1

The Maximality of Unhygienic Dining Philosophers

Matthew Lang and Paolo A. G. Sivilotti Department of Compuseience and Engineering
The Ohio State University
Columbus, Ohio 43210-1277
Email: {langma,paolp@cse.ohio-state.edu

Abstract

The behaviors exhibited by a correct program are a subsédtosktallowed by its specification. A program is
said to be maximal if, in addition to being correct, it can ibithany of the behaviors permitted by its specification.
Maximality is useful for design, as it eliminates trivial degenerate solutions; for performance as it requiresisakit
to permit maximum concurrency; and for testing as it expasisakes in layered implementations. Unfortunately,
maximality is not compositional: The composition of two rmaal programs is not guaranteed to be maximal.
This observation poses a challenge for the modular veiificaif maximality in composed systems. In this paper,
we present a strategy for proving the maximality of composgstems in a modular manner. As an example, we
consider a classic scheduling problem, dining philosogphéfe present the unhygienic algorithm and prove both
its correctness and maximality. This proof establishesuthieygienic solution as the first known maximal dining
philosophers algorithm.

. INTRODUCTION

A specification describes a set of possible program exatite program implementing a specification is correct
if the set of possible executions of the program is contawmitin the specification. Maximality is a stronger notion.
A program ismaximalif it is (i) correct, and (ii) the set of behaviors permittey the specification isontained
within the possible behaviors of the prografrhat is, the program can exhikitl the behaviors permitted by the
specification.

Maximal programs are important because they eliminatdatrisolutions to problems—those that limit con-
currency or otherwise restrict behavior permitted by a Bjpetion. Maximal programs are also important for
testing component-based systems because they preventpgent implementation from providing unnecessarily
deterministic behavior and, in this way, masking errorstsnclients.

For example, consider bag data structure with two operation@itandget Informally, the specification for this
data structure states that thaet operation adds objects to the bag and ge€operation returns an arbitrary object
from the bag. A FIFO queue is clearly a correct implementatibthis specification. However, this implementation
restricts the behavior permitted by the specification: THeget always returns the object placed in the bag by the
i put The FIFO queue implementation, therefore, is not maximitth wespect to the specification for a bag.
Using this implementation to model an unordered commuitinathannel would restrict the possible behaviors of
the composed system.

Unfortunately, the maximality of concurrent programs i¢ compositional. That is, the parallel composition of
two maximal programs is not, itself, guaranteed to be makiiftae current technique for proving the maximality
of a UNITY-like program involves whole-program analysig. [th this paper, we extend this technique to prove the
maximality of composed programs in a modular way. Esseéytihle proof technique involves adding requirements
to a component’s environment that permit the whole-prograwof obligations to be dispatched without the
implementation particulars of the environment.

The dining philosophers problem, dinersfor short, is a classic synchronization problem for disttédal systems.
Solutions to this problem are inherently compositionalt didy are there multiple dining processes, but each process
consists of two parts: a user that requests a resource andflicteesolution layer that grants the resource. To
illustrate our method for modular proofs of maximality, wesdribe theunhygienicalgorithm for diners. We prove
that this algorithm is both a correct and maximal implemgoiaof the conflict resolution layer.

It is, however, maximal with respect to a different specifima namely the specification for a FIFO queue. The maxiyali an
implementation, therefore, is relative to a particularcsjeation.

The paper is organized as follows. Section Il provides bemkgd, including the model of computation, the whole-
program technique for proving maximality, and the dinexsbem. Section Il exposes the non-compositional nature
of maximality. Section IV describes the unhygienic alduritand provides an informal proof of its correctness.
Section V illustrates our method for proving the maximalifycomposed programs by proving the maximality of
the unhygienic algorithm. Sections VI and VII conclude treper by examining the limitations of our approach,
pointing to related work, and indicating directions forute research.

[l. BACKGROUND
A. The Programming Model

We use a UNITY-style notation for writing programs and redsg about their properties [1], [3], [7]. Programs
are sets of guarded commands of the form v — « where A is a label,~ is a guard which is a predicate on
program variables, and: is a command consisting of assignments to program variaBlesiction whose guard
is true is said to be enabled. Each program implicitly inelidhe actionskip, which does nothing. Execution
of a UNITY program is an infinite sequence of states, whereh gmir of successive states is the result of the
execution of a program action. The result of executing arblelaaction is the result of the assignments in the
actions command. The result of executing an action thatisnabled is no change in state. A program execution
is weakly fair: each action is executed infinitely often.

For program properties, the basic safety operatonést. The property X next Y says that every state that
satisfies the predicat& is immediately followed by a state that satisfies the predida. Since every program
contains skip, this is only possible ifX = Y . Similarly, stable X requires that every state that satisfi&s
is immediately followed by a state that also satisfi€s Hence, onceX holds, it continues to hold. An invariant
property is true initially and stable. FinallyX unless Y says thatX cannot become false withodt being true.
Formally, X unlessY = (X A =Y) next (X V Y).

