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Surveillance systems based on wireless sensor network technology have been shown to successfully
detect, classify and track evaders over a large area. State information collected via the sensor
network also enables these systems to actuate mobile agents so as to achieve surveillance goals
such as target capture and asset protection. But satisfying these goals is complicated by the

fact that the track information in a sensor network is routed to mobile agents through multi-hop
wireless communication links and is thus subject to delays and losses. Stabilization must also be
considered in designing pursuer strategies so as to deal with state corruption as well as suboptimal
evader strategies.

In this paper, we formulate optimal pursuit control strategies in the presence of network effects,
assuming that target track information has been established locally in the sensor network. We
adapt ideas from the theory of differential games to networked games—including ones involving
non-periodic track updates, message losses and message delays—to derive optimal strategies,
bounds on the information requirements, and scaling properties of these bounds. We show the
inherent stabilization features of our pursuit strategies, both in terms of implementation as well
as the strategies themselves.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Distributed
Systems

General Terms: Algorithms, Design, Theory, Reliability, Stabilization

Additional Key Words and Phrases: Differential Games, Sensor Networks, Delay, Equilibrium

1. INTRODUCTION

Sensor network technology has enabled new surveillance systems [Arora et al. 2004;
Arora et al. 2005], where sensor nodes equipped with processing and communica-
tion capabilities can collaboratively detect, classify and track targets of interest
over a large area. These surveillance systems make it viable to use the state in-
formation collected through the sensor network to guide mobile agents to achieve
surveillance goals such as target capture and asset protection. A sensor network
surveillance system has the advantage of giving the mobile agents access to the
global information so that they can optimize their motion for pursuit tasks, as op-
posed to resource-intensive search and map building tasks. That said, using sensor
networks to implement “active” surveillance strategies introduces new challenges as
well. Target track information obtained by local processing of sensor information
needs to be routed to mobile agents through multi-hop communication links, which
results in delays, message losses and random arrival times of the packets carrying
track information. In addition, the network is deployed in harsh environments,
state information may be corrupted, which also necessitates the stabilization of
strategies.

In previous work, Schenato et al [Schenato et al. 2005] studied a pursuit-evasion
game application using sensor networks. They consider a detailed system model
with periodic time updates and present models of vehicle dynamics and uncertainty
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in track information. Sensor network measurements are assumed to be fused at lo-
cal stations to produce track information [Oh et al. 2004]. Evader assignment and
pursuer control strategy is calculated at the base station and then communicated to
the pursuer agents. Network effects in communicating this information to the pur-
suer agents and communicating pursuer locations back to the base station are not
considered. Within this framework, they derive a series of algorithms to coordinate
the pursuers so as to minimize the time-to-capture of all evaders.

In this paper, we concentrate on the formulation of optimal pursuit control strate-
gies despite network effects. We assume target track information has been estab-
lished through local fusion of sensor data. This track information is communicated
through the multi-hop wireless network infrastructure to pursuer agent, which cal-
culates an optimal pursuit strategy based on evader’s state and its own state. We
adapt ideas from theory of differential games to networked games in the presence
of non-periodic track updates, message loss and delays to derive optimal strate-
gies, bounds on their information requirements and the scaling properties of these
bounds. We also consider the stabilization issues in the design and implementation
of these pursuit strategies. In summary, we show:

(1) Pursuer agents should dictate the information refresh rate based on the require-
ments of the pursuit strategies.

(2) Network delays and update periods should scale linearly with the pursuer-
evader distance to guarantee the existence of optimal min-max pursuit strate-
gies leading to Nash equilibria.

(3) If those derived communication conditions are satisfied, the pursuit strategies
do not need to change even if the evader strategy is chosen otherwise or if the
state of the network is transiently perturbed.

Differential games entail the study of dynamic interactions between rational
agents with conflicting interests [Basar and Olsder 1999]. The theory of differential
games combines solution concepts of game theory with control theory formalism to
formulate optimal feedback strategies for the players. Pursuit-evasion games are
natural applications of the theory of differential games and are extensively studied
by Isaacs in his seminal work [Isaacs 1975]. In the literature, pursuit-evasion games
are traditionally modeled as continuous-time perfect information games where the
players have access to the global state of the game at all times without delays.
In contrast, in this paper, we study the optimal strategies for pursuit using a
communication-constrained network structure. We investigate two representative
pursuit-evasion games. One is a classical pursuit-evasion game for target capture,
where pursuers try to catch the evader as soon as possible; the other is called “asset
protection game”(also called Lifeline Game) where pursuers try to protect a linear
target by intercepting the evaders as far as possible from the target. These games
have practical applications in real world applications and the techniques introduced
in this paper can be generalized to a wide variety of differential games.

