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Abstract

Modern interconnects and corresponding high
performance MPIs have been feeding the surge in the
popularity of compute clusters and computing applications.
Recently with the introduction of the iWARP (Internet Wide
Area RDMA Protocol) standard, RDMA and zero-copy data
transfer capabilities have been introduced and standardized
for Ethernet networks. While traditional Ethernet networks
had largely been limited to the traditional kernel based
TCP/IP stacks and hence their limitations, iWARP
capabilities of the newer GigE and 10 GigE adapters have
broken this barrier and thereby exposing the available
potential performance.

In order to enable applications to harness the
performance benefits of iWARP and to study the
quantitative extent of such improvements, we present MPI-
iWARP, a high performance MPI implementation over the
Open Fabrics verbs. Our preliminary results with Chelsio
T3B adapters show an improvement of up to 37% in
bandwidth, 75% in latency and 80% in MPI allreduce as
compared to MPICH2 over TCP/IP. To the best of our
knowledge, this is the first design, implementation and
evaluation of a high performance MPI over the iWARP
standard.

1. Introduction

Compute clusters have become increasingly popular due
to the high performance to cost ratios they offer. Rapid
technology advances at largely affordable costs have led
to the wide spread deployment of these clusters, with
several organizations having multiple cluster deployments.

∗This research is supported in part by DOE grants #DE-FC02-
06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-0403342,
#CNS-0509452 and #CCF-0702675; grants from Intel, Mellanox, Cisco
systems, Linux Networx and Sun Microsystems; and equipmentdonations
from Intel, Mellanox, AMD, Apple, Appro, Chelsio, Dell, Fujitsu,
Fulcrum, Microway, PathScale, IBM, SilverStorm and Sun Microsystems.

TCP/IP has been the most popular protocol for all inter-
node communication requirement. While TCP/IP based
communication has its advantages in being the most popular
protocol and supporting both across LAN and WAN
communication, CPU and memory related costs for driving
traditional TCP/IP stacks often impact communication
performance and hence limit the scalability and efficiency
of the clusters [22, 7].

To improve communication performance within clusters,
modern interconnects like 10 Gigabit Ethernet, Quadrics
[6], Myrinet [21] and InfiniBand [2] offer higher network
bandwidths and lower communication latencies. In
addition, interconnects like InfiniBand include features
such as Remote Direct Memory Access (RDMA) that
have enabled communication mechanisms providing a
significantly higher performance. To extend the benefits
of RDMA to the traditional Ethernet-based networks,
a new Internet Wide Area RDMA Protocol (iWARP)
standard has been recently introduced [9]. The iWARP
standard basically allows for zero-copy transfer of data
over the legacy TCP/IP communication stacks. Hence
iWARP provides for a significantly higher communication
performance. Applications need to leverage this available
communication performance into better overall application
performance. Additionally, the iWARP protocol being
based on TCP/IP also allows high performance data
transfers across WANs enabling users to run high
performance applications in cluster-of-clusters scenarios.
Currently several vendors including Chelsio [8], NetEffect
[13] and Ammasso provide iWARP capable RNICs.

On the other hand, Message Passing Interface (MPI) has
become thede factostandard in writing parallel computing
applications. The benefits of the MPI standard lie in
its ability to abstract the differences in the underlying
networks from the applications and hence making the job of
application writers easier. As expected, the communication
performance observed by the applications is directly
dependant on the performance of the underlying MPI
library implementation on a high performance interconnect.
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Application writers can utilize available highly optimized
MPI libraries like MVAPICH [4], MPICH-GM over
Myrinet [21] and MPI/ELAN4 over Quadrics [6]. Typically
current deployments of Ethernet networks utilize MPI over
TCP/IP for their needs. Clearly, availability of a high
performance MPI library utilizing iWARP is of critical
importance to enable applications programmers to exploit
the benefits offered by the modern 10 Gigabit Ethernet
adapters supporting the iWARP protocol.

In order to enable easy and efficient development of
higher level libraries and applications across the various
modern RDMA enabled interconnects, a new initiative
of having a single unified lower level software stack has
been started under the Open Fabrics Alliance (OFA) [5].
Recently the OFA’s software stack has incorporated the
support for RDMA capable Ethernet adapters (iWARP
enabled adapters or RNICs).

In our paper, we study the different MPI choices
available for Ethernet networks. In particular we present
MPI-iWARP, a high performance MPI over iWARP as a
means to overcome the performance limitations observed in
the traditional TCP/IP stack based software. Our design and
implementation is based on the high performance MPI-2
implementation MVAPICH2 [4]. The current MVAPICH2
implementation supports OFA verbs. While OFA’s software
verbs are identical from the MPI library’s perspective
for both InfiniBand and iWARP-RNICS, certain issues
need addressing for enabling MVAPICH2 over iWARP. In
particular, the connection management requirements for
iWARP are different. We have studied such requirements
in this paper.