A basic progress operator igansient. The propertytransient X says that a program has at least one action
that, when executed in a state whekg holds, results in a state whereX holds. Thus,—X is guaranteed to
hold infinitely often. Any transient property of a programaiso a property of a composed system that contains that
program. The progress properfy ~ Y (X leads-toY) requires that if X holds at any point in a computation,
Y holds at a later (or the same) point.

When free variables appear in these properties, they arerstodd to be implicitly universally quantified. So,
for a program with variabler, the propertystable x = £ should be read agVk :: stablex =k); thatis, x
never changes value.

B. Proving Maximality

A program P is correct with respect to a specificatios\ if the set of possible executions aP, |P|, is
contained in the set of traces that satisfy |S|. Thatis, |[P| C |S|. On the other hand, a prograif is maximal
with respect to a specificatiorfy , if P is correct and|P| = |S| [7], [4], [5]. The notion of maximality is similar
to bisimulation [6], [8] but the former relates program t@nd specifications while the latter involves artifacts
with similar mathematical representations, such as tw@HKkgristructures.

The proof technique for establishing maximality considtsnm steps. The first step is to show that an arbitrary
trace o € |S| is a possible execution of an instrumented versidnof P. The second step is to show that every
fair execution of P’ corresponds to a fair execution d? .

P’ is constructed fromP by (i) adding new variables, (ii) adding assignments to nawables within existing
actions, (iii) adding guards to existing actions, and (idjliag actions that mention only new variables. The new
variables includehroniclesthat encode the arbitrary traeec |S| and auxiliary variables that encode, for example,
the current point,i, in the trace. Assignments i may modify auxiliary variables but not chronicles. These
modifications ensure that every safety propertiesiofis also a property ofP’ .

To show thato is a possible execution of’, it suffices to show that for every value éf the value of program
variables of P are equal too; .

The second obligation, that every fair execution Bf corresponds to a fair execution d?, requires showing
that (i) each additional guard is infinitely often true anijl e truth of each additional guard is preserved by the

execution of every action of”’ except the action it guards. These two properties ensuteedttdh action ofP’ is
executed infinitely often in a state where the additionalrdus: true.

This proof technique is illustrated in [7] using the task exthling problem. This problem consists of a set of
tasks and a conflict relation between tasks. Given that ¢ixectasks eventually terminate, algorithms that solve
the task scheduling problem schedule tasks for execution that no pair of tasks in the conflict relation execute
concurrently and each task is executed infinitely often. fhls& scheduling problem is closely related to diners, and
its maximal solution is the basis for the unhygienic dindgodathm. The key difference is that the task scheduling
solution is a single program, whereas a diners solution iaraqgf a composed program.

C. The Dining Philosophers Problem

The diners problem [2] is a classic resource allocation lerab Originally framed as a set of philosophers
arranged around a table, the problem has been generalized &wbitrary graph in which nodes correspond to
processes and edges represent a conflict for a shared resourc

A process can be in one of three stathinking hungry, or eating A client process (the user) controls transitions
from thinking to hungry and eating to thinking while an araiion process (the conflict resolution layer) controls
the transition from hungry to eating.

The user process guarantees that eating is finite. The pnoisléo design an implementation for the conflict
resolution layer such that the composed system satisfieflibaiing properties:

« Safety: No two neighboring processes are in the eating stateltaneously.
invariant (Yu,v : w nbr v : —(u.state = eating A v.state = eating))
o Progress: A hungry process eventually eats.
u.state = hungry ~ u.state = eating

One strategy adopted by several algorithms to solve thesljpr@blem is to associate a token, a fork, with each
edge in the conflict graph. A process is required to hold alfdtks in order to eat. Since forks are neither created
nor destroyed, this strategy ensures the safety part ofpbeifscation is satisfied.

1. THE NON-COMPOSITIONAL NATURE OF MAXIMALITY

Maximality properties, much like non-trivial progress pesties, are noncompositional. That is, given two
programs P, and P; that maximally implement the specificatior#y and S; respectively, there is no guarantee
that their composition,? || P;, is maximal with respect t&y || S .

For example, consider the specificatioy :

r=knext|z—kl <1
transient x = k

This specification says that changes value infinitely often and that each change of valdmy iat most one.
An implementation of this specification is given by prografy:

initially a=1
assign
Ap r=x+a
By a:=—a

This implementation is maximal since any sequence of vahdmitted by the specification can be generated
through the appropriate choices of which action to exedtte example, the sequence in whiehnever decreases
is formed by always selecting?, twice between successive choices 4f .

Now consider the specification; :

r=knext |z —kl <2
transient x = k

Like Sy, this specification also says that changes value infinitely often. Unlik&, , however, S; allows x to
change value by at most two.
An implementation of this specification is given by prografn:

initially b=1
assign
Aq r:=x+b
B b:=-b

This program is maximal with respect 6, .
The specification for the composed systefy (| S1) is given by:

r=knext |z —kl <2
transient x = k

Any correct implementation of, , when composed with any correct implementationSef, is guaranteed to satisfy
this specification. Furthermore, this is the strongestifipation for which this claim can be made.

Indeed, the composition of program#) || P, does satisfy this composed specificatian:can change value
by at most 2 andx changes value infinitely often. The composed program, hewes not maximal. Consider
the sequence of values in which whenewverchanges value, it changes by 2 (e.@,4,6,8,10,12,...)) This
sequence is permitted by the composed specification, buheabe generated by the composed program. Weak
fairness requires that all actions be chosen infinitelyroftéowever, whenever action, is chosen,z changes
value by 1. Thus, every trace generated by the composedamogrust include an infinite number of points at
which =z changes value by 1, and hence the program is not maximal.

IV. THE UNHYGIENIC DINING PHILOSOPHERSALGORITHM

In this section, we first present a classic solution to théndiphilosophers problem: the hygienic algorithm [1].
This algorithm uses fork tokens to ensure mutual exclusioh @ dynamic priority ordering to ensure progress.
Through a series of generalizations, we transform thisréfgo into one that permits repeated overtaking. This new
algorithm is theunhygienicdining philosophers algorithm. This algorithm has appeéane[10] and [9], however
this paper is the first proof of its maximality.

A. Background: Hygienic Dining Philosophers

The hygienic dining philosophers algorithm [1] is a soluatito the generalized dining philosophers problem.
Each pair of neighbors in the conflict graph shares a single f process is required to hold all its forks in order
to eat, thus ensuring mutual exclusion.

To ensure progress, philosophers are assigned relativatigs. Each edge in the conflict graph is directed from
the lower priority neighbor to the higher priority neighpand initial priorities are assigned so that the directed
graph is acyclic. The priority graph remains acyclic sincernties only change when a philsopher eats, at which
time it lowers its priority below all its neighbors. One way satisfy this requirement of acyclicity is to assign
each philosopher a height so that neighbors do not have the kaight. A philosopher changes height only by
eating and when it eats it lowers its height below all its hewys.

When a philsopher becomes hungry, it requests all of itsings®rks. Conversly, when a philosopher receives
a request for a fork, it releases the fork only if it is not pgtand the requesting neighbor has higher priority.

Figure 1 shows a UNITY program that implements the confiastution layer of this algorithm. The program in
Figure 1 is composed with a user program that controls statesitions from thinking to hungry, and from hungry
to eating. Throughout this paper, we define the predicate (u.h, u.e) to be u.state = thinking (hungry,
eating respectively).

We use the ternfow fork to refer to a fork that is shared with a lower-priority neighbThe same fork is &igh
fork for that neighbor. The direction of priority for an edge ixeded on a fork as the difference in heights between
the processes that share the fork. In the original presentat this algorithm, high forks were termetirty, since

Program hygienic,
initially u.t
(Vo : wnbr v: uht#v.ht)
(Vo : wnbr v : fork(u,v) =u = wu.ht > v.ht)
always sendreq(u,v) = fork(u,v) =v A rf(u,v) =u A u.h
sendfork(u,v) = fork(u,v) =u A rf(u,v) =u A —u.e AN u.ht <v.ht
wmayeat = (Yo : uwnbrv: fork(u,v)=u A (u.ht >v.ht V rf(u,v) =v))

assign
E,: wh A umayeat — wu.state := eating
| w.ht == (Minv : wnbr v : v.ht) —1
H,: sendreq(u,v) — rf(u,v):=v

R,: sendfork(u,v) — fork(u,v):=v

Fig. 1. Hygienic Dining Philosophers Algorithm

all forks are high forks after a philosopher eats. Convellsly forks were termedtlean Since only high (dirty)
forks are released to a neighbor, and since a fork switcloes fiigh to low when received by that neighbor, all
forks arrive as clean forks. This observation motivatesdheice of the name, hygienic, for this algorithm.

B. Generalization: Weakening the Invariant

One invariant of the hygienic algorithm is that thinking lplsbphers never hold low forks. This property is true
initially since all forks are initially high forks. It is matained when a philsopher begins thinking since all forks
became high forks when it ate. Also, it is maintained whew)léorks arrive since a thinking philosopher never
acquires forks.

Because of this invariant, the rule for releasing a fork m@y expressed: a philosopher never releases a low
fork. This rule, however, is stronger than needed to provesctness. To guarantee progress, it suffices to require
that ahungryphilosopher never releases a low fork. That is, teadfork predicate can be rewritten as follows:

sendfork(u,v) = fork(u,v) =u Arf(u,v) =u A (u.t V (u.h A u.ht < v.ht))

This version is equivalent to the originakndfork predicate given the invariant that thinking philosophegser
hold low forks.

If we relax the invariant, however, the algorithm with thean®rmulation is still correct. That is, we remove
the following predicate from the initial conditions:

(Vo : wnbro: fork(u,v)=u = u.ht <v.ht)

Without this requirement, the initial placement of a forkaibitrary, so thinking philosophers may hold low forks.
Such a philosopher, however, does not prevent a lower fyribtngry philosopher from eating without it itself
becoming hungry.

With this generalization, low (clean) forks can be releasgcifically by a thinking process. Because a fork
switches from being high to being low when received by thagmeor, such forks arrive as dirty forks. This
observation motivates the choice of the name, unhygieaicthis algorithm.

C. Generalization: Increasing Nondeterminism

Having modified the algorithm to permit thinking philosophiéo hold low forks, it is no longer necessary for
eating to result in a process being lowered below all of iiggors. Instead, it suffices for eating to resulsome
lowering of height. Thus, the eating action is modified to éova process by a nondeterministic amount.

w.ht =7 st wht < w.htpre A (Vv @ wnbr o wht#v.ht)

2\We note that this algorithm stabilizes to the invariant #dow fork is not held by a thinking philosopher so long as eitheighbor that
shares the fork becomes hungry at least once. Thus, the asy where stabilization to the original invariant does reuiuo is if neither
neighbor becomes hungry at least once, in which case theifarkver requested.

This generalization allows a hungry process to be overtapeatedly by a neighbor. In the hygienic algorithm,
once a process becomes hungry, no neighbar, of « can eat more than once. After eating,is lowered below
u, SO it must relinquish the shared fork. In the unhygienioetgm, however,v is lowered by some amount, but
not necessarily below: . At that point, v is thinking and holding a low fork. Although it might releasee fork
(action R,), it is not required to do so immediately. If, instead, becomes hungry again, then the fork is not
released and> will eat a second time while: remains hungry. Thus, the unhygienic algorithm permitgdijribut
unbounded, overtaking of hungry philosophers. The algarits summarized in Figure 2.

Program unhygienicy,
initially u.t
(Vo : wnbr v: uht#v.ht)
always sendreq(u,v) = fork(u,v) =v A rf(u,v) =u A u.h

sendfork(u,v) = fork(u,v) =u A rf(u,v) =u A (ut V (u.h A u.ht < wv.ht))
uwmayeat = (Yo : uwnbrv: fork(u,v)=u A (u.ht >v.ht V rf(u,v) =v))

assign
E,: u.h A umayeat — wu.state := eating
su.ht =7 st uwht < whtpe A (Vo @ wnbro: uht#v.ht)
H,: sendreq(u,v) — rf(u,v):=v

R,: sendfork(u,v) — fork(u,v):=v

Fig. 2. Unhygienic Dining Philosophers Algorithm

D. Proof of Correctness

We provide an sketch of the proof of correctness of the urdnjigialgorithm.

The safety requirement, that no two neighboring procesaesimultaneously, is ensured by the invariant that
an eating process holds all its forks. The proof is identioahat for the hygienic algorithm.

The progress requirement, that a hungry process eventgly is ensured by identifying a metric for a hungry
process. This metric must be bounded below and must be geethio decrease unless the process eats. In the
hygienic algorithm, this metric (for a process) is the sum of the number of higher processes and the number of
higher thinking processes. More formally, letabove be the set of processes reachable framRecall that edges
are directed up, s@ € u.above means that there is a path consisting only of edges to higteritp processes
from uw to v. Then u.m is defined by:

um = |{v 2 v €u.above }|+[{v 1 v &€ u.above Av.t }|

This metric is nonincreasing. Furthermore, the metric @rgnteed to decrease for a hungry process by the following
argument. Ifu is hungry, there must a process abavedor u itself) that is both hungry and has no higher priority
hungry neighbors. This process is guaranteed either toveatwlly (in which case the number of processes above
u decreases), or to have one of its higher neighbors becongh(in which case the number of thinking processes
above v decreases). In either case,m decreases.

For the unhygienic algorithm, the argument is similar. Thetna for a hungry process is provided by:

u.m = (Z’U : v.ht > u.ht @ v.ht)+ (Z’U : v.ht >u.ht Avt o v.ht)

In this case, the sum of heights is taken over all processgsath higher than., which is a superset ofi.above .

As before, this metric is nonincreasing. Also, as before,rttetric is guaranteed to decrease for a hungry process.
If » is hungry, there must a process abave(or « itself) that is both hungry and has no higher priority hungry
neighbors. This process is guaranteed either to eat edgnfimawhich case the sum of heights of processes above
u decreases), or to have one of its higher neighbors beconmgnh(in which case the number of thinking processes
above v decreases). In either case,m decreases.

V. MAXIMALITY OF THE UNHYGIENIC ALGORITHM

Because the unhygienic algorithm permits overtaking ofgmnymeighbors, it allows for executions that are not
possible for the hygienic algorithm. In this section, wevgrdhat there are no executions that satisfy the diners
specification that are not possible for unhygienic alganitfrhat is, we show that this algorithm is maximal.

Maximality is not compositional, so proving the maximalda single component, such as the conflict resolution
layer, in isolation (i.e., without the user process) is nobuggh. Conversely, proving the maximality of the conflict
resolution layer composed with a particular user implemign is too specific to that particular implementation.
Instead, here we postulate a set of properties that the usezgs satisfies and then carry out the proof of maximality
based on these properties. These properties are in addittbe usual requirements arser needed for correctness
of the composed system, for example that eating is finite.