The asset protection game in sensor network was first investigated in [Cao et al.
2006], by formulating a novel min-max equilibrium concept for networked games
with delay and discrete time updates. The proposed equilibrium concept considers
an omniscient opponent with compete access to state information without delays
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that can maximally exploit the delays and the inter-sample periods in the informa-
tion updates. [Chen and Sastry 2006] later extended the model by combining an
n-hop disk model abstraction of a sensor network to model delay and packet loss.
They computed a probabilistic barrier that splits the state space of the game into
an escape zone and a capture zone.

In this paper, we extend our previous results on the asset protection game to a
traditional pursuit-evasion target capture game, by considering discrete time up-
dates and communication constraints. In addition, we also discuss the stabilization
of pursuer strategies in the presence of suboptimal evader strategy and state cor-
ruption.

The rest of this paper is organized as follows. In Section 2, we introduce the
pursuit-evasion game for target capture. In Section 3, we introduce the pursuit-
evasion game for asset protection. In both sections, we first introduce the game
model and review the optimal min-max strategies, then we derive the optimal
strategies under network communication constraints, and also lower bounds on
network performance requirements. Next section, we discuss the stabilization issues
in these strategies. Finally, we conclude with the results of experimental studies
and extensions of our results.

2. PURSUIT-EVASION GAME FOR TARGET CAPTURE

2.1 Problem definition

We first consider a game between two players: a single pursuer and a single evader
as shown in Figure 1. (For many n pursuer – n evader games, the min-max solution
can be reduced to n two player games, by first solving the combinatorial problem
of optimal pairing using the value function of the two player game. We discuss
the extension to multiple pursuer and evader games in Section 6.2.) In this target
capture game, the pursuer tries to catch the evader as soon as possible, while the
evader tries to avoid being caught or to prolong time to being caught. The state
of the game state given by the two dimensional coordinates of the pursuer and
evader, x = {xp, yp, xe, ye}. We assume that each player travels at constant speed

Pursuer

Evader

(x
p
(0),y

p
(0))

(x
e
(0),y

e
(0))

X

Y

Fig. 1. The pursuit-evasion game for target capture game

vp and ve and controls the direction of its motion, denoted by θp and θe. There
are no obstacles in the environment to constrain the movement of the players. The
players employ feedback control strategies (up(x(t)), ue(x(t))) which determine their
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direction of motion given the current state. The state space can be reduced to two
dimensions by defining relative coordinates, xr = xe − xp and yr = ye − yp. The
state vector x evolves according to:

ẋ =
∂

∂t

[

xr

yr

]

= f(x, θp, θe) =

[

ve cos(θe) − vp cos(θp)
ve sin(θe) − vp sin(θp)

]

A catch is said to happen when x2
r + y2

r < r2, where r is the catch radius. In the
following, we consider the limiting case of r → 0. (The effect of finite catch radius
is discussed in Section 6.) Starting from the initial condition x0 and time 0, if
the control strategies (up(x), ue(x)) satisfy the catch condition at time T then the
payoff is given by J (up, ue, x0) = T . T is the time when evader is caught. The
game is zero-sum, so the pursuer’s goal is to minimize J whereas the evader’s goal
is to maximize J . Min-max optimal feedback strategies u∗

p(x), u∗

e(x) are defined by
the saddle condition:

Jup
(up, u

∗

e, x0) ≤ J (u∗

p, u
∗

e, x0) ≤ Jue
(u∗

p, ue, x0) (1)

We also note that the min-max optimal strategy pair (u∗

p(x), u∗

e(x)) is also the
Nash equilibrium [Nash 1951] for this zero-sum game, where none of the players
have an incentive to change their strategy unilaterally given the rival is maintaining
its strategy choice.

For each initial condition x0 the value of the game is defined as V (x0) = J (u∗

p, u
∗

e, x0).
The value function is uniquely defined irrespective of the number of min-max strat-
egy pairs that satisfy the saddle point property in 1. In this paper, we limit our
discussion to initial states x0 with finite positive value V (x0) and to games where
the speed of the pursuer is greater than the speed of the evader.

2.2 Optimal pursuit under perfect information

The value function and the associated optimal strategies for the game defined in
Section 2.1 can be derived using the Isaac conditions, a form of Hamilton-Jacobi-
Bellman equations of optimality. Here we choose to present geometric solutions to
provide intuition for the pursuit-evasion game under network effects.

Theorem 1. If the ratio of the pursuer speed vp to the the evader speed ve, α,

is larger than 1, then the min-max optimal strategy for the evader and pursuers is

given by:

θe(x0) = γ, θp(x0) = γ (2)

where γ = tan−1( yr

xr

) and V (x0) =

√
x2

r
+y2

r

(α−1)∗ve

. Equivalently, the pursuer moves

toward the evader directly until catching the evader, while evader moves in the

same direction to prolong the catching time.

Proof. Given the current location of the evader and pursuer, the set of points
that the evader can reach before the pursuer is given by the well known Appolonius
circle. The min-max optimal strategies for both the pursuer and the evader are to
go directly to the boundary point.

