
1

The Maximality of Unhygienic Dining Philosophers
Matthew Lang and Paolo A. G. Sivilotti Department of Computer Science and Engineering

The Ohio State University
Columbus, Ohio 43210-1277

Email: {langma,paolo}@cse.ohio-state.edu

Abstract

The behaviors exhibited by a correct program are a subset of those allowed by its specification. A program is
said to be maximal if, in addition to being correct, it can exhibit anyof the behaviors permitted by its specification.
Maximality is useful for design, as it eliminates trivial ordegenerate solutions; for performance as it requires solutions
to permit maximum concurrency; and for testing as it exposesmistakes in layered implementations. Unfortunately,
maximality is not compositional: The composition of two maximal programs is not guaranteed to be maximal.
This observation poses a challenge for the modular verification of maximality in composed systems. In this paper,
we present a strategy for proving the maximality of composedsystems in a modular manner. As an example, we
consider a classic scheduling problem, dining philosophers. We present the unhygienic algorithm and prove both
its correctness and maximality. This proof establishes theunhygienic solution as the first known maximal dining
philosophers algorithm.

I. INTRODUCTION

A specification describes a set of possible program executions; a program implementing a specification is correct
if the set of possible executions of the program is containedwithin the specification. Maximality is a stronger notion.
A program ismaximal if it is (i) correct, and (ii) the set of behaviors permitted by the specification iscontained
within the possible behaviors of the program. That is, the program can exhibitall the behaviors permitted by the
specification.

Maximal programs are important because they eliminate trivial solutions to problems—those that limit con-
currency or otherwise restrict behavior permitted by a specification. Maximal programs are also important for
testing component-based systems because they prevent a component implementation from providing unnecessarily
deterministic behavior and, in this way, masking errors in its clients.

For example, consider abag data structure with two operations,put andget. Informally, the specification for this
data structure states that theput operation adds objects to the bag and theget operation returns an arbitrary object
from the bag. A FIFO queue is clearly a correct implementation of this specification. However, this implementation
restricts the behavior permitted by the specification: Theith get always returns the object placed in the bag by the
ith put. The FIFO queue implementation, therefore, is not maximal with respect to the specification for a bag.1

Using this implementation to model an unordered communication channel would restrict the possible behaviors of
the composed system.

Unfortunately, the maximality of concurrent programs is not compositional. That is, the parallel composition of
two maximal programs is not, itself, guaranteed to be maximal. The current technique for proving the maximality
of a UNITY-like program involves whole-program analysis [4]. In this paper, we extend this technique to prove the
maximality of composed programs in a modular way. Essentially, the proof technique involves adding requirements
to a component’s environment that permit the whole-programproof obligations to be dispatched without the
implementation particulars of the environment.

The dining philosophers problem, ordinersfor short, is a classic synchronization problem for distributed systems.
Solutions to this problem are inherently compositional. Not only are there multiple dining processes, but each process
consists of two parts: a user that requests a resource and a conflict resolution layer that grants the resource. To
illustrate our method for modular proofs of maximality, we describe theunhygienicalgorithm for diners. We prove
that this algorithm is both a correct and maximal implementation of the conflict resolution layer.

1It is, however, maximal with respect to a different specification, namely the specification for a FIFO queue. The maximality of an
implementation, therefore, is relative to a particular specification.

2

The paper is organized as follows. Section II provides background, including the model of computation, the whole-
program technique for proving maximality, and the diners problem. Section III exposes the non-compositional nature
of maximality. Section IV describes the unhygienic algorithm and provides an informal proof of its correctness.
Section V illustrates our method for proving the maximalityof composed programs by proving the maximality of
the unhygienic algorithm. Sections VI and VII conclude the paper by examining the limitations of our approach,
pointing to related work, and indicating directions for future research.

II. BACKGROUND

A. The Programming Model

We use a UNITY-style notation for writing programs and reasoning about their properties [1], [3], [7]. Programs
are sets of guarded commands of the formA : γ −→ α where A is a label,γ is a guard which is a predicate on
program variables, andα is a command consisting of assignments to program variables. An action whose guard
is true is said to be enabled. Each program implicitly includes the actionskip , which does nothing. Execution
of a UNITY program is an infinite sequence of states, where each pair of successive states is the result of the
execution of a program action. The result of executing an enabled action is the result of the assignments in the
actions command. The result of executing an action that is not enabled is no change in state. A program execution
is weakly fair: each action is executed infinitely often.

For program properties, the basic safety operator isnext . The propertyX next Y says that every state that
satisfies the predicateX is immediately followed by a state that satisfies the predicate Y . Since every program
contains skip , this is only possible ifX ⇒ Y . Similarly, stable X requires that every state that satisfiesX

is immediately followed by a state that also satisfiesX . Hence, onceX holds, it continues to hold. An invariant
property is true initially and stable. Finally,X unless Y says thatX cannot become false withoutY being true.
Formally, X unless Y ≡ (X ∧ ¬Y) next (X ∨ Y) .

A basic progress operator istransient . The propertytransient X says that a program has at least one action
that, when executed in a state whereX holds, results in a state where¬X holds. Thus,¬X is guaranteed to
hold infinitely often. Any transient property of a program isalso a property of a composed system that contains that
program. The progress propertyX ; Y (X leads-toY) requires that ifX holds at any point in a computation,
Y holds at a later (or the same) point.

When free variables appear in these properties, they are understood to be implicitly universally quantified. So,
for a program with variablex , the propertystable x = k should be read as(∀ k :: stable x = k) ; that is, x

never changes value.

B. Proving Maximality

A program P is correct with respect to a specificationS if the set of possible executions ofP , |P | , is
contained in the set of traces that satisfyS , |S| . That is, |P | ⊆ |S| . On the other hand, a programP is maximal
with respect to a specification,S , if P is correct and|P | = |S| [7], [4], [5]. The notion of maximality is similar
to bisimulation [6], [8] but the former relates program texts and specifications while the latter involves artifacts
with similar mathematical representations, such as two Kripke structures.

The proof technique for establishing maximality consists of two steps. The first step is to show that an arbitrary
trace σ ∈ |S| is a possible execution of an instrumented versionP ′ of P . The second step is to show that every
fair execution ofP ′ corresponds to a fair execution ofP .

P ′ is constructed fromP by (i) adding new variables, (ii) adding assignments to new variables within existing
actions, (iii) adding guards to existing actions, and (iv) adding actions that mention only new variables. The new
variables includechroniclesthat encode the arbitrary traceσ ∈ |S| and auxiliary variables that encode, for example,
the current point,i , in the trace. Assignments inP ′ may modify auxiliary variables but not chronicles. These
modifications ensure that every safety properties ofP is also a property ofP ′ .

To show thatσ is a possible execution ofP ′ , it suffices to show that for every value ofi , the value of program
variables ofP are equal toσi .

The second obligation, that every fair execution ofP ′ corresponds to a fair execution ofP , requires showing
that (i) each additional guard is infinitely often true and (ii) the truth of each additional guard is preserved by the

3

execution of every action ofP ′ except the action it guards. These two properties ensure that each action ofP ′ is
executed infinitely often in a state where the additional guard is true.

This proof technique is illustrated in [7] using the task scheduling problem. This problem consists of a set of
tasks and a conflict relation between tasks. Given that executing tasks eventually terminate, algorithms that solve
the task scheduling problem schedule tasks for execution such that no pair of tasks in the conflict relation execute
concurrently and each task is executed infinitely often. Thetask scheduling problem is closely related to diners, and
its maximal solution is the basis for the unhygienic diners algorithm. The key difference is that the task scheduling
solution is a single program, whereas a diners solution is a part of a composed program.

C. The Dining Philosophers Problem

The diners problem [2] is a classic resource allocation problem. Originally framed as a set of philosophers
arranged around a table, the problem has been generalized toan arbitrary graph in which nodes correspond to
processes and edges represent a conflict for a shared resource.

A process can be in one of three states:thinking, hungry, or eating. A client process (the user) controls transitions
from thinking to hungry and eating to thinking while an arbitration process (the conflict resolution layer) controls
the transition from hungry to eating.

The user process guarantees that eating is finite. The problem is to design an implementation for the conflict
resolution layer such that the composed system satisfies thefollowing properties:

• Safety: No two neighboring processes are in the eating statesimultaneously.

invariant (∀u, v : u nbr v : ¬(u.state = eating ∧ v.state = eating))

• Progress: A hungry process eventually eats.

u.state = hungry ; u.state = eating

One strategy adopted by several algorithms to solve the diners problem is to associate a token, a fork, with each
edge in the conflict graph. A process is required to hold all its forks in order to eat. Since forks are neither created
nor destroyed, this strategy ensures the safety part of the specification is satisfied.

III. T HE NON-COMPOSITIONAL NATURE OF MAXIMALITY

Maximality properties, much like non-trivial progress properties, are noncompositional. That is, given two
programsP0 and P1 that maximally implement the specificationsS0 and S1 respectively, there is no guarantee
that their composition,P0 ‖ P1 , is maximal with respect toS0 ‖ S1 .

For example, consider the specificationS0 :

x = k next |x − k| ≤ 1

transient x = k

This specification says thatx changes value infinitely often and that each change of value is by at most one.
An implementation of this specification is given by programP0 :

initially a = 1
assign

A0 x := x + a

B0 a := −a

This implementation is maximal since any sequence of valuesadmitted by the specification can be generated
through the appropriate choices of which action to execute.For example, the sequence in whichx never decreases
is formed by always selectingB0 twice between successive choices ofA0 .

Now consider the specificationS1 :

x = k next |x − k| ≤ 2

transient x = k

4

Like S0 , this specification also says thatx changes value infinitely often. UnlikeS0 , however,S1 allows x to
change value by at most two.

An implementation of this specification is given by programP1 :

initially b = 1
assign

A1 x := x + b

B1 b := −b

C1 b := 3 − |b|

This program is maximal with respect toS1 .
The specification for the composed system (S0 ‖ S1) is given by:

x = k next |x − k| ≤ 2

transient x = k

Any correct implementation ofS0 , when composed with any correct implementation ofS1 , is guaranteed to satisfy
this specification. Furthermore, this is the strongest specification for which this claim can be made.

Indeed, the composition of programs,P0 ‖ P1 does satisfy this composed specification:x can change value
by at most 2 andx changes value infinitely often. The composed program, however, is not maximal. Consider
the sequence of values in which wheneverx changes value, it changes by 2 (e.g.,〈2, 4, 6, 8, 10, 12, . . .〉) This
sequence is permitted by the composed specification, but cannot be generated by the composed program. Weak
fairness requires that all actions be chosen infinitely often. However, whenever actionA0 is chosen,x changes
value by 1. Thus, every trace generated by the composed program must include an infinite number of points at
which x changes value by 1, and hence the program is not maximal.

IV. T HE UNHYGIENIC DINING PHILOSOPHERSALGORITHM

In this section, we first present a classic solution to the dining philosophers problem: the hygienic algorithm [1].
This algorithm uses fork tokens to ensure mutual exclusion and a dynamic priority ordering to ensure progress.
Through a series of generalizations, we transform this algorithm into one that permits repeated overtaking. This new
algorithm is theunhygienicdining philosophers algorithm. This algorithm has appeared in [10] and [9], however
this paper is the first proof of its maximality.

A. Background: Hygienic Dining Philosophers

The hygienic dining philosophers algorithm [1] is a solution to the generalized dining philosophers problem.
Each pair of neighbors in the conflict graph shares a single fork. A process is required to hold all its forks in order
to eat, thus ensuring mutual exclusion.

To ensure progress, philosophers are assigned relative priorities. Each edge in the conflict graph is directed from
the lower priority neighbor to the higher priority neighbor, and initial priorities are assigned so that the directed
graph is acyclic. The priority graph remains acyclic since priorities only change when a philsopher eats, at which
time it lowers its priority below all its neighbors. One way to satisfy this requirement of acyclicity is to assign
each philosopher a height so that neighbors do not have the same height. A philosopher changes height only by
eating and when it eats it lowers its height below all its neighbors.

When a philsopher becomes hungry, it requests all of its missing forks. Conversly, when a philosopher receives
a request for a fork, it releases the fork only if it is not eating and the requesting neighbor has higher priority.

Figure 1 shows a UNITY program that implements the conflict-resolution layer of this algorithm. The program in
Figure 1 is composed with a user program that controls state transitions from thinking to hungry, and from hungry
to eating. Throughout this paper, we define the predicateu.t (u.h , u.e) to be u.state = thinking (hungry ,
eating respectively).

We use the termlow fork to refer to a fork that is shared with a lower-priority neighbor. The same fork is ahigh
fork for that neighbor. The direction of priority for an edge is encoded on a fork as the difference in heights between
the processes that share the fork. In the original presentation of this algorithm, high forks were termeddirty, since

5

Program hygienicu

initially u.t

(∀ v : u nbr v : u.ht 6= v.ht)
(∀ v : u nbr v : fork(u, v) = u ≡ u.ht > v.ht)

always sendreq(u, v) ≡ fork(u, v) = v ∧ rf(u, v) = u ∧ u.h

sendfork(u, v) ≡ fork(u, v) = u ∧ rf(u, v) = u ∧ ¬u.e ∧ u.ht < v.ht

u.mayeat ≡ (∀ v : u nbr v : fork(u, v) = u ∧ (u.ht > v.ht ∨ rf(u, v) = v))
assign

Eu : u.h ∧ u.mayeat −→ u.state := eating

‖ u.ht := (Min v : u nbr v : v.ht) − 1
Hu : sendreq(u, v) −→ rf(u, v) := v

Ru : sendfork(u, v) −→ fork(u, v) := v

Fig. 1. Hygienic Dining Philosophers Algorithm

all forks are high forks after a philosopher eats. Conversly, low forks were termedclean. Since only high (dirty)
forks are released to a neighbor, and since a fork switches from high to low when received by that neighbor, all
forks arrive as clean forks. This observation motivates thechoice of the name, hygienic, for this algorithm.

B. Generalization: Weakening the Invariant

One invariant of the hygienic algorithm is that thinking philosophers never hold low forks. This property is true
initially since all forks are initially high forks. It is maintained when a philsopher begins thinking since all forks
became high forks when it ate. Also, it is maintained when (low) forks arrive since a thinking philosopher never
acquires forks.

Because of this invariant, the rule for releasing a fork is simply expressed: a philosopher never releases a low
fork. This rule, however, is stronger than needed to prove correctness. To guarantee progress, it suffices to require
that ahungryphilosopher never releases a low fork. That is, thesendfork predicate can be rewritten as follows:

sendfork(u, v) ≡ fork(u, v) = u ∧ rf(u, v) = u ∧ (u.t ∨ (u.h ∧ u.ht < v.ht))

This version is equivalent to the originalsendfork predicate given the invariant that thinking philosophers never
hold low forks.

If we relax the invariant, however, the algorithm with the new formulation is still correct. That is, we remove
the following predicate from the initial conditions:

(∀ v : u nbr v : fork(u, v) = u ≡ u.ht < v.ht)

Without this requirement, the initial placement of a fork isarbitrary, so thinking philosophers may hold low forks.
Such a philosopher, however, does not prevent a lower priority hungry philosopher from eating without it itself
becoming hungry.2

With this generalization, low (clean) forks can be released, specifically by a thinking process. Because a fork
switches from being high to being low when received by that neighbor, such forks arrive as dirty forks. This
observation motivates the choice of the name, unhygienic, for this algorithm.

C. Generalization: Increasing Nondeterminism

Having modified the algorithm to permit thinking philosophers to hold low forks, it is no longer necessary for
eating to result in a process being lowered below all of its neighbors. Instead, it suffices for eating to result insome
lowering of height. Thus, the eating action is modified to lower a process by a nondeterministic amount.

u.ht :=? st u.ht < u.htpre ∧ (∀ v : u nbr v : u.ht 6= v.ht)

2We note that this algorithm stabilizes to the invariant thata low fork is not held by a thinking philosopher so long as either neighbor that
shares the fork becomes hungry at least once. Thus, the only case where stabilization to the original invariant does not occur is if neither
neighbor becomes hungry at least once, in which case the forkis never requested.

6

This generalization allows a hungry process to be overtakenrepeatedly by a neighbor. In the hygienic algorithm,
once a processu becomes hungry, no neighbor,v , of u can eat more than once. After eating,v is lowered below
u , so it must relinquish the shared fork. In the unhygienic algorithm, however,v is lowered by some amount, but
not necessarily belowu . At that point, v is thinking and holding a low fork. Although it might releasethe fork
(action Rv), it is not required to do so immediately. If, instead,v becomes hungry again, then the fork is not
released andv will eat a second time whileu remains hungry. Thus, the unhygienic algorithm permits finite, but
unbounded, overtaking of hungry philosophers. The algorithm is summarized in Figure 2.

Program unhygienicu

initially u.t

(∀ v : u nbr v : u.ht 6= v.ht)
always sendreq(u, v) ≡ fork(u, v) = v ∧ rf(u, v) = u ∧ u.h

sendfork(u, v) ≡ fork(u, v) = u ∧ rf(u, v) = u ∧ (u.t ∨ (u.h ∧ u.ht < v.ht))
u.mayeat ≡ (∀ v : u nbr v : fork(u, v) = u ∧ (u.ht > v.ht ∨ rf(u, v) = v))

assign
Eu : u.h ∧ u.mayeat −→ u.state := eating

;u.ht :=? st u.ht < u.htpre ∧ (∀ v : u nbr v : u.ht 6= v.ht)
Hu : sendreq(u, v) −→ rf(u, v) := v

Ru : sendfork(u, v) −→ fork(u, v) := v

Fig. 2. Unhygienic Dining Philosophers Algorithm

D. Proof of Correctness

We provide an sketch of the proof of correctness of the unhygienic algorithm.
The safety requirement, that no two neighboring processes eat simultaneously, is ensured by the invariant that

an eating process holds all its forks. The proof is identicalto that for the hygienic algorithm.
The progress requirement, that a hungry process eventuallyeats, is ensured by identifying a metric for a hungry

process. This metric must be bounded below and must be guaranteed to decrease unless the process eats. In the
hygienic algorithm, this metric (for a processu) is the sum of the number of higher processes and the number of
higher thinking processes. More formally, letu.above be the set of processes reachable fromu . Recall that edges
are directed up, sov ∈ u.above means that there is a path consisting only of edges to higher priority processes
from u to v . Then u.m is defined by:

u.m = |{ v :: v ∈ u.above }| + |{ v :: v ∈ u.above ∧ v.t }|

This metric is nonincreasing. Furthermore, the metric is guaranteed to decrease for a hungry process by the following
argument. Ifu is hungry, there must a process aboveu (or u itself) that is both hungry and has no higher priority
hungry neighbors. This process is guaranteed either to eat eventually (in which case the number of processes above
u decreases), or to have one of its higher neighbors become hungry (in which case the number of thinking processes
above u decreases). In either case,u.m decreases.

For the unhygienic algorithm, the argument is similar. The metric for a hungry process is provided by:

u.m = (
∑

v : v.ht > u.ht : v.ht) + (
∑

v : v.ht > u.ht ∧ v.t : v.ht)

In this case, the sum of heights is taken over all processes that are higher thanu , which is a superset ofu.above .
As before, this metric is nonincreasing. Also, as before, the metric is guaranteed to decrease for a hungry process.
If u is hungry, there must a process aboveu (or u itself) that is both hungry and has no higher priority hungry
neighbors. This process is guaranteed either to eat eventually (in which case the sum of heights of processes above
u decreases), or to have one of its higher neighbors become hungry (in which case the number of thinking processes
above u decreases). In either case,u.m decreases.

7

V. MAXIMALITY OF THE UNHYGIENIC ALGORITHM

Because the unhygienic algorithm permits overtaking of hungry neighbors, it allows for executions that are not
possible for the hygienic algorithm. In this section, we prove that there are no executions that satisfy the diners
specification that are not possible for unhygienic algorithm. That is, we show that this algorithm is maximal.

Maximality is not compositional, so proving the maximalityof a single component, such as the conflict resolution
layer, in isolation (i.e., without the user process) is not enough. Conversely, proving the maximality of the conflict
resolution layer composed with a particular user implementation is too specific to that particular implementation.
Instead, here we postulate a set of properties that the user process satisfies and then carry out the proof of maximality
based on these properties. These properties are in additionto the usual requirements onuser needed for correctness
of the composed system, for example that eating is finite.

We begin by defining the structure of a maximal trace satisfying the diners problem specification. We then modify
unhygienic , adding guards and variables to form a constrained programunhygienic′ . We then state the additional
requirements placed on theuser process. These additional requirements ensure that (i)user is maximal and (ii)
user can be constrained in a particular way to establish this maximality.

Finally, we prove the maximality of the composed system of constrained programs. For any maximal trace,
the constrained system is shown to compute the execution sequence described by the trace. Furthermore, any fair
execution of the constrained system corresponds to a fair execution of the original system.

In our presentation of the unhygienic algorithm in Section IV, process height corresponded directly to priority.
That is, if a process had greater height, it also had higher priority. Thus, after eating a process lowered its priority
by lowering its height. In this section, however, we reversethis priority ordering. That is, if a process has greater
height, it haslower priority. Thus, after eating a process lowers its priority by raising its height. We make this
change for clarity in the proof of maximality, where processheight corresponds to a point in the trace, and hence
increases over the course of the computation. We will avoid confusion by always explicitly distinguishing the two.
For example, a neighbor will be referred to as a “higher priority neighbor” rather than simply a “higher neihbor”.

A. A Maximal Trace ofuser ‖ unhygienic

Let S be a sequence of tuples representing the states of processesin an execution satisfying the specification
of the dining philosopher’s problem. LetSi denote theith tuple in the sequence and letSu,i denote the state
of processu at step i (Su,i ∈ {t, h, e} representing the thinking, hungry, and eating states respectively). We
consider only stutter-free sequences. That is, each tuple in the sequence differs from the previous in at least one
element,unlessthe execution is in a state of quiescence (every process remains in the thinking state forever).

The following properties characterize any trace,S , that satisfies the diners specification. These properties apply
to all processesu and all pointsi in the computation.

• At each step in the computation, at most one process changes state.

Su,i 6= Su,i+1 ⇒ (∀ v : u 6= v : Sv,i = Sv,i+1) (S0)

• The trace is stutter-free, except in the state of quiescence.

Si = Si+1 ⇒ (∀ v, j : j ≥ i : Sv,j = t) (S1)

• Processes are initially thinking, and valid state transitions must loop through thinking, hungry, and eating
states.

Su,0 = t (S2)

Su,i = t ⇒ (Su,i+1 = t ∨ Su,i+1 = h) (S3)

Su,i = h ⇒ (Su,i+1 = h ∨ Su,i+1 = e) (S4)

Su,i = e ⇒ (Su,i+1 = e ∨ Su,i+1 = t) (S5)

• Eating is finite.

Su,i = e ⇒ (∃ j : j > i : Su,j = t)

8

• Neighbors do not eat simultaneously and a hungry process eventually eats.

(∀ v : u nbr v : ¬(Su,i = e ∧ Sv,i = e)) (S6)

Su,i = h ⇒ (∃ j : j > i : Su,j = e) (S7)

B. The Constrained Conflict Resolution Layer

In the constrained program, we introduce four objects not found in the original: (i) the input traceS , (ii) a
variable p to indicate the current point inS , (iii) a function u.next to compute the next point at which process
u begins to eats, and (iv) a predicateu.done to denote whether or not processu eats again after the current point
in the computation.

Intuitively, we will use these to assign a process’s height to be the next point in the computation when it begins
to eat. Then at that point in the computation it will be the highest priority hungry process among its neighbors.
Figure 3 shows the constrained program. Note that it is not anexecutable program—u.done is a predicate over
an infinite trace. Note also that the inequalities insendfork and mayeat have been reversed from Section IV
reflecting the reversal of the priority relation.

Program unhygienic′u
initially u.t ∧ p = 0

(∀ v : u nbr v : u.ht 6= v.ht)
¬u.done ⇒ u.ht = u.next

u.done ⇒ (∀ v : u nbr v : Sv,u.ht 6= e ∧ Sv,u.ht−1 6= e)
always sendreq(u, v) ≡ fork(u, v) = v ∧ rf(u, v) = u ∧ u.h

sendfork(u, v) ≡ fork(u, v) = u ∧ rf(u, v) = u ∧ (u.t ∨ (u.h ∧ u.ht > v.ht))
u.mayeat ≡ (∀ v : u nbr v : fork(u, v) = u ∧ (u.ht < v.ht ∨ rf(u, v) = v))
u.done ≡ (∀ i : i ≥ p : Su,i ∈ {e, t})
u.next = (Min i : i ≥ p ∧ Su,i = h ∧ Su,i+1 = e : i + 1) , if ¬u.done

p + 1 otherwise
assign

E′

u : u.done ∨ u.ht = p + 1 −→
u.h ∧ u.mayeat −→ u.state := eating

; p := p + 1
;u.ht := u.next

H ′

u : true −→
sendreq(u, v) −→ rf(u, v) := v

R′

u : true −→
sendfork(u, v) −→ fork(u, v) := v

A : Sp = Sp+1 −→ p := p + 1

Fig. 3. The Constrained Unhygienic Algorithmunhygienic′
u

In this program,u.next is well-defined since¬u.done ⇒ (∃ i : i ≥ p : Su,i = h ∧ Su,i+1 = e)

¬u.done

⇒ { def’n of u.done }
(∃ i : i ≥ p : Su,i = h)

≡ { (S7) }
(∃ i : i ≥ p : Su,i = h) ∧ (∃ j : j > i : Su,j = e)

≡ { (S4) }
(∃ i : i ≥ p : Su,i = h ∧ Su,i+1 = e)

The following are properties ofunhygienic′u , for all points i in the computation. These properties all follow
directly from the program text.

9

• The trace is not changed.

constant S (H0)

• The current point in the computation advances by at most one.

p = k unless p = k + 1 (H1)

• A process’s height is equal tou.next , so long as it has not eaten for the last time.

invariant ¬u.done ⇒ u.ht = u.next (H2)

u.ht = k unless p = k (H3)

In addition, the following properties can be easily shown.
• Tranquility is stable.

stable u.done (H4)

Proof: Once u.done holds, it can only be invalidated byS changing such that for somei ≥ p , Su,i = h

or by p decreasing. By property (H0),S is constant and by property (H1),p is nondecreasing. Therefore,
once u.done holds, it continues to hold.

• A process’s height is equal to the point in the computation atwhich it will next eat, so long as it has not
eaten for the last time.

invariant ¬u.done ⇒ (Su,u.ht−1 = h ∧ Su,u.ht = e) (H5)

Proof:

u.ht = k ∧ ¬u.done

≡ { (H2) }
u.ht = u.next = k ∧ ¬u.done

⇒ { def’n u.next = (Min i : i ≥ p ∧ Su,i = h ∧ Su,i+1 = e : i + 1) }
u.ht = k ∧ (Su,k−1 = h ∧ Su,k = e)

C. The Constrained User Program

At this point, we will state our assumptions on theuseru process. Specifically, assume thatuseru can be
constrained to produceuser′u which has the following properties, for all pointsi in the computation.

• The trace is not changed.

constant S (U0)

• The state corresponds with the current point in the trace.

invariant u.state = Su,p (U1)

• The user program does not change the current point in the computation when the process is hungry or does
not change state in the trace.

stable p = k ∧ u.h (U2)

stable p = k ∧ Su,k = Su,k+1 (U3)

• The current point in the computation advances by at most one.

p = k unless p = k + 1 (U4)

• The trace dictates transitions out of the thinking and eating states.

transient Su,p = t ∧ Su,p+1 = h (U5)

transient Su,p = e ∧ Su,p+1 = t (U6)

10

• Guards added to the constrained user program are infinitely often true and, once one of these new guards
becomes true it remains true until the corresponding actionexecutes.

In addition, we require thatuser′u be produced by only adding new variables which are not program variables of
unhygienicu , assignments to new variables, and additional guards referencing new and program variables. Finally,
if user′u replaces random assignments inuseru with assignments referencing new and program variables, the
assigned value satisfies the predicate on the random assignment in useru . This ensures that the safety properties
of useru are maintained inuser′u .

D. Proof of Maximality

To prove the maximality of our solution we show thatS is a possible execution ofunhygienic ‖ user . The
proof is broken into several lemmas. Lemmas 1 and 3 establishthat every fair execution ofunhygienic′ ‖ user′

compute the same states asS . Lemmas 4, 5, and 6 establish that every fair execution ofunhygienic′ ‖ user′ is
a fair execution ofunhygienic ‖ user .

Lemma 1:At each step in the computation, each process’s state is the same asS :

invariant u.state = Su,p

Proof: First we show that the invariant holds initially. From the program text, all processes are initially thinking
and p = 0 . By (S2), Su,0 = t for all u . So, initially, the invariant holds.

Next we show that every action ofunhygienic′u preserves the invariant. The only two actions that modifyu.state

or p are E′

u and A . When E′

u is enabled,(u.ht = p+1 ∨ u.done) ∧ u.h holds. From the inductive hypothesis
and u.h , however, we knowSu,p = h and therefore¬u.done . So, if E′

u is enabled,¬u.done ∧ u.ht = p + 1 .
By (H5), Su,p+1 = e . Since actionE′

u both incrementsp and assigns the state to be eating, the invariant holds
after it executes. WhenA is enabled,Sp = Sp+1 . Since A incrementsp and does not changeu.state , the
invariant holds after it executes. Thus,u.state = Su,p is an invariant ofunhygienic′u .

By (U1), u.state = Su,p is also an invariant ofuser′u . Therefore, it is an invariant of the composed program.

Next, we present two observations and a lemma that will be used in the proof of Lemma 3.
Observation 1: (¬u.done ∧ u.ht = p + 1) ⇒ (∀ v : u nbr v ∧ v.ht ≤ u.ht : v.done)
Proof: By contradiction. Given¬u.done ∧ u.ht = p + 1 , assumev is an arbitrary neighbor ofu such that

v.ht ≤ u.ht and ¬v.done . By (H2) and assumption¬v.done , v.ht = v.next and furthermorev.ht > p (as
v.next > p). But u.ht = p + 1 and each process has a distinct height among its neighbors (see Lemma 6).v.ht

cannot be less than or equal tou.ht . Contradiction.
Observation 2: (¬u.done ∧ u.ht = p + 1) ⇒ ¬ (∃ v : u nbr v : v.h ∧ v.ht = p + 1)
Proof: Follows immediately from Observation 1 and Lemma 1.
Lemma 2:The current point in the computation eventually changes:

p = k ; p 6= k

Proof: By the definition of S , we know that at each point in the trace either (a) exactly oneprocess changes
state, or (b) each tuple in the suffix ofS is identical (the state of quiescence). We show that in either case, the
current point in the computation changes.

Case (a):Some process, sayu , changes state in the trace:p = k ∧ Su,k 6= Su,k+1

If u is thinking in the current point of the trace (i.e.,Su,p = t), then, by (S3),Su,p+1 = h . From (U5),
however, the predicateSu,p = t ∧ Su,p+1 = h is transient. SinceS is constant, the only way for this predicate
to be transient is forp to change value. The argument is exactly the same for a process that is thinking in the
current point of the trace.

If u is hungry in the current point of the trace (i.e.,Su,p = h), then, by (S4),Su,p+1 = e . We showu.h ∧ u.ht =
p + 1 :

Su,p = h ∧ Su,p+1 = e

≡ { def’n u.done ≡ (∀ i : i ≥ p : Su,i ∈ {e, t}) }

11

Su,p = h ∧ Su,p+1 = e ∧ ¬u.done

⇒ { u.next = (Min i : i ≥ p ∧ Su,i = h ∧ Su,i+1 = e : i + 1) }
Su,p = h ∧ ¬u.done ∧ u.next = p + 1

⇒ { (H2) ¬u.done ⇒ u.ht = u.next }
Su,p = h ∧ u.ht = p + 1

≡ { Lemma 1 }
u.h ∧ u.ht = p + 1

By Observation 1,u is the highest priority process among its neighborsv for which ¬v.done holds. Thus,
by Lemma 1,u is the highest priority process among its neighbors which are or which could ever again become
hungry. This process eventually holds all its forks andu.mayeat holds. Because ofu ’s high priority, it does not
relinquish forks until it eats, and thereforeu.mayeat continues to hold until actionE′

u is executed, andp ’s value
is changed.

Case (b):No process changes state in the trace:p = k ∧ Sk = Sk+1 .
Action A in unhygienic′u ensures that the predicatep = k ∧ Sp = Sp+1 is transient. SinceS is constant,

the only way for this predicate to be transient is forp to change value.
By cases (a) and (b),p is guaranteed to eventually change value.
Lemma 3:The current point in the computation eventually advances byone:

p = k ; p = k + 1

Proof: Follows from Lemma 2 and the safety propertyp = k unless p = k + 1 (properties (H1) and (U4)).
Lemma 4:Any guard added to an existing action inunhygienic′u can only be falsified by the action it guards.
Proof: The lemma holds trivially for actionsH ′

u and R′

u . It remains to be shown thatu.done ∨ u.ht = p + 1
is preserved by all actions inuser′ ‖ unhygienic′ except E′

u .
From (H4), u.done is stable, so we must only show thatu.ht = p + 1 is preserved by the execution of any

other action when¬u.done holds. By (H5),Su,p = h ∧ Su,p+1 = e . Then actionA is not enabled. Furthermore,
by Observation 2, no action by any processv for which ¬v.done can executeE′

v and falsify u.ht = p + 1 .
Finally, by Lemma 1,u.h holds and, by (U2),p = k is stable in user′ . Since user′ does not introduce

variables which are existing program variables ofunhygienic , no action ofuser′ can falsify u.ht = p + 1 .
Lemma 5:Each additional guard inunhygienic′u is infinitely often true.
Proof: We must show thatu.done ∨ u.ht = p + 1 is infinitely often true.
We know u.done is stable, so ifu.done ever holds, the guard will be continuously and therefore infinitely

often true.
Now assume, for any point in the computation,¬u.done holds. Thenu.ht = u.next by H4 and by the definition

of u.next , u.ht > p . Also, by (H3), u.ht does not change unlessp = u.ht − 1 . By induction on Lemma 3,
eventually u.ht = p + 1 holds.

We use the following observation in the proof of Lemma 6.
Observation 3: (∀ i : Su,i = e : (∀ v : u nbr v : Sv,i−1 6= e ∧ Sv,i 6= e ∧ Sv,i+1 6= e))
Proof: For all neighborsv of u :

Su,i = e

≡ { (S6) }
Su,i = e ∧ Sv,i 6= e

≡ { (S0) }
(Su,i−1 = e ∨ Sv,i−1 6= e) ∧ Su,i = e ∧ Sv,i 6= e ∧ (Su,i+1 = e ∨ Sv,i+1 6= e)

⇒ { (S6) }
Sv,i−1 6= e ∧ Sv,i 6= e ∧ Sv,i+1 6= e

Lemma 6:The assignmentu.ht := u.next in E′

u implements the random assignment inEu .
Proof: There are two proof obligations: (i)u.ht increases from its previous value, and (ii)u.ht remains distinct

from neighbor heights.
Let ppre and u.htpre denote the value ofp and u.ht respectively at the beginning of the execution ofE′

u .
Consider the value ofu.next at the point that the assignment tou.ht occurs, given that the action is enabled:

12

u.htpre = ppre + 1
⇒ { p incremented before assigningu.ht }

u.htpre = p

⇒ { from def’n of u.next , u.next > p }
u.htpre < u.next

Thus, the assignment strictly increases the value ofu.ht

In order to show (ii), we first show thatSu,p+1 = e ⇒ (∀ v : u nbr v : v.ht 6= p + 2 ∧ v.ht 6= (Min i :
i > p ∧ Su,i = h ∧ Su,i+1 = e : i + 1)) .

In the following, assumev is an arbitrary process such thatv nbr u .
First assumev.done ∧ Su,p+1 = e . If initially v.done then the consequence holds by theinitially predicate.

If initially ¬v.done then at some point in the computation, sayj < p , v began eating for the last time. Then
v.ht = j + 1 = (Max i : Sv,i−1 = h ∧ Sv,i = e : i + 1) . It follows v.ht 6= p + 2 ∧ v.ht 6= (Min i : i >

p ∧ Su,i = h ∧ Su,i+1 = e : i + 1) by j < p and Observation 3.
Now assume¬v.done ∧ Su,p+1 = e .

¬v.done ∧ Su,p+1 = e

⇒ { (H5) }
Sv,v.ht = e ∧ Su,p+1 = e

⇒ { Observation 3}
v.ht 6= p + 2 ∧ Sv,v.ht=e

⇒ { (S6) }
v.ht 6= p + 2 ∧ v.ht 6= (Min i : i > p ∧ Su,i = h ∧ Su,i+1 = e : i + 1)

Then Su,p+1 = e ⇒ (∀ v : u nbr v : v.ht 6= p + 2 ∧ v.ht 6= (Min i : i > p ∧ Su,i = h ∧ Su,i+1 =
e : i+1)) . By (H5) Su,p+1 = e holds at the beginning of execution ofE′

u . Then by sequential composition and
the definition of u.next , v.ht 6= u.next at the point of the random assignment and heights of neighbors remain
distinct.

Theorem 1:Any fair execution ofunhygienic′ ‖ user′ is a fair execution ofunhygienic ‖ user .
Proof: Lemmas 4 and 5 establish that each action is executed infinitely often when the additional guard is true.

This corresponds to a weakly fair scheduling of actions in the original program. Furthermore, Lemma 6 proves that
the deterministic assignment tou.ht in unhygienic′ is a possible random assignment tou.ht in unhygienic .

Theorem 2:The unhygienic algorithm, when composed with auser program meeting the requirements
described, is a maximal solution to the dining philosophersproblem.

Proof: AssumeS is an arbitrary trace satisfying the dining philosophers problem. We show thatS is a possible
execution ofunhygienic ‖ user .

By Lemmas 1 and 3,S is a possible fair execution ofunhygienic′ ‖ user′ . Therefore, by Theorem 1,S is a
possible execution ofunhygienic ‖ user .

Since S was arbitrary, any trace satisfying the specification of thedining philosophers problem is a possible
execution of unhygienic ‖ user . Therefore theunhygienic algorithm, when composed with auser program
meeting the requirements described, is a maximal solution to the problem.

VI. D ISCUSSION

A. Limitations of our Approach

Our approach to proving the maximality of composed systems involves making assumptions about the other
programs in the system. While this approach is modular in that it allows us to isolate our attention to a single
component, it is not perfectly general. Different restrictions on program behavior are likely required for different
systems.

The main limitation of our approach is that the technique is sound, but not necessarily complete. That is, having
decided on a set of properties required for the environment in order to prove maximality of the composed system,
there may be environments that do not satisfy these properties but still yield maximal systems.

A final limitation of this strategy is that it does not say anything about the maximality of the component in the
context of nonmaximal environments. For example, considera user process that can become hungry at mostk

13

times. It would appear that the unhygienic algorithm can generate all possible traces given the constraint of working
with such auser . The resulting composed system is not maximal, but the lack of maximality, in a sense, is due
entirely to theuser . It is awkward to show such properties using our method.

B. Maximality and Concurrency

In [5], maximality is associated with concurrency since programs that are maximal admit “maximal concurrency”.
While this is true, there is no guarantee that a particular execution of a maximal program is “maximally concurrent.”
Maximally concurrent executions may not even be likely; as true as it is that maximal programs admit maximal
concurrency they also admit all other degrees of concurrency.

VII. C ONCLUSION

The noncompositionality of maximality poses a significant challenge to the verification of this property in layered
systems. We have developed a method for proving the maximality of composed programs. This method is modular
in that it permits these proofs to be carried out in the absence of other component implementations. We have applied
this technique in the proof of the first known maximal solution to the diners problem, the unhygienic algorithm.

REFERENCES

[1] K. Mani Chandy and Jayadev Misra.Parallel Program Design: A Foundation. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1988.

[2] Edsger W. Dijkstra. Hierarchical ordering of sequential processes.Acta Informatica, 1(2):115–138, 1971.
[3] Mohamed G. Gouda.Elements of network protocol design. John Wiley & Sons, Inc., New York, NY, USA, 1998.
[4] Rajeev Joshi and Jayadev Misra. Maximally concurrent programs. Technical Report CS-TR-99-15, 1, 1999.
[5] Rajeev Joshi and Jayadev Misra. Toward a theory of maximally concurrent programs. InPODC ’00: Proceedings of the nineteenth

annual ACM symposium on Principles of distributed computing, pages 319–328, New York, NY, USA, 2000. ACM Press.
[6] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.
[7] Jayadev Misra.A Discipline of Multiprogramming: Programming Theory for Distributed Applications. Sprinver-Verlag, New York,

NY, USA, 2001.
[8] David Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th GI-Conference on Theoretical Computer

Science, pages 167–183, London, UK, 1981. Springer-Verlag.
[9] Scott M. Pike.Distributed Resource Allocation with Scalable Crash Containment. PhD thesis, The Ohio State University, Department

of Computer Science & Engineering, Aug 2004.
[10] Paolo A.G. Sivilotti, Scott M. Pike, and Nigamanth Sridhar. A new distributed resource-allocation algorithm withoptimal failure

locality. In Proceedings of the 12th IASTED Internation Conference on Parallel and Distributed Computing and Systems, volume 2,
pages 524–529. IASTED/ACTA Press, November 2000.