Our preliminary performance numbers show a 75%
improvement in MPI level latency and a 37% improvement
in MPI level bandwidth over the traditional MPICH2 over
TCP/IP [20]. Several of Intel MPI benchmarks also show
performance benefits of above 80% for the MPI-iWARP
design.

Rest of this paper is organized as follows: Section
2 briefly describes the required background on iWARP
and MVAPICH2. Section 3 details the design and
implementation of MPI-iWARP. The experimental
evaluations are presented in Section 4. The related work is
discussed in Section 5 and lastly, the conclusions in Section
6.

2. Background

In this section, we briefly describe the required
background information in iWARP and MVAPICH2.

2.1. iWARP: Internet Wide Area RDMA
Protocol

The iWARP protocol defines RDMA operations over
Ethernet networks [9]. As specified in [9], for iWARP, the
basic message transport is undertaken by the TCP layer.
Since TCP itself is a stream protocol and does not respect
message boundaries, an additional MPA layer is introduced
to enforce this. The actual zero-copy capability is enabled
by the Direct Data Placement (DDP) Layer. The RDMA
features provided by DDP are exported to the upper level
protocol by the RDMAP layer. It is to be noted that
the ordering of data within a single data-transfer is not
guaranteed by the specifications of these layers. However,
adapters often do guarantee this as an option. The iWARP
protocol comprising of RDMAP, DDP, MPA and TCP
layers are intended to be implemented in hardware for
RNICs resulting in significant performance improvements
over the traditional TCP/IP stacks.

The iWARP supports two types of communication
semantics: Channel Semantics (Send-Receive
communication model) and Memory Semantics (RDMA
communication model). Remote Direct Memory Access
(RDMA) [11] operations (RDMA Read and RDMA
Write) allow processes to access the memory of a remote
node process without the remote node CPU intervention.
These operations are transparent at the remote end since
they do not require the remote end to be involved in the
communication.

The basic communication is achieved over connected
end points known as the Queue Pairs (QPs). Each QP
consists of a send queue and a receive queue. To enable data
transfers, each QP needs to be setup and its state needs to be
transitioned into theconnectedstate. The communicating
process initiates a data transfer by posting a descriptor. The
descriptor typically holds all the required information for
the data transfer like source/destination buffer pointers, type
of transfer, etc. In case of RDMA operations, the descriptor
also contains the remote buffer information.

2.1.1 RDMA-CM

RDMA-CM is an abstraction layer for connection
management defined by OFA. It is designed to establish
connections between the QPs of a pair of processes
identified based on IP addresses and port numbers.
The RDMA-CM library itself can setup connections
over the multiple networks supported by OFA. The
main responsibilities of theRDMA-CM library include
exchanging necessary information and transitioning the
QPs through their states into the connected state. It is to
be noted that theRDMA-CM sets up the connections in a
traditional client-server mechanism. The basic steps for a
successful connection setup for each pair of QPs is shown
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in Figure 1.
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Figure 1. Basic Steps for Connection Setup
Using RDMA CM

2.2. MVAPICH2: A High Performance
MPI-2 Implementation

MVAPICH2 is a high performance implementation of
MPI-2 over InfiniBand. The implementation is based on
MPICH2. As a successor of MPICH[10], MPICH2[20]
supports MPI-1 as well as MPI-2 extensions including one
sided communication.

MVAPICH2 includes several features like: (i) RDMA
fast path [18]: utilizing RDMA operations for small
message transfers, (ii) RDMA-based one-sided operations
[15]: mapping MPI one-sided operations to RDMA Read
and RDMA Write for better performance, etc.
Software Distribution: MVAPICH2 is available for use as
an open source package. It is currently being used in more
than 525 organizations worldwide. The work presented
in this paper is available in the latest MVAPICH2 release
distribution starting with MVAPICH2 0.9.8. Further details
are available in [12, 4].

3. Design and Implementation

In this section we describe the various design and
implementation aspects ofMPI-iWARP. In particular, we
describe the required connection management and other
iWARP compliance related design details.

We design and implement our MPI over iWARP based
on the high performance implementation MVAPICH2,
using the iWARP verbs implementation from Open Fabrics
Enterprise Distribution (OFED).

3.1. RDMA-CM based Connection
Management

Since iWARP protocol is based on TCP/IP, making
an iWARP connection needs the iWARP stack to
internally make a TCP/IP connection. Hence iWARP
connection semantics essentially follow the 3-way
handshake semantics of TCP to enable the underlying
TCP connection. As detailed earlier in Section 2.1.1, the
OFA software distribution provides for an abstraction layer
calledRDMA-CM that performs this connection setup for
iWARP (and IB).

The main issue here that needs addressing is the
mismatch in the connection semantics ofRDMA-CM and
the MPI processes. The MPI library typically assume a fully
connected model (i.e. they should be able to send messages
to any of the peers) and hence connections usually have to
be setup between all the other MPI peer processes within the
process group. On the other hand, in theRDMA-CM, the
connection is setup in the traditional TCP/IP style, client-
server mechanism. Due to this mismatch, all the process
pairs need to be separated intoclient-serverpairs before any
setting up of connections usingRDMA-CM.

The second issue is that the current connection setup in
MVAPICH2 over OFA verbs follows a mechanism that is
quite different from the mechanism used byRDMA-CM.
Figure 2 shows the existing and the proposedRDMA-CM-
based connection setup mechanism.

We address the first of these issues by using the process
rank order. Between every pair of processes, the process
with the lower rank takes the role of the server and the
process with the higher rank takes the role of the client. The
main steps taken to complete the connection setup using
RDMA-CMare as follows. Firstly, each process identifies
the port and IP address to use for its communication needs.
After identifying and binding to the local port and address,
the processes exchange this information. At this point all
client processes initiate connections to the server processes
which accept the same and the connections are established
by theRDMA-CM library. As the final step, the processes
synchronize with a barrier to make sure that all the peer
processes are ready for communication.

These steps are repeated for the setup of each of the
QPs between a pair of processes. It is to be noted that the
actual setting of all the QPs in the process group is basically
concurrent.

As mentioned earlier, MVAPICH2 supports multi-
rail communication and RDMA based direct one-sided
communication mechanisms. These mechanisms require
additional QPs to be setup between each pair of processes.
While all these connections need to be setup, we alleviate
some of the possible contention issues by initiating the
connect requests in the reverse order of rank. i.e. process
p[i] issues a connection request top[i-1] in step 1,p[i-2] in
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Figure 2. Connection Setup Mechanisms: (a) Existing OFA Gen2 Verbs and (b) RDMA-CM

step 2, and so on.

3.2. Connection Initiation for iWARP

The iWARP MPA specification requires the active side
(client processes) to initiate the first data send or the first
RDMA write. Due to this restriction, in the case of MPI
processes with lower ranks should not initiate the first data
transfer. Dealing with this issue during the actual MPI data
transfers is non trivial. This is due to the fact that the
MPI data transfer request can be initiated from any process
depending on the MPI application requirements.

In our design, we make sure that this aspect is handled
properly by having an extra dummy message sent from each
of the client processes to all its server processes before
marking the connection as being “connected”. Figure 3
shows the completeRDMA-CMbased connection setup for
MVAPICH2.

3.3. RDMA-based Data Transfers

MVAPICH2 supports an accelerated data transfer
mechanism for small messages by utilizing RDMA writes.
In this mechanism, instead of utilizing the zero copy
capabilities of the networks, the messages are copied into
the buffers from which they are transfered to remote buffers
using RDMA Write operations. The remote side polls on
the last bytes of the preassigned receive buffers to check
for messages arriving using this path. Since the cost of data
copies is low for small messages and RDMA Write provides
better latency, this mechanism provides significant latency
benefits over the normal Send/Receive based mechanisms.

Exchange IP’s & Ports

Process [i] Process [j](i < j)

Connection 
Established

Event

Connection 
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Event

Listen

Barrier

Initiate Connection

Accept Connection

Request (Connect)
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Initiate Dummy 
Data Transfer

Figure 3. RDMA CM based Connection Setup
for MVAPICH2
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Figure 4. Basic Performance: (a) Latency and (b) Bandwidth

To utilize this technique it is essential that the underlying
network places the data into the receive buffer in order.
i.e. arrival of the last byte guarantees the arrival of the
entire message. While most current generation adapters
support this mechanism, this is not guaranteed by the
iWARP specification as mentioned earlier. Hence, in
our implementation we provide a switch for enabling this
mechanism for adapters that do guarantee the in order
placement of data.

4. Experimental Results

In this section we present a detailed performance
evaluation of MPI-iWARP. We compare our performance
numbers with the performance of MPICH2 over TCP/IP
sockets as a reference.

For all our experiments we have used a four node cluster
equipped with nodes having two quad core Intel Xeon
2.33GHz Nodes and a memory of 4GB each. These systems
are equipped with a Chelsio T3B 10 GigE PCI-Express
adapters (Firmware Version 4.2) plugged into an x8 PCI-
Express slot. The Chelsio adapters are connected through a
24 port Fulcrum 10 GigE evaluation switch [1]. The MTU
used for the path is 9000 bytes. The software stack we have
used is OFED 1.2 rc4 and the operating systems is RH4 U4.
MPICH2 1.0.5p3 is used for comparisons.