We begin by defining the structure of a maximal trace satigfyhe diners problem specification. We then modify
unhygienic, adding guards and variables to form a constrained programygienic’ . We then state the additional
requirements placed on theser process. These additional requirements ensure thats@) is maximal and (ii)
user can be constrained in a particular way to establish this maliy.

Finally, we prove the maximality of the composed system afist@ined programs. For any maximal trace,
the constrained system is shown to compute the executiareseg described by the trace. Furthermore, any fair
execution of the constrained system corresponds to a feitution of the original system.

In our presentation of the unhygienic algorithm in Sectivh process height corresponded directly to priority.
That is, if a process had greater height, it also had higherigyr Thus, after eating a process lowered its priority
by lowering its height. In this section, however, we revetse priority ordering. That is, if a process has greater
height, it haslower priority. Thus, after eating a process lowers its priority faising its height. We make this
change for clarity in the proof of maximality, where procéssght corresponds to a point in the trace, and hence
increases over the course of the computation. We will avoitfusion by always explicitly distinguishing the two.
For example, a neighbor will be referred to as a “higher fisianeighbor” rather than simply a “higher neihbor”.

A. A Maximal Trace ofuser || unhygienic

Let S be a sequence of tuples representing the states of prodasaesexecution satisfying the specification
of the dining philosopher’'s problem. Le$; denote thei™ tuple in the sequence and le%,; denote the state
of processu at stepi (S,,; € {t,h,e} representing the thinking, hungry, and eating states otispty). We
consider only stutter-free sequences. That is, each taptee sequence differs from the previous in at least one
element,unlessthe execution is in a state of quiescence (every processmsrmathe thinking state forever).

The following properties characterize any tracg, that satisfies the diners specification. These propertipl/a
to all processes: and all points: in the computation.

« At each step in the computation, at most one process chatgfes s

Su,i 7é Su,i-i—l = (V’U U 7é v Sv,i = Ou,i+1) (SO)

o The trace is stutter-free, except in the state of quiescence
Si:Si+1:>(VU,jijZ’iiSmj:t) (S1)

o Processes are initially thinking, and valid state traosii must loop through thinking, hungry, and eating

states.

Su70 =t (S2)
Suﬂ' =t = (Su,i—i-l =tV Su,i+1 = h) (83)
Su,i =h = (Su,i-l-l =hV Su,i-i—l = 6) (84)
Sui=e = (Suiy1 =eV Syip1 =1) (S5)

« Eating is finite.

Sui=e= (Fj:7>i: Sy;j=t)

« Neighbors do not eat simultaneously and a hungry procestally eats.

(Yo :unbrov: =(S,i=eANS,;=¢€)) (S6)
Su7i:h:>(z|j:j>i15u7j:€) (87)

B. The Constrained Conflict Resolution Layer

In the constrained program, we introduce four objects nahdbin the original: (i) the input trace5, (i) a
variable p to indicate the current point irt', (iii) a function u.next to compute the next point at which process
u begins to eats, and (iv) a predicatedone to denote whether or not processeats again after the current point
in the computation.

Intuitively, we will use these to assign a process’s heighbe the next point in the computation when it begins
to eat. Then at that point in the computation it will be thehagt priority hungry process among its neighbors.
Figure 3 shows the constrained program. Note that it is hodxatutable program-done is a predicate over
an infinite trace. Note also that the inequalities dendfork and mayeat have been reversed from Section IV
reflecting the reversal of the priority relation.

Program unhygienic,,
initially ut A p=20
(Vo : wnbr v: uht#v.ht)
—u.done = u.ht = u.next
udone = (Vv :wunbro: Sy n#e N Syun—17#€)
always sendreq(u,v) = fork(u,v) =v A rf(u,v) =u A u.h
sendfork(u,v) = fork(u,v) =u A rf(u,v) =u A (u.t V (u.h A u.ht > v.ht))
u.mayeat = (Yov : wnbrov: fork(u,v)=u A (u.ht <v.ht V rf(u,v) =v))
udone = (Vi:i>p: Sy, €{et})
unext= (Mini : i >p A Syi=h A Syir1=e€e: i+1),if —u.done
p+1 otherwise

u.done V u.ht =p+1 —
u.h N umayeat — u.state := eating
pi=p+1
su.ht = u.next
H| . true —
sendreq(u,v) — rf(u,v):=v
R, : true —
sendfork(u,v) — fork(u,v) :=wv
A: Sp=8p+1 — p=p+1

Fig. 3. The Constrained Unhygienic Algorithmnhygienic,,

In this program,u.nezt is well-defined since~u.done = (3i: i>p: Syi=h A Syit1=¢€)

—u.done

= { def'n of u.done }

(Fi:i>p: Sui=h)

= (6D}
(Fi:i>p: Syy=h)AN (Jj:j>i: Sy;=¢€)
= {(sh)

(Fi:i>p: Syi=h A Syit1=c¢€)
The following are properties ofinhygienic,, , for all points i in the computation. These properties all follow
directly from the program text.