As shown in the Figure 2, the current pursuer location is B and the current
evader location is A. For any time interval dt, the maximum distance of pursuer
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Fig. 2. The pursuer and evader game for target capture game

and evader can move are vp ∗ dt and ve ∗ dt. All the possible locations are on the
circle around current pursuer and evader locations. Point B′ is the crosspoint of
the circle around the pursuer and line BA. Point A′ is crosspoint of the circle
around the evader and the other side of line BA. We claim the point B′ and A′

are min-max optimal strategy pair for pursuer-evader movement during time dt. In
other words, B′A′ is the min-max distance after this movement.

Assume the evader moves to any other location A1, A1 6= A′, the best strategy
for pursuer is to move toward A1, i.e., to point B1 on pursuer circle. By Triangle
Inequality,

BA + A1A > BA1 ⇒ BB′ + B′A + A1A > BB1 + B1A1

because BB1 = vp ∗ dt = BB′ and AA1 = ve ∗ dt = AA′,

⇒ B′A + AA′ > B1A1 ⇒ B′A′ > B1A1

So B′A′ is the longest distance the evader can achieve. The best strategy for pursuer
is to move towards the evader, while the evader tries to escape the pursuer.

θe(x0) = γ, θp(x0) = γ, γ = tan−1(
yr

xr

)

On the other hand, if the evader moves to location A′, the best strategy for the
pursuer is to move directly toward A′.

Because the pursuer speed vp is α times of the evader speed ve, assume the final
catch point is C, then BC = αAC, and BC = BA + AC, so we get:

AC =
BA

α − 1
=

√

x2
r + y2

r

α − 1
⇒ V (x0) =

AC

ve

=

√

x2
r + y2

r

(α − 1) ∗ ve

2.3 Optimal pursuit under communication constraints

2.3.1 Sampling rate requirements of the optimal pursuit strategy. In Section 2.2,
we assumed that the global state is available to the pursuer at all times. This is
an unrealistic assumption for a sensor network implementation where the informa-
tion can be provided only at discrete time intervals. In this section, we derive the
sampling rate requirements of the optimal strategy and show that it is inversely
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proportional to the relative distance between the pursuer and evader. The result
is particularly important for sensor network implementations using resource con-
strained nodes, because it informs how the information data rate can be reduced
based on the state of the game so as to conserve the energy and bandwidth resources
of the network. Again, we use the min-max solution concept to formulate a robust
pursuit strategy that will perform satisfactorily irrespective of evader motion. To
design for the worst possible case of evader motion, we assume the pursuer has
perfect information about the location of the evader and the sampling period. The
sampling period is then chosen such that the evader does not benefit from switching
from the optimal direction given in Theorem. 1, although the evader’s deviation will
be detected by the pursuer after the sampling period interval.

Pursuer

EvaderA*

A

B
B’

A’

Fig. 3. The pursuer and evader game for target capture

Theorem 2. The evader does not deviate from its min-max equilibrium strategy

if and only if sampling period Tsample with respect to the distance dpe between the

pursuer and evader satisfies:

Tsamp(dpe) <
dpe

vp

(3)

In other words, the sampling period should decrease proportionally with decreasing

distance between evader and pursuer to guarantee that the evader does not have an

incentive to deviate from its strategy.

Proof. Assume the pursuer moves first. For any time interval Tsample, (vp ∗
Tsample <

√

(xr)2 + (yr)2), as shown in Figure 2, the pursuer will move to B′,
where B′ is the crosspoint of the circle around the pursuer and line BA. The
evader can move to any location in the circle which is centered at A and has the
radius ve ∗ dt. It will choose the location A1 that has maximum B′A1. By Triangle
Inequality, A′ is the location that maximize the B′A1.

However, if vp ∗ Tsample ≥ dpe, the evader can find a better location such that
B′A∗ > B′A′ as shown in Figure 3.
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2.3.2 Effect of message losses. From the previous sampling rate analysis, to
guarantee the optimum evader capture, the information must be updated before
the pursuer reaches the previous evader location. For perfectly reliable communi-
cation links, this can be achieved by the pursuer issuing an evader location query
shortly before reaching the critical point. However, in the presence of message
losses, the pursuer needs to issue multiple queries within a sampling period and
adjust the frequency of its queries according to the state of the game. As shown
in the previous section, it suffices that the required sampling period decrease with
decreasing distance between the pursuer and evader. We note that to minimize
the frequency of the queries, it suffices that the network communication protocol
scale to provide higher reliability as the distance between the pursuer and evader
decreases.

Theorem 3. Let the relation between message loss probability and the distance

between the pursuer and the evader be given by the function pM (dpe). For any initial

state x, the sampling period condition for Nash Equilibrium given in Equation 2 will

be satisfied with probability greater than 1 − ǫ if

fq(dpe) >
log(ǫ)vp

log(pM (dpe))dpe

where fq(dpe) is the frequency of the evader location queries when its distance from

the pursuer is dpe.

Proof. Consider a global state update that occurs at state x. The pursuer can
issue up to fqTsamp queries before it traverses the previous evader location. The
number of queries has to be chosen such that the probability of getting at least one
successful update at that period is greater than 1 − ǫ:

(pM (dpe))
fqTsamp ≤ ǫ ⇒ fq(dpe) ≥

log(ǫ)

log(pM (dpe))Tsamp

>
log(ǫ)vp

log(pM (dpe))dpe

2.3.3 Effect of Packet Delay. The evader location information needs to be routed
from the local fusion center to the pursuer through wireless multiple hop links. The
multiple hop communication imposes non-negligible delays on the evader state in-
formation. We assume the network is time synchronized and the packets are time-
stamped at the source so that the pursuer will be able to calculate the delay of
the packets it received. To derive a robust pursuit strategy we design for the worst
possible evader motion, by assuming the evader will have perfect information about
the pursuer location. Therefore at time interval t the evader has access to state in-
formation [xp(t), yp(t), xe(t), ye(t)] and the pursuer has access to state information
[xp(t), yp(t), xe(t − ∆t), ye(t − ∆t)]. Then consider the following strategies:
Evader Strategy ũe: The evader uses the current location information for the pursuer
to calculate the optimal direction as given in Theorem 1.
Pursuer Strategy ũp: The pursuer estimates the worst case location (x̂e(t), ŷe(t))
of the evader by considering all the points that the evader can reach at ∆t and
choosing the one that yields the lowest game value V (x̂p(t), ŷp(t), xe(t), ye(t)).
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Fig. 4. Effect of packet delay for target capture game

Theorem 4. The strategies ũp and ũe are a Nash equilibrium of the pursuer-

evader game with packet delays if the delay at each point is bounded by:

∆t <
dpe(t − ∆t)

vp

where dpe(t−∆t) is the pursuer-evader distance at the time of packet transmission.

Proof. The pursuer moves to location A′ at time t. At time t−∆t, the evader
can move to anywhere on the circle (see Figure 4). To maximize its payoff, it
must choose a location that maximizes A′B. By the Triangle Inequality, B′ is that
location. This will hold as long as

∆t ∗ vp = AA′ < dpe(t − ∆t).

3. PURSUIT-EVASION GAME FOR ASSET PROTECTION

In this section, we continue our analysis of optimal pursuit control strategies in the
presence of network effects for a more complex game – “Asset Protection” game. 1

3.1 Problem definition

As in the target capture case, we first consider a game between two players: a
single pursuer and a single evader. The game state is given by the two dimensional
coordinates of the pursuer and evader x = {xp, yp, xe, ye}. Each player travels at
constant speed vp and ve and controls the direction of its motion, denoted by θp

and θe.
The linear asset is assumed to be infinitely long. With this assumption, the

state space can be reduced to three dimensions by defining relative coordinates,

1In this section, we only show the sketch of our proofs. The detailed proofs can be found at [Cao

et al. 2006]
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Fig. 5. The pursuer and evader game

xr = xe − xp and yr = ye − yp. The state vector x evolves according to:

ẋ =
∂

∂t





xr

yr

yp



 = f(x, θp, θe) =





ve cos(θe) − vp cos(θp)
ve sin(θe) − vp sin(θp)

vp sin(θp)





A catch is said to happen when x2
r + y2

r < r2, where r is the catch radius. In the
following, we consider the limiting case of r → 0. The effect of finite catch radius
is discussed in Section 6. Starting from the initial condition x0, if the control
strategies up(x), ue(x) satisfy the catch condition at time T then the payoff is given
by J (up, ue, x0) = yp(T ). yp(T ) is distance between the evader and asset at time
T . The game is zero-sum, so the pursuer’s goal is to maximize J whereas the
evader’s goal is to minimize J . Min-max optimal feedback strategies u∗

p(x), u∗

e(x)
are defined by the saddle condition:

Jup
(up, u

∗

e, x0) ≤ J (u∗

p, u
∗

e, x0) ≤ Jue
(u∗

p, ue, x0) (4)

3.2 Optimal pursuit under perfect information

Theorem 5. If the ratio of the pursuer speed vp to the evader speed ve, α, is

larger than 1, then the min-max optimal strategy for the evader and pursuers is

given by:

θe(x) = tan−1(tan γ + α
√

1 + (tan γ)2) (5)

θp(x) = tan−1(tan γ +

√

1 + (tan γ)2

α
) (6)

where γ = tan−1( yr

xr

) and V (x) = yp +
α2yr+α

√
y2

r
+x2

r

α2−1 .

Proof. The min-max optimal strategies for the pursuer and evader is to directly
to the boundary point of the circle that is closest to the target. In the following we
characterize this critical boundary point:

We use a coordinate system to simplify the proof (cf. Figure 6). Without loss of
generality, we assume the pursuer location is (0, 0); the evader location is (xr, yr).
Let the location C(x, y) be the location where the evader is caught by the pursuer.
Because the pursuer speed vp is α times of the evader speed ve, then AC = αBC
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Fig. 6. Linear asset protection with pursuer in between evader and asset

(Note: this straight line movement can be proved to be optimal). In coordinate
form, we can rewrite this equation as:

√

x2 + y2

√

(x − xr)2 + (y − yr)2
= α

Maximizing y by differentiating x, we get: x = xrα2

α2−1 , y =
α2yr+α

√
y2

r
+x2

r

α2−1 . So,

θe(x) = tan−1 y − yr

x − xr

= tan−1(tan γ + α
√

1 + (tan γ)2)

θp(x) = tan−1 y

x
= tan−1(tan γ +

√

1 + (tan γ)2

α
)

where V (x) = yp +
α2yr+α

√
y2

r
+x2

r

α2−1

At each time instant t, the pursuer will calculate the best location (x′, y′)) that
the evader can reach:

x′ =
xrα

2

α2 − 1
+ xp, y′ =

α2yr + α
√

y2
r + x2

r

α2 − 1
+ yp (7)

then it will move towards that location.
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Linear Asset

Fig. 7. The P-E trajectory under perfect information
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We illustrate the performance of the optimal strategy using a simulation. The
results are given in Figure 7. The solid line shows the pursuer-evader trajectories
when both employ min-max optimal strategies. The dashed lines show the case
when evader uses non-optimal straight line strategies. We observe that min-max
optimal pursuit strategy catches non-optimal evaders at a larger distance to the
target.

3.3 Optimal pursuit under communication constraints

3.3.1 Sampling rate requirements of the optimal pursuit strategy. In this section,
we derive the sampling rate requirements of the optimal strategy and show that it
is inversely proportional to the relative distance between the pursuer and evader.
Again, we use the min-max solution concept to formulate a robust pursuit strategy
that will perform satisfactorily irrespective of evader motion. The sampling period
is then chosen such that the evader does not benefit from switching from the optimal
direction given in Theorem. 5, although the evader’s deviation will be detected by
the pursuer after the sampling period interval.

Theorem 6. The evader does not deviate from its min-max equilibrium strategy

if and only if the distance moved by the pursuer before getting the next sample of

state information satisfies:

vpTsample <

√

α2(xr)2 + (α(yr) +
√

(xr)2 + (yr)2)2

α
(8)

Equivalently, the pursuer can move up to
(α2

−1)
α2 of the total distance to the predicted

evader location before sampling the global state without loss of optimality.
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(x
e
’,y

e
’)
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(x,y)

θ’

γ

Fig. 8. The sampling rate for tracking

Proof. Assume the pursuer moves first. It will move α ∗ ds toward to the
predicted optimal location (x, y), where ds is the maximum distance the evader
can move during that time interval. Without loss of generality, we assume the
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initial location of pursuer is (xp, yp) = (0, 0). So the next location based on the
pursuer strategy is (x′

p, y
′

p), which is decided by equation:

x′

p =
α2xeds

√

α2x2
e + (αye +

√

x2
e + y2

e)2
, y′

p =
(αye +

√

x2
e + y2

e)αds
√

α2x2
e + (αye +

√

x2
e + y2

e)2

The evader can move to any location in the circle which is centered at (xe, ye) and
has the radius ds. So, the next move for evader must satisfy:

(x′

e − xe)
2 + (y′

e − ye)
2 < ds2

and the next optimal location based on location (x′

e, y
′

e) and (x′

p, y
′

p) is:

y′ = y′

p +
α2(y′

e − y′

p) + α
√

(x′
e − x′

p)
2 + (y′

e − y′
p)

2

α2 − 1

We want to find the maximum y′ by changing (x′

e, y
′

e). The constraints can be
reformulated as: x′

e = xe + r sin θ, y′

e = ye + r cos θ. Let Fx = xe − x′

p,Fy = ye − y′

p,
to maximize y′, the partial derivative with respect to θ is:

∂y′

∂θ
=

−α2r sin θ + α
(rFx cos θ−rFy sin θ)√

(Fx+r sin θ)2+(Fy+r cos θ)2

α2 − 1
= 0

The value of θ can be solved as:

tan θ =
1

tan γ + α
√

1 + (tan γ)2

where

tan γ =
Fy + r cos θ

Fx + r sin θ
=

ye − y′

p + r cos θ

xe − x′
p + r sin θ

=
y′

e − y′

p

x′
e − x′

p

Here, we claim the solution of the equation is θ = θ′. One important observation is
that if tan γ = tan γ′ then tan θ = tan θ′. The other important observation is that
when evader moves to (x′

e1
, y′

e1
) with distance r and pursuer moves to (x′

p, y
′

p) with
distance αr, the following equation holds:

tan γ = tan γ′

since line AB is parallel to line CD.
To maximize y′, the value of r should be r = Max(r) = ds since the partial
derivative of y′ with respect to r is nonnegative when θ ∈ [0, π/2].
To satisfy the condition of θ ∈ [0, π/2] , we must guarantee:

x′

p ≤ xe when 0 = xp ≤ xe

x′

p ≥ xe when 0 = xp ≥ xe

Then we can get:

α|ds| <

√

α2x2
r + (αyr +

√

x2
r + y2

r)2

α
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which is (α2
−1)

α2 of total distance of current pursuer location to the predicted optimal
location (this distance is defined as dpu).

We extend the previous result to derive the following scaling property of the
sampling period Tsample with respect to the distance dpe between the pursuer and
evader:

Theorem 7. Optimal pursuit-evasion strategies of the perfect information game

also yield Nash equilibrium of the game with discrete time updates if:

Tsamp(dpe) ≤
α − 1

αvp

dpe

In other words, the sampling period should decrease proportionally with decreasing

distance between evader and pursuer to guarantee that the evader does not have

an incentive to deviate from its strategy to move directly to the predicted intercept

point.

Proof. If we define u to be the location of the predicted intercept point then
we have:

(α2 − 1)

α2
dpu ∈ [

α − 1

α
dpe,

α + 1

α
dpe]

Then we have

vpTsamp ≤ α − 1

α
dpe ⇒ Tsamp ≤ α − 1

αvp

dpe
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Fig. 9. The P-E trajectory when using the Tsamp update

We illustrate the performance of the reduced sample rate strategy using a simu-
lation. The results are given in Figure 9. The solid line shows the pursuer-evader
trajectories when both employ min-max optimal strategies, which is identical to
the continuous update case. The dashed lines show the case when evader uses
non-optimal straight line strategies. We observe that reduced sample rate pursuit
strategy differs from its continuous information behavior for these cases but still
catches these non-optimal evaders at a larger distance to the target.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.
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3.3.2 Effect of message losses. The previous sampling rate analysis shows that
the information must be updated before the pursuer reaches a critical point on the
path to the predicted location defined in Theorem 6. To minimize the frequency
of the queries, the network communication protocol should scale to provide higher
reliability as the distance between the pursuer and evader decreases.

Theorem 8. Let the relation between message loss probability and the distance

between the pursuer and the evader be given by the function pM (dpe). For any initial

state x, the sampling period condition for Nash Equilibrium given in Equation 6 will

be satisfied with probability greater than 1 − ǫ if

fq(dpe) ≥
log(ǫ)αvp

log(pM (dpe))(α − 1)dpe

where fq(dpe) is the frequency of the evader location queries when its distance from

the pursuer is dpe.

Proof. Consider a global state update that occurs at state x. The pursuer can

issue up to fqTsamp queries before it traverses the critical distance (α2
−1)

α2 dpu. The
number of queries has to be chosen such that the probability of getting at least one
successful update at that period is greater than 1 − ǫ:

(pM (dpe))
fqTsamp ≤ ǫ ⇒ fq(dpe) ≥

log(ǫ)

log(pM (dpe))Tsamp

≥ log(ǫ)αvp

log(pM (dpe))(α − 1)dpe

3.3.3 Effect of Packet Delay. Similar to the target capture case, to derive a
robust pursuit strategy we design for the worst possible evader motion, by assuming
the evader will have perfect information about the pursuer location. Therefore at
time increment t, evader has access to state information [xp(t), yp(t), xe(t), ye(t)]
and the pursuer has access to state information [xp(t), yp(t), xe(t−∆t), ye(t−∆t)].
Then consider the following strategies:
Evader Strategy ũe: The evader uses the current location information for the pursuer
to calculate the optimal direction as given in Theorem 5.
Pursuer Strategy ũp: The pursuer estimates the worst case location (x̂e(t), ŷe(t))
of the evader by considering all the points that the evader can reach at ∆t and
choosing the one that yields the lowest game value V (x̂p(t), ŷp(t), xe(t), ye(t))

Theorem 9. The strategies ũp and ũe are a Nash equilibrium of the pursuer-

evader game with packet delays if the delay at each point is bounded by:

∆t <
α − 1

αvp

dpe(t − ∆t)

where dpe(t−∆t) is the pursuer-evader distance at the time of packet transmission.

Proof. Firstly, from the view point of pursuer, at time t − ∆t, the evader can
move to anywhere on the circle around B′. Without loss of generality, we assume
the initial location of pursuer is (xp, yp) = (0, 0). If the evader chooses the location
B, the MaxMin y coordinate at time t is:

y =
α2(y′

e + r cos θ′) + α
√

(x′
e + r sin θ′)2 + (y′

e + r cos θ′)2

α2 − 1
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Fig. 10. Effect of packet delay

To maximize y, the partial derivative with respect to θ′ is:

∂y

∂θ′
=

−α2r sin θ′ + α
(rx′

e
cos θ′

−ry′

e
sin θ′)√

(x′

e
+r sin θ′)2+(y′

e
+r cos θ′)2

α2 − 1
= 0

Let: xe = x′

e + r sin θ′, ye = y′

e + r cos θ′. Then the equation can be written as:

α sin θ′ =
(xe cos θ′ − ye sin θ′)

√

(xe)2 + (ye)2

The value of θ′ can be solved as:

tan θ′ =
1

tan γ + α
√

1 + (tan γ)2
, tan γ =

ye

xe

=
y′

e + r cos θ′

x′
e + r sin θ′

Secondly, from the view point of evader, as shown in Theorem.5, the optimal value
of θ based on state information [xp(t), yp(t), xe(t), ye(t)] can be solved as:

tan θ =
1

tan γ + α
√

1 + (tan γ)2

So, we have θ = θ′. Both pursuer and evader derive the same equilibrium C, so
by the strategy of evader, we only need current location information to calculate
equilibrium C. In addition, B′BC should be a line.
Next, we need show the uniqueness of the equilibrium when both move to new
location: In Figure 11, when evader moves from B1 to B2 with distance ds, the
pursuer moves from A1 to A2 with ds ∗ α. We have:

|A1C| = |B1C| ∗ α
|A1A2| = |B1B2| ∗ α

}

⇒ A1B1//A2B2

Therefore, at the new location A2,B2, the evader decides the same equilibrium C
as in location A1,B1, so does the pursuer.

We observe that the predicted intercept point for the pursuer-evader game with
packet delays at state [xp(t), yp(t), xe(t − ∆t), ye(t − ∆t)] coincides with the pre-
dicted intercept location for the perfect information pursuit evader game at state
[xp(t − ∆t), yp(t − ∆t), xe(t − ∆t), ye(t − ∆t)]. Therefore, we can use the results
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Fig. 11. The uniqueness of equilibrium when packets are delayed

of Section 3.3.1 to bound the packet delay. Theorem 6 shows that if the packet
is received before the pursuer travels distance of α−1

α
dpe(t − ∆t) the evader does

not have an incentive to deviate from its equilibrium strategy. Therefore we should
have:

vp∆t <
α − 1

α
dpe(t − ∆t) ⇒ ∆t <

α − 1

αvp

dpe(t − ∆t)

4. STABILIZATION OF THE PURSUER STRATEGY

We have shown that Nash equilibrium can still hold despite communication con-
straints in both the target capture game and the asset protection game. In this
section, we discuss the stabilization properties of the pursuer strategy in the pres-
ence of state corruption as well as change in evader strategy.

4.1 State Corruption

Wireless sensor nodes are deployed in harsh environments, not only is their com-
munication unreliable, but the information about their state can also be corrupted.
The optimal pursuer strategy is however based on the latest evader location infor-
mation, and is thus independent of history information. Even if state information
is corrupted, the pursuer should continue to query the latest evader location and
move according to its optimal strategy. After it receives the correct evader location
information, Nash equilibrium is reestablished.

4.2 Change In Evader Strategy

Every min-max equilibrium strategy enjoys the guarantee of a minimal payoff—
regardless of what its opponent chooses to do. Our pursuer strategy thus has a sort
of stabilization property, in the sense that irrespective of how the evader changes
its strategy, the pursuer strategy is guaranteed to achieve a minimal payoff, i.e.,
catch distance. If the pursuer learns of a new strategy adopted by the evader and
deviates from its own strategy to exploit the evader’s strategy change, it opens
itself up to the possibility that the evader reacts to the pursuer’s change and the
pursuer ends up with less payoff that it was guaranteed. In other words, following
the min-max strategy is the evolutionary stable choice for the pursuer.
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In addition, the intrinsic feature of Nash equilibrium is that if any player changes
its strategy, it ends up with a worse payoff. Thus, in the target capture case, if
evader chooses a suboptimal strategy, it will be caught earlier than if it chooses the
optimal strategy, as long as the pursuer maintains its strategy.

5. EXPERIMENTAL RESULTS
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Fig. 12. The experimental delay and message-loss rate using the Trail networking service
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Fig. 13. The P-E trajectory in real experiment for asset protection

The results of Section 2 and Section 3 indicate the following requirements on the
network protocol responsible for communicating evader track information to the
pursuer agents: (i) Pursuer should determine the information refresh rate based
on the requirements of the pursuit strategy, and (ii) Network delays should scale

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.



18 · H. Cao, E. Ertin, and A. Arora

with the pursuer-evader distance. We have implemented a communication protocol
called Trail that is compatible with these requirements. The overall system archi-
tecture for Trail is described in [Kulathumani et al. 2007]. Trail offers the following
pursuer controlled interface: find evader i, that returns the state of evader i to the
pursuer agent issuing the query. The pursuer issuing the query itself could be mo-
bile in which case the result is returned to the pursuer agent at its current location.
In Trail object updates are local and it Trail provides a query time proportional
to the distance from the object. Trail was implemented in a network of 105 XSM
nodes in Kansei sensor network testbed at Ohio State University [Arora et al. 2006],
where we used Garcia robots to serve as the mobile agents.

There are 2 objects in the system, one pursuer and one evader. The average find
time and the variance of find times for an object at different distances, with 20
experiments at each distance, using Trail is shown in Figure 12. The object being
found is mobile and the update messages due to this mobility can interfere with
the find messages. When the reply to a find is not received before a threshold, it is
considered to be lost. The fraction of lost messages with δ equal to 1.5 times the
round trip network transmission time is also shown in Figure 12. These are used to
build the loss and the reliability model for our pursuit-evasion game application.

We have used the experimental data to test the optimal pursuit strategy given in
Section 3, where asset protection game is played. The results are given in Figure 13.
There are two experiments. In both experiments the evader is assumed to know the
current location of the pursuer and employ the optimal evading action. The solid
lines are for the pursuit strategy that incorporates delays in to the pursuit strategy,
the dashed lines are for the pursuit strategy that does not take delay into account
and treats the location as if it is the current evader location. We observe that the
delay tolerant algorithm can intercept even an evader that has information superi-
ority at minimum possible distance, whereas an evader information superiority can
achieve higher payoff facing an opponent which does not take delays into account.

6. EXTENSIONS

6.1 Non-zero Catch Radius

In practice, the catch condition should not be defined as distance(P,E) = 0, but
as distance(P,E) ≤ r for some finite r. This can also relax the requirement to
increase sampling frequency near the catch. For this case, we give the following
result for min-max strategies.

6.1.1 Target Capture Case. The non-zero catch radius only affects the optimal
capture time, the optimal min-max strategy is still to go directly to previous evader
location.

6.1.2 Asset Protection Case. In this case, the non-zero catch radius only affects
the optimal intercept location C(x, y). The optimal min-max strategy is still to go
directly to C(x, y), which can be calculated simply as: The point C(x, y) (see figure
14) can be calculated by optimization.

max
θ∈(0,2π)

y where |C ′C| = r and
|AC ′|
|BC| = α
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6.2 Multiple Pursuer Evader Problems

Here, we consider n pursuer – m evader game with n ≥ m, where each pursuer is
restricted to catch only one evader. For instance, we can assume that the pursuer is
immobilized at the time of a catch to detain the evader and more than one pursuer
is not assigned to a given evader to reserve pursuer agents for future evader threats.
The aim of the pursuer team is to minimize the catch time in the target capture
case, or maximize a function of the distances to the asset in the asset protection
case. J (up, ue, x) = L(y1

p(T1), . . . , y
n
p (Tn)). The game is still zero-sum, so that

the evader team tries to minimize(maximize) the same cost function. Common
examples of cost functions are:

L(y1
p(T1), . . . , y

n
p (Tn)) =

1

N

∑

i

yi
p(Ti) or min

i
{yi

p(Ti)}

We give the following result for this class of multiple pursuer-evader games. Let
Σ be the set of all one-to-one assignment functions with the domain and range sets
given as σ : {1, . . . ,m} → {1, . . . , n}. Then the value function V of the n pursuer –
m evader game is given by :

V({xi
e}i=1:m, {xj

p}j=1:n) = max
σ∈Σ

L(V (x1
e, x

σ(1)
p ), . . . , V (xm

e , xσ(m)
p ))

In essence, the n pursuer – m evader game is reduced to first stage combinatorial
optimization of the assignment problem followed by n two player pursuit games.
We note that as long as both teams stick to min-max optimal strategies, no reas-
signment is required. In case the evaders deviate from their ”assigned” pairs they
will only achieve a lower score than their equilibrium strategy.

7. CONCLUSION

In this paper, we studied differential games in networked environments with con-
strained communication resources leading to delays, losses and finite rates in infor-
mation state updates. We focused on two typical differential games: pursuit-evasion
game for target capture and an “asset protection” game, and formulated optimal
strategies under communication constraints, established bounds on the informa-
tion requirements of these strategies, and derived scaling laws for these bounds. In
particular, we showed that the min-max optimal pursuer strategy of the full infor-
mation game extends to networked games, and the stabilization properties of the
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pursuer strategy, provided that the sampling period and the delay in obtaining the
evader state information updates scale linearly with the pursuer-evader distance.

We proposed a novel min-max equilibrium concept for networked differential
games by introducing an omniscient opponent which can maximally exploit the
delays and the intersample periods in the information state updates.This equilib-
rium concept is applicable to a much larger class of differential games than the two
games considered in this paper. In future work we will focus on formulating generic
information rate bounds for these set of games. Finally, in this paper, we assumed
that the quality of the evader state information received by the pursuer is perfect.
A promising direction for future research is to study the effect of the uncertainty
in the evader location estimate on the optimal pursuer strategies.
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