In the following subsections, we present the performance
numbers for the following: (i) MPICH2: the basic MPI-
2 implementation over TCP/IP [14], (ii) MVAPICH2-
R: the MPI-iWARP implementation using MVAPICH2’s
RDMA fast path, (iii) MVAPICH2-SR: the MPI-iWARP
implementation without RDMA fast path and (iv)
MVAPICH2-1SC: the MPI-iWARP implementation with
RDMA based direct one-sided operations enabled. We
evaluate MPI-iWARP by measuring the performance
of basic MPI latency and bandwidth, MPI one-sided
operations - MPI Put and MPI Get, MPI collectives - MPI-
Allgather, MPI-Allreduce and MPI-Barrier using IMB [3],
followed by NAS parallel benchmarks - IS and CG.

4.1. MPI Send/Recv: Latency and
Bandwidth

Figure 4(a) shows the basic latencies that we observe.
The latency for the verbs level RDMA write operation over
the T3 adapter is about 6.49 microseconds which is quite
lower than the basic sockets over TCP/IP number which is
about 22.3 microseconds. The corresponding latency for
MPICH2 is about 27.84 microseconds and the latencies for
MVAPICH2-R and MVAPICH2-SR are 6.89 us and 8.43
us, respectively. As we clearly observe, MVAPICH2-R
adds a minimal overhead to the basic RDMA write latency.
The difference in the performance of MVAPICH2-R and
MVAPICH2-SR is the absence of RDMA fast path in the
latter. Further we also note that the latency observed by
the MVAPICH2-R is about 75% better than the latency
observed by MPICH2. It is to be noted that large messages
are bandwidth bound and hence for clarity of presentation
we show the latencies of only the small messages.

The peak bandwidth that we observe for our test
bed is about 1287 Million Bytes per second (MB/s)
using the verbs level RDMA write operations. MPICH2
shows a peak bandwidth of about 895 MB/s out of
a maximum bandwidth of 1034 MB/s that the sockets
interface offers. The MVAPICH2-R and MVAPICH2-SR
implementations both offer a peak bandwidth of about 1231
MB/s. The performance gain that we observe for MPI-
iWARP variations over MPICH2 is about 37%. Figure 4(b)
shows the basic bandwidth numbers.

4.2. MPI Put: Latency and Bandwidth

In this section, we evaluate the performance of MPI-2’s
one-sided Put operation. As shown in Figure 5(a), the basic
latency that we observe for MPICH2’s MPI-Put is about
36.5 microseconds. The performance of the MVAPICH2-
R, MVAPICH2-SR and MVAPICH-1SC are 9.32, 10.09
and 9.41 microseconds, respectively. The performance
gain observed for the iWARP based approaches is about
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Figure 6. MPI Get Performance: (a) Latency and (b) Bandwidth

74% better as compared to MPICH2 over TCP/IP. The
difference in MVAPICH2-R and MVAPICH2-SR in this
case is about the same as the difference we observed in the
previous subsection. In case of MVAPICH2-1SC, the small
messages are internally sent over the basic MPI Send/Recv
calls. Hence the latency of MVAPICH2-1SC is about the
same as the MVAPICH2-R.

Figure 5(b) shows the performance of MPI Put
bandwidth. The peak bandwidth seen using MPICH2 is
880 MB/s where as the MPI-iWARP implementations show
a peak bandwidth of about 1231 MB/s, an improvement
of about 40%. In this experiment, the MVAPICH2-
1SC one-sided implementation which is directly based on
RDMA operations, performs the best in all cases. In
particular, for message size ranging from 4 KB to 64 KB the
MVAPICH2-1SC implementation does significantly better
than the MVAPICH2-R and MVAPICH2-SR.

4.3. MPI Get: Latency and Bandwidth

Figure 6(a) shows the latencies of MPI Get operations.
MPICH2 shows a latency of 64.21 microseconds,
MVAPICH2-R and MVAPICH2-1SC show a latency
of 30.03 microseconds each and MVAPICH2-SR shows a
latency of 33.95 microseconds.

For MPI Get bandwidth, we observe that the peak
observed for MPI-iWARP implementations (1142 MB/s)
is about 3.6 times better than the peak observed for
MPICH2 (319 MB/s). Figure 6(b) shows the results for this
experiment.

4.4. Intel MPI Benchmarks

In this section we compare the performance of MPI-
iWARP implementation with that of basic MPICH2 using
the Intel MPI benchmark suite [3]. This suite contains
benchmarks for evaluating the performance of the various
MPI collectