the type,
start time and duration of the activity into consideration.

3.7 Quarantining Locations
In context of many diseases, the specific properties of a lo-

cation may be conducive to spread the disease (e.g. Cholera
and water wells). In such cases, it might be cost-effective
to close the place or take any other remedial action at that
place instead of vaccinating people. We refer to such an
action as quarantining a location. Specifically, quarantining
a location L refers to a process by which people are kept
away from L (either by closing or by other means) so that
no individual can get infected at L. Once the locations are
identified, remedial measures can be employed to “clean”
the location.

Our approach of quarantining locations can be thought
of as an extension to the location based vaccinating pol-
icy. Locations to be quarantined are identified by analyzing
the infection ratios calculated in section 3.6. For a given
PED, each location L is tagged with RL = (x, y, r) where
x, y are geographic coordinates of L and r is its infection
ratio, IRL. The resulting dataset, R is then examined to
determine the set of locations to be quarantined. We apply
hierarchical spatial clustering algorithms on R to form clus-
ters of locations based on geographical distance and also on

similarity in infection ratios. The order in which clustering
is performed on (x, y) and r attributes define a particular hi-
erarchy. In (x, y)− r clustering, locations are first clustered
by the x, y coordinates. The set of locations in each of the
resulting cluster are, further, clustered based on r. Similarly
we can define r − (x, y) clustering, where the first level of
clustering is performed on r. Each of the resulting cluster
is, then, spatially segmented to generate the regions. These
two types of clustering schemes help in identifying the spa-
tial regions which have similar geographic coordinates and
similar infection ratio. Quarantining policy maker can focus
on the resulting regions of interest instead of analyzing the
locations distributed all over the space. Please note that
any vaccinating or containment policy can also be applied
on the regions obtained from hierarchical spatial clustering.

4. RESULTS
In this section, we first compare the effectiveness of pro-

posed policies. We then evaluate our strategies under differ-
ent constraints like limited number of anti-viral drugs and
delay in response time.

4.1 Effectiveness Measures
We compare the effectiveness of different methods using

the measure, Percentage Prevention. It is the percentage
of people who are prevented from the disease. To calculate
this measure, we make use of disease evolution data from
EpiSims simulation system [6]. This data provides insight
into when, where and from whom a person got infected.
Simulation is started at t = 0 with 100 initially infected
people. When any person is infected during the simulation,
system records the time and location at which the person
got infected along with the list, L of already infected peo-
ple who are currently in the same location. Assume that
a person, P is infected at time TP during the simulation.
With no containment policies, P can infect other people in
the contact network. Assume that P infects a person Q at
TQ (> TP ). Now, assume that using one of the disease con-
tainment strategies, we vaccinate P at time TV (TV < TP ).
Since P is vaccinated, P is prevented from the disease di-
rectly. But vaccinating P in turn also prevents Q from get-
ting infected because P is no longer infectious. i.e., Q is
prevented from the disease indirectly. Therefore, vaccinat-
ing a person not only prevents that person but can also
prevent other people indirectly. Percentage Prevention in-
cludes total number of people who are prevented from in-
fection both directly and indirectly. Note that for a given
person P , if the set L contains more than one individual
then P is considered to be prevented (indirectly) only if all
the people in L are prevented, either directly or indirectly.
Another closely related measure is the cost incurred by the
containment strategy. It is inversely proportional to number
of cases prevented (both directly and indirectly) per vaccine.

4.2 Effectiveness of Policies
In every strategy, percentage prevention increases as more

people are vaccinated. Random vaccination policy gives the
theoretical upper bound on number of vaccines needed to
achieve the given prevention rate (Figure 3 (a)). In practice,
this strategy will not be effective as it can not take any extra
knowledge about the data or the disease into account.

Figure 3 (b) shows how the number of vaccines and per-
centage prevention changes as we change the number of lev-



(a) Random vaccination (b) Contacts driven vaccination

(c) Sociability driven vaccination (d) Profile based vaccination

Figure 3: Effectiveness of various vaccination policies

els of BFS. Exponential increase in number of nodes visited
(i.e., number of vaccines) by BFS illustrates shorter path
lengths highlighting the small-world properties of the PPC
network. Although we prevent 98% of cases at level 3, the
cost incurred is very high because we vaccinate 71% of pop-
ulation. From level 2 to level 3, number of cases prevented
per vaccine dropped from 162 to 48. This method is very
costly and, therefore, may not be very practical. We later
show that even with a fixed number of vaccines, it performs
poorly when compared to the profile based and sociability
driven strategies. Note that, BFS with 1 level will vaccinate
the direct contacts of an infected person. Since a person
can pass on the infection only to direct contacts, BFS with
1 level should achieve 100% prevention rate. But, this is
not true for the given data. This is due to the presence of
people who are neither infected from others nor in the set of
initially infected people. We attribute them as people who
got infected naturally but not from contacts made with an
infected person.

Figure 3 (c) illustrates the variation in percentage pre-
vention and number of vaccines given as we vary d. Trend
representing the number of vaccines expounds the power-
law degree distribution in PPC network. Presence of highly
connected nodes (hubs) can be seen from the slow increase in
the number of vaccines given, initially. Since there are very
few people with high degree of contacts, number of vaccines
spent increases very slowly in the beginning. A quick in-

crease after the cutoff degree of 100 is due to large number
of nodes with smaller degrees of contact. Hence, a smaller
cutoff degree leads to higher percentage prevention. Socia-
bility driven prevention strategy offers the lower bound on
number of vaccines to be spent for achieving a given per-
centage of prevention. Prevention of 99.21% is achieved at
cutoff degree of 30. This can be achieved by vaccinating at
least 55% of population.

Effectiveness of the profile based vaccinating policy with
varying number of steps is shown in figure 3 (d). We have
set the restarting probability to be 0.15 for all our exper-
iments. As we increase the number of steps taken during
the walk, number of nodes visited and hence the prevention
rate goes up. As more number of nodes are visited, more
number of vaccines are used. There is a trade-off between
the cost incurred and the percentage prevention achieved.
Thus, constraints such as availability of vaccines and other
resources should be taken into account when determining
the number of steps. It is important to note that the in-
crease in percentage prevention is slow when compared to
increase in number of vaccinations. In other words, number
of cases prevented per vaccine reduces as the number of steps
increases. In practice, profile based strategy might work bet-
ter than any sociability driven strategy. Because, sociability
driven methods require the exact knowledge of contacts of
a person and also assume that the contact network is static.
In real life, it is very difficult to keep track of exact informa-



tion of contacts as the contact network changes over time.
In such cases, we can expect the profile based policies to be
more practical than others.

Figure 4: Effect of Degree Cutoff on Effectiveness of
Vaccination Policies

The effectiveness (in terms of percentage prevention) of
the hybrid strategies described in section 3.5 is higher com-
pared to the performance of the fundamental policies. Fig-
ure 4 shows the differences in performance of hybrid strate-
gies and the sociability driven policy (the best among fun-
damental policies) as the cutoff degree d is varied. Results
are obtained using BFS with 3 levels and random walks with
90, 000 steps in case of contacts and profile based policies,
respectively. The sociability driven policy is applied as a
post-processing step in filtering the candidate set of people
obtained from either contacts or profile based policy. When
d is very high, effectiveness of vaccinating hubs is very low,
as presented in section 3.3. For all levels of d, percentage
prevention obtained by all three policies is similar. In fact,
percentage prevention curves of sociability driven and con-
tacts+sociability based policies are mostly overlapping. This
suggests that the set of people with high degree are located
within 3 hops from 100 initially infected people. Difference
in number of vaccines spent by these policies is very small
at high values of d. This difference increases with the de-
crease in d depicting the cost effectiveness by the hybrid
strategies. For example, at degree cutoff of 20, sociability
driven policy achieves 99.9% prevention rate by vaccinating
67.6% of population whereas a hybrid strategy with profile
based approach gives 99.4% prevention rate by vaccinating
just 49.5% of population.

Furthermore, hybrid strategies need to look at a smaller
section of population in determining the set of people to
vaccine. This is because the contacts or profile based pol-
icy is first applied to obtain the candidate set of people and
then the sociability driven policy is applied. For example,
when d = 10, the sociability based policy need to examine
every individual to see if their degree is greater than 10.
The Contacts+Sociability based policy need to concentrate
only on the set of people returned by 3-level BFS, which
is just 71% of population (figure 3 (b)). i.e., to achieve
99.9% of prevention rate the sociability based policy ex-
amines 100% of population and vaccinates 78.6% of them.
The Contacts+Sociability based policy vaccinates examines
only 71% of population and vaccinates just 66.8% of pop-
ulation. Therefore, hybrid strategies examines smaller sec-
tion of population and spends smaller number of vaccines in

achieving comparable prevention rates.

4.3 Location Based Vaccination
Figure 5 (a) shows the effectiveness of location based vac-

cination scheme for various values of policy effective day
(PED). We have set ThresholdIR to 0.01 i.e., if 1% of peo-
ple connected a location are infected then that location is
declared as critical. Let T be the set of people who got in-
fected during the 100 day simulation. And, let S is the set of
people who got infected before PED. Hence, people present
in S can not be prevented from disease. We define a set R
as T − S that represents the set of people who can be pre-
vented. Percentage prevention can be calculated based on
both T and R. We refer to prevention rate as a percent of T
and R as PPT and PPR, respectively. As mentioned earlier,
we vaccinate all the people connected to critical locations.

As we increase the PED, number of cases which can not
be prevented increases quickly. For example, if we delay the
policy for 50 days then almost 23% of the cases can not be
prevented. As the time progresses, disease spreads among
the people and so the number of locations with infected peo-
ple increases. Since we vaccinate all the people connected to
infected locations, number of vaccines given and, hence, the
PPR increases. Note that the amount of increase in PPR re-
duces as the PED increases. But the PPR does not give the
overall effectiveness of the vaccinating policy. To analyze
the exact behavior or to compare against other policies, one
should use PPT . As we change PED from 45 to 50, differ-
ence between PPT and PPR becomes evident. Though the
PPR increases from 92.9% to 96%, PPT actually decreases
from 81.2% to 75%. This is due to the quick increase in
number of cases which can not be prevented, from 12.6% to
22.7%.

Figure 6 (a) shows the distribution of infectiousness across
various locations. For example, locations in red color have
more infected people. We use the K-Means algorithm for
hierarchically clustering the locations and to determine crit-
ical regions over space. Other spatial clustering algorithms
such as DBSCAN can also be used for clustering the loca-
tions.

Once the infection ratios are calculated for each location,
spatial clustering algorithms can be applied to obtain re-
gions of interest. Figure 6 shows the representative clusters
obtained using both r−(x, y) and (x, y)−r clustering meth-
ods. In figure 6 (b), locations are first clustered on infection
ratio and hence the sub-clusters obtained after (x, y) clus-
tering are distributed all over the space. Whereas in figure 6
(c), (x, y) clustering is done first and hence sub-clusters are
concentrated in a partition of space. Resulting clusters are
then considered for quarantining based on the cluster cen-
ters obtained from clustering based on r. Effectiveness of our
clustering based quarantining policy is shown in Figure 7.
These results are obtained using a PED of 35 days where
the lowest infection ratio obtained is 0.01. Intuitively, as
the cutoff ratio is decreased more and more locations gets
quarantined and hence the prevention rate goes up. At a
cutoff ratio of 0.015, quarantining by r − (x, y) clustering
yields 44% of prevention percentage where as quarantining
by (x, y)−r clustering gives 59% percentage. Since the low-
est r is 0.01, when cutoff ratio is set to 0.01 the effectiveness
of quarantining by both clustering methods is identical.

It is worth noting that the prevention rates obtained by
quarantining policies are less compared to vaccination poli-
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Figure 5: Effectiveness of Vaccinating and Quarantining policies

(a) Distribution of infectious locations at
PED = 35
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(c) (x, y) − r Clustering

Figure 6: Quarantining by Clustering - Representative Clusters

cies. Due to the delay enforced by PED people who got
infected before PED, can not be prevented which partly re-
duces the prevention percentage. Furthermore, these quar-
antining strategies are more localized than vaccination poli-
cies, which are global in nature. The quarantining policy
needs to concentrate only on the set of people adjacent to
a quarantined location in the PLA graph. It need not take
the entire structure of the PLA graph into consideration.
On the contrary, vaccination policies determines the set of
people to be vaccinated only by considering the entire struc-
ture of the graph. Though the prevention rates of vaccina-
tion policies are high, in general, they incur higher costs.
Key components of such costs includes the cost incurred
in preparation and distribution of vaccines. Whereas im-
plementing a quarantining policies such as closing down a
location are simple in nature, easy to implement, and incurs
very less cost. Quarantining policies are thus more easier
to implement and cheaper than vaccination policies which
makes them more cost-effective.

4.4 Effect of Resource Constraints
Anti-viral drugs are often limited in number because of

various reasons like mass production cost, inventory cost
etc. In this section, we fix the number of vaccines available
and evaluate how the percentage prevention changes across
different strategies. Such a comparison enables us to an-
alyze the effectiveness and feasibility of various strategies

given resource constraints. Figure 8 (a) shows the differ-
ences in effectiveness when we fix the number of anti-viral
drugs to be used. For all the strategies, total number of
prevented cases increases and number of cases prevented per
vaccine decreases as the number of vaccines used increases.
As we vaccinate larger section of population, difference be-
tween their effectiveness decreases. For any given number
of vaccines, sociability driven vaccination policy is the clear
winner among fundamental policies retaining high levels of
effectiveness. Performance of hybrid strategies from the fig-
ure further corroborates the argument presented in section
4.2. i.e., hybrid strategies achieves better prevention rates
for a fixed number of vaccines. As shown in section 3.2, the
reach of BFS is very high but for a fixed number of anti-viral
drugs, its effectiveness falls behind the sociability driven and
profile based vaccination policies.

4.5 Effect of Delay in Response
It is not practical to assume that the disease containment

policies can be implemented as soon as the first case of the
infection is reported. The delay can be due to various con-
straints like distance between anti-viral drug inventory and
the location at which the infected person resides or might be
due to late diagnosis. Therefore, it is important to evaluate
the tolerance levels of our strategies to the delay in response
after the first case has been reported.

Figure 8 (b) shows the effectiveness of different methods
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Figure 7: Quarantining by Clustering - Effectiveness

(a) Limited anti-viral drugs (b) Delay in response time

Figure 8: Effectiveness under constraints

as a function of reaction time (in terms of days). Number of
anti-viral drugs has been fixed at 350, 000 courses for this ex-
periment. Clearly, number of cases prevented goes down as
we delay the implementation of containment policies. From
the graph, it can be inferred that, in general, a delay up
to 35 to 40 days is acceptable for sociability driven and
profile based vaccination policies without foregoing signif-
icant prevention percentage. For other two policies, number
of people prevented from infection continuously decreases
as the response time increases. After 40 days, prevention
rate decreases at a faster rate especially in sociability driven
scheme. Difference in effectiveness between degree and pro-
file based policies decreases as the delay increases. Whereas
hybrid strategies can withstand a delay up to 30 days with-
out loosing too much effectiveness. Though the prevention
rate is high initially, it drops at much faster pace compared
to sociability driven policy as the delay is increased. This
can be explained by examining the reason behind higher pre-
vention rates achieved by hybrid strategies. As noted before,
hybrid strategies vaccinates a smaller section of population
in achieving a comparable prevention rate i.e., they con-
sider only the critical individuals. Therefore, even if a very
few number of these critical people gets infected the over-
all prevention rate gets affected by a large amount. Since
the delay in policy implementation affects the number of

infected people, hybrid strategies are very sensitive to the
delay. Therefore, hybrid strategies are less robust compared
to sociability driven policy but they are more cost-effective.

4.6 Effect of Lag in Quarantining
In order to implement quarantining policies, one has to

identify the infected people. Such an identification task is
not straight forward as it might take a while for the person
to exhibit the symptoms of disease after acquiring it. We
define the time interval between the time at which a person
is infected and the time at which that person is quarantined
as Lag in identifying the infection. Lag can also be due to
physical constraints such as moving the patients to secluded
places etc. When the lag is high, an infected person will
have higher chance of propagating the disease before quar-
antining effecting the performance of quarantining policy.
The relation between the lag and the percentage prevention
is depicted in figure 5 (b). With the increase in lag, more
and more people gets infected by others thereby reducing
the percentage prevention.

A person can develop the infection on their own (by some
external effect). Therefore the prevention rate is not 100%
even if the person is quarantined as soon as that person gets
infected (i.e., lag=0 days). In the simulated data used, 3.4%
of the reported cases developed the infection by some exter-



nal effects. Please note that a person is quarantined after
acquiring the infection where as a person is vaccinated be-
fore getting infected. Those 3.4% of cases can be prevented
from infection by means of vaccination policies. From the
figure, it can be inferred that a lag up to 2.5 days can be tol-
erated by quarantining policy before effecting the prevention
rate.

It is worth noting the difference between Delay as defined
here and the Lag as defined in section 3.7. Delay defines the
time at which the policy is implemented and the lag repre-
sents the difference in times at which a person is infected
and the time at which a person is quarantined. When de-
lay = 3 days all people infected before 3rd day can not be
prevented. If lag = 3 days and the a person A gets infected
on 10th day of simulation, A would be quarantined on 13th

day. Hence, all the people who are infected from A between
10th and 13th can not be prevented. But, people who are
infected after 13th day from A would be prevented.

5. RELATED WORK
Mining for knowledge in both spatial and temporal di-

mensions has gained interest in many other application do-
mains like bioinformatics [8], computational fluid dynam-
ics [11] and traffic modeling. Researchers have focused on
developing mining algorithms for modeling and uncovering
the patterns in spatio-temporal data [15, 16]. Several re-
searchers have also applied the spatio-temporal mining tech-
niques to model and analyze the disease outbreaks. Eubank
et. al. [2], [3] have developed disease outbreak models for
generating large-scale synthetic data. They also proposed
fast algorithms for computing basic structural properties
such as clustering coefficients and shortest paths distribu-
tion. Ferguson et. al. [4] have proposed strategies to con-
tain the emerging influenza pandemic. Longini et. al. [9]
have used the stochastic epidemic simulations to investigate
the effectiveness of targeted antiviral prophylaxis to contain
influenza. Hartke [7] studied and proposed various mathe-
matical models for disease spread which are motivated from
classical models such as firefighter model [5, 10]. We pre-
sented some of the initial ideas on this problem in Tatikonda
et. al. [14].

6. CONCLUSIONS
In this paper, we proposed and evaluated several effec-

tive containment policies to curb the disease from spreading.
We demonstrated how the fundamental policies can be com-
bined to devise even more effective hybrid strategies. Among
all the proposed vaccination policies, the hybrid of sociabil-
ity driven and profile based approach is the most effective
policy. We have also developed and examined the quarantin-
ing policies by leveraging hierarchical clustering algorithms.
We evaluated the proposed containment policies under vari-
ous practical constraints such as delay in implementation of
policies, limited number of anti-viral drugs, and the lag in
quarantining. We showed that the implementation of vacci-
nation policies can be delayed up to 35 days and a lag of up
to 2.5 days can be tolerated by quarantining policies without
foregoing the effectiveness.

In practice, the social contact network is highly dynamic
in nature and hence would be changing over time. Further-
more, exact model of the contact network of a given person
is extremely difficult to build. In light of such complex sce-

narios, application of strategies like sociability based policy
can prove to be difficult. In future, We would like to explore
and develop containment (both vaccination and quarantin-
ing) policies in context of such complex models.

7. ACKNOWLEDGMENTS
This work is supported by NSF grants CAREER-IIS-0347662,
RI-CNS-0403342, and NGS-CNS-0406386. The authors are
thankful to Professor Madhav Marathe, Virgina Tech for
providing the datasets. The authors would also like to thank
Professor Naren Ramakrishnan of Virginia Tech, Professor
Chris Bailey-Kellogg of Dartmouth College, Sitaram Asur,
Duygu Ucar and Greg Buehrer of The Ohio State University
for their useful comments and suggestions.

8. REFERENCES
[1] R. Albert and A. Barabasi. Statistical mechanics of complex

networks. In Review Modern Physics, 2002.

[2] S. Eubank, H. Guclu, V. Anil Kumar, M. Marathe,
A. Srinivasan, Z. Toroczkai, and N. Wang. Modeling disease
outbreaks in realistic urban social networks. In Nature, volume
429, pages 180–184, 2004.

[3] S. Eubank, V. Anil Kumar, M. Marathe, A. Srinivasan, and
N. Wang. Structural and algorithmic aspects of massive social
networks. In Symposium on Discrete Algorithms, 2004.

[4] N. M. Ferguson, D. A. Cummings, S. Cauchemez, C. Fraser,
S. Riley, A. Meeyai, S. Iamsirithaworn, and D. S. Burke.
Strategies for containing an emerging influenza pandemic in
southeast asia. In Nature, volume 437, pages 209–214, 2005.

[5] S. Finbow, A. King, G. MacGillivray, and R. Rizzi. The
Firefighter Problem For Graphs of Maximum Degree Three,
2004.

[6] Synthetic Data Products for Societal Infrastructures and
NDSSL-TR-06-006 Proto-Populations: Data Set 1.0. Network
dynamics and simulation science laboratory, virginia
polytechnic institute and state university.

[7] Stephen G. Hartke. Graph-theoretic Models of Spread and
Competition. PhD thesis, Rutgers University, 2004.

[8] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M.J. Zaki. Mining
Protein Contact Maps. 2nd ACM SIGKDD Workshop on
Data Mining in Bioinformatics (BIOKDD 2002), 2002.

[9] I. M. Longini, M. E. Halloran, A. Nizam, and Y. Yang.
Containing pandemic influenza with antiviral agents. In
Americal journal of epidemiology, 2004.

[10] G. MacGillivray and P. Wang. On the Firefighter Problem. J.
Combin. Math. Combin. Comput, 47:83–96, 2003.

[11] S. Mehta, S. Parthasarathy, and R. Machiraju. Visual
Exploration of Spatio-temporal Relationships for Scientific
Data. IEEE Symposium on Visual Analytics Science and
Technology, 2006.

[12] M. Newman. The structure and function of complex networks.
In SIAM Review, 2003.

[13] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood
formation and anomaly detection in bipartite graphs. In Fifth
IEEE International Conference on Data Mining, 2005.

[14] S. Tatikonda, S. Mehta, and S. Parthasarathy. Containment
Policies for Transmissible Diseases. Spatial Data Mining
Workshop held with SIAM Conference on Data Mining, 2006.

[15] H. Yang, S. Parthasarathy, and S. Mehta. A generalized
framework for mining spatio-temporal patterns in scientific
data. Conference on Knowledge Discovery in Data, pages
716–721, 2005.

[16] H. Yang, S. Parthasarathy, and S. Mehta. Mining Spatial
Object Patterns in Scientific Data. International Joint
Conference of Artificial Intelligence (IJCAI), 2005.