« The trace is not changed.

constant S (HO)
« The current point in the computation advances by at most one.

p=kunlessp=FL+1 (H1)
« A process’s height is equal ta.next, so long as it has not eaten for the last time.

invariant —u.done = wu.ht = u.next (H2)
u.ht =k unless p = k (H3)

In addition, the following properties can be easily shown.
« Tranquility is stable.

stable u.done (H4)

Proof: Once u.done holds, it can only be invalidated by changing such that for some > p, S,; ="
or by p decreasing. By property (HO)S is constant and by property (H1), is nondecreasing. Therefore,
once u.done holds, it continues to hold. O

o A process’s height is equal to the point in the computatiomvlaich it will next eat, so long as it has not
eaten for the last time.

invariant —u.done = (Syu.nt—1 = h A Syu.nt =€) (H5)
Proof:
w.ht = k N\ —u.done
= { H2) }
u.ht = u.next = k A —u.done
= { def'n unext= (Mini : i >p A Syi=h A Syiy1=e€e: i+1) }

uht =k A (Su,k—l =h A ka = e)

C. The Constrained User Program

At this point, we will state our assumptions on thaer, process. Specifically, assume thater, can be
constrained to produceser] which has the following properties, for all pointsin the computation.

o The trace is not changed.

constant S (U0)
« The state corresponds with the current point in the trace.

invariant u.state = Sy, (U1)

o The user program does not change the current point in the aiatign when the process is hungry or does
not change state in the trace.

stable p =k A u.h U2)
stablep = k A Su,lc = Su,lc—l—l (U3)

o The current point in the computation advances by at most one.
p=kunlessp=FkLk+1 ((22]
« The trace dictates transitions out of the thinking and gasitates.

transient Sy, =t A Supr1=h (U5)
transient Sy, = e A Sypy1 =1 (U6)

10

o Guards added to the constrained user program are infinifedyy orue and, once one of these new guards

becomes true it remains true until the corresponding aai@tutes.

In addition, we require that.ser!, be produced by only adding new variables which are not prograriables of
unhygienic, , assignments to new variables, and additional guardsereterg new and program variables. Finally,
if user!, replaces random assignments iger, with assignments referencing new and program variables, th
assigned value satisfies the predicate on the random assngmmuser,, . This ensures that the safety properties
of user, are maintained inuser?, .

D. Proof of Maximality

To prove the maximality of our solution we show thét is a possible execution ofinhygienic || user . The
proof is broken into several lemmas. Lemmas 1 and 3 estathlahevery fair execution ofinhygienic || user’
compute the same states & Lemmas 4, 5, and 6 establish that every fair executiommohygienic’ || user’ is
a fair execution ofunhygienic || user .

Lemma 1:At each step in the computation, each process’s state isatine 8isS :

invariant w.state = Sy,

Proof: First we show that the invariant holds initially. From thegram text, all processes are initially thinking
andp =0. By (S82), S0 =1t for all «. So, initially, the invariant holds.

Next we show that every action efnhygienic,, preserves the invariant. The only two actions that modifytate
or p are E], and A. When E], is enabled,(u.ht = p+1 V u.done) A u.h holds. From the inductive hypothesis
and u.h , however, we knowsS,, , = h and therefore-u.done . So, if E/, is enabled,—~u.done A u.ht =p+1.
By (H5), S.,+1 = e. Since actionE!, both incrementsp and assigns the state to be eating, the invariant holds
after it executes. Whemd is enabled,S, = S,41. Since A incrementsp and does not change.state, the
invariant holds after it executes. Thus,state = S,,;, is an invariant ofunhygienic,, .

By (Ul), u.state = S, is also an invariant ofuser], . Therefore, it is an invariant of the composed program.

[

Next, we present two observations and a lemma that will be usé¢he proof of Lemma 3.

Observation 1: (—u.done A u.ht =p+1) = (Yv : unbr v A v.ht < u.ht : v.done)

Proof: By contradiction. Given—u.done A u.ht = p+ 1, assumev is an arbitrary neighbor of, such that
v.ht < w.ht and —w.done. By (H2) and assumptionwv.done, v.ht = v.next and furthermorev.ht > p (as
v.next > p). But u.ht = p+ 1 and each process has a distinct height among its neighteed ésnma 6).v.ht

cannot be less than or equal toht . Contradiction. O
Observation 2: (—u.done A u.ht =p+1) = = (Jv : unbrov: vh AN vht=p+1)
Proof: Follows immediately from Observation 1 and Lemma 1. O
Lemma 2:The current point in the computation eventually changes:
p=k~p#k

Proof: By the definition of S, we know that at each point in the trace either (a) exactly pmoeess changes
state, or (b) each tuple in the suffix ¢ is identical (the state of quiescence). We show that in eitlase, the
current point in the computation changes.

Case (a):Some process, say, changes state in the trace:=k A Sy 1 # Suk+1

If w is thinking in the current point of the trace (i.eS,, = t), then, by (S3),Syp+1 = h. From (U5),
however, the predicates, , =t A S, p+1 = h is transient. SinceS is constant, the only way for this predicate
to be transient is forp to change value. The argument is exactly the same for a pdbes is thinking in the
current point of the trace.

If w is hungry in the current point of the trace (i.&,, , = h), then, by (S4),5, p+1 = e. We showu.h A u.ht =
p+1:

Sup=h N Syupr1=e
= { def'n w.done = (Vi:i>p: Sy;€{et}) }

11

Sup=h N Sypt1 =€ A —u.done

= { unext= (Mini: i>p A Syi=h AN Syiy1=e: i+1) }
Sup="h A —u.done N unert=p+1
= { (H2) —u.done = u.ht =u.next }

Sup=h Nuht=p+1
{ Lemma 1}

uw.h AN uht=p+1

By Observation 1,z is the highest priority process among its neighbordor which —wv.done holds. Thus,
by Lemma 1,u is the highest priority process among its neighbors whigharwhich could ever again become
hungry. This process eventually holds all its forks amehayeat holds. Because of.’s high priority, it does not
relinquish forks until it eats, and thereforemayeat continues to hold until actiorE], is executed, ang’s value
is changed.

Case (b):No process changes state in the trapez £ A Sy = Sk41 -

Action A in unhygienic, ensures that the predicaje= k A S, = S,1;1 Is transient. SinceS is constant,
the only way for this predicate to be transient is ferto change value.

By cases (a) and (b)y is guaranteed to eventually change value.]

Lemma 3:The current point in the computation eventually advancess.

Proof: Follows from Lemma 2 and the safety propemy= k£ unless p = k + 1 (properties (H1) and (U4))[J
Lemma 4:Any guard added to an existing action imhygienic, can only be falsified by the action it guards.
Proof: The lemma holds trivially for actiong?;, and R,, . It remains to be shown that.done V u.ht = p+1

is preserved by all actions imser’ || unhygienic' except E!, .

From (H4), u.done is stable, so we must only show thatht = p + 1 is preserved by the execution of any
other action when-u.done holds. By (H5), Sy, = h A Sy 41 = e. Then actionA is not enabled. Furthermore,
by Observation 2, no action by any processfor which —w.done can executeFE! and falsify u.ht = p+ 1.

Finally, by Lemma 1,u.h holds and, by (U2),p = k is stable in user’. Since user’ does not introduce
variables which are existing program variableswofhygienic, no action ofuser’ can falsify u.ht = p+1. O

Lemma 5:Each additional guard inunhygienic,, is infinitely often true.

Proof: We must show thati.done V u.ht = p—+ 1 is infinitely often true.

We know u.done is stable, so ifu.done ever holds, the guard will be continuously and thereforenitely
often true.

Now assume, for any point in the computatiofy.done holds. Thenu.ht = u.next by H4 and by the definition
of w.next, u.ht > p. Also, by (H3), u.ht does not change unlegs = wu.ht — 1. By induction on Lemma 3,
eventuallyu.ht = p+1 holds. O

We use the following observation in the proof of Lemma 6.

Observation 3: (Vi : Sy;=e: (Vo :unbro: Syi1#eA Syi#e N Spiv17#€))

Proof: For all neighborsv of w:

Su,i =€
{ (S6) }
Su,i =e N Sv,i 7é €
= {(s0)}
(Su,i—l =eV Sv,i—l 7é 6) A Su,i =e A Sv,i 7é e N (Su,i—l—l =eV Sv,i-i—l 7é 6)
= {(s6)}
Svic17#e N SyiFe N Syir1F#e

O
Lemma 6: The assignment.ht := u.next in E!, implements the random assignment i, .
Proof: There are two proof obligations: (i}.ht increases from its previous value, and @i)xt remains distinct
from neighbor heights.
Let p,re and u.ht,.. denote the value op and u.ht respectively at the beginning of the execution Bf, .
Consider the value ofi.next at the point that the assignment toht occurs, given that the action is enabled:

12

u-ht;m"e = Dpre + 1

= { p incremented before assigninght }
u.htpre =p
= { from def'n of u.next, u.next >p }

u.htpre < u.next
Thus, the assignment strictly increases the value:.f

In order to show (i), we first show tha$, ,1 =e = (Vv : wunbrov: v.ht#p+2 A v.ht # (Mini :
1 >p A Suﬂ':h AN Sw-_H:e: ’i—|—1)).

In the following, assumev is an arbitrary process such thatnbr w .

First assumev.done A Sy 1 = e. Ifinitially v.done then the consequence holds by théially predicate.

If initially —wv.done then at some point in the computation, say p, v began eating for the last time. Then
vht=j4+1= (Maxi: S,;.1=h AN S,;=e: i+1).Itfollows v.ht #p+2 A v.ht # (Mini : i >
p A Sui=hANSyit1=e: i+1) by j<p and Observation 3.

Now assume—v.done A Sy p+1 =e€.

—w.done A Sypir1 =€
= {(H)}
Sv,v.ht =e N Su7p+1 =€
= { Observation 3}
v.ht 7& D+ 2N Sv,v.ht:e
= {(s6)}
vht#p+2 AN vht# (Mini: i>p A Syi=h AN Syiq1=e: i+1)

Then Sypr1 =€ = (Yo : unbrov: vht#p+2 Avht# (Mini : i >p A Sys=h AN Sy i1 =
e:i+1)).By(H5) S,,+1 = e holds at the beginning of execution @, . Then by sequential composition and
the definition of u.next, v.ht # u.next at the point of the random assignment and heights of neight@nain
distinct.]

Theorem 1:Any fair execution of unhygienic’ || user’ is a fair execution ofunhygienic || user .

Proof: Lemmas 4 and 5 establish that each action is executed ihfimten when the additional guard is true.
This corresponds to a weakly fair scheduling of actions édHhginal program. Furthermore, Lemma 6 proves that
the deterministic assignment ta.ht in unhygienic’ is a possible random assignment4oht in unhygienic.

[

Theorem 2:The wunhygienic algorithm, when composed with aser program meeting the requirements
described, is a maximal solution to the dining philosopheablem.

Proof: AssumesS is an arbitrary trace satisfying the dining philosophersbfgm. We show thatS is a possible
execution of unhygienic || user .

By Lemmas 1 and 35 is a possible fair execution ofinhygienic || user’. Therefore, by Theorem 15 is a
possible execution olinhygienic || user .

Since S was arbitrary, any trace satisfying the specification of direng philosophers problem is a possible
execution of unhygienic || user . Therefore theunhygienic algorithm, when composed with aser program
meeting the requirements described, is a maximal solutahée problem.]

VI. DISCUSSION
A. Limitations of our Approach

Our approach to proving the maximality of composed systamislves making assumptions about the other
programs in the system. While this approach is modular in ithallows us to isolate our attention to a single
component, it is not perfectly general. Different restoos on program behavior are likely required for different
systems.

The main limitation of our approach is that the techniqueoisrsl, but not necessarily complete. That is, having
decided on a set of properties required for the environmewtder to prove maximality of the composed system,
there may be environments that do not satisfy these pregehbtit still yield maximal systems.

A final limitation of this strategy is that it does not say arigg about the maximality of the component in the
context of nonmaximal environments. For example, consideer process that can become hungry at mést

13

times. It would appear that the unhygienic algorithm caregate all possible traces given the constraint of working
with such auser . The resulting composed system is not maximal, but the ldgkaximality, in a sense, is due
entirely to theuser . It is awkward to show such properties using our method.

B. Maximality and Concurrency

In [5], maximality is associated with concurrency sincegramms that are maximal admit “maximal concurrency”.
While this is true, there is no guarantee that a particulacetion of a maximal program is “maximally concurrent.”
Maximally concurrent executions may not even be likely; e tas it is that maximal programs admit maximal
concurrency they also admit all other degrees of concuyrenc

VIlI. CONCLUSION

The noncompositionality of maximality poses a significamilienge to the verification of this property in layered
systems. We have developed a method for proving the matinadlicomposed programs. This method is modular
in that it permits these proofs to be carried out in the absehother component implementations. We have applied
this technique in the proof of the first known maximal solatio the diners problem, the unhygienic algorithm.

REFERENCES

[1] K. Mani Chandy and Jayadev MisraParallel Program Design: A Foundation Addison-Wesley Publishing Company, Reading,
Massachusetts, 1988.

[2] Edsger W. Dijkstra. Hierarchical ordering of sequehpeocessesActa Informatica 1(2):115-138, 1971.

[3] Mohamed G. GoudaElements of network protocol desigdohn Wiley & Sons, Inc., New York, NY, USA, 1998.

[4] Rajeev Joshi and Jayadev Misra. Maximally concurrenigpams. Technical Report CS-TR-99-15, 1, 1999.

[5] Rajeev Joshi and Jayadev Misra. Toward a theory of makmeancurrent programs. IPODC '00: Proceedings of the nineteenth
annual ACM symposium on Principles of distributed commjtpages 319-328, New York, NY, USA, 2000. ACM Press.

[6] R. Milner. Communication and concurrencyrentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[7] Jayadev Misra.A Discipline of Multiprogramming: Programming Theory foridiributed Applications Sprinver-Verlag, New York,
NY, USA, 2001.

[8] David Park. Concurrency and automata on infinite segendn Proceedings of the 5th Gl-Conference on Theoretical Coarput
Science pages 167-183, London, UK, 1981. Springer-Verlag.

[9] Scott M. Pike.Distributed Resource Allocation with Scalable Crash Camtgent PhD thesis, The Ohio State University, Department
of Computer Science & Engineering, Aug 2004.

[10] Paolo A.G. Sivilotti, Scott M. Pike, and Nigamanth Sréd. A new distributed resource-allocation algorithm witbtimal failure
locality. In Proceedings of the 12th IASTED Internation Conference amllh and Distributed Computing and Systemslume 2,
pages 524-529. IASTED/ACTA Press, November 2000.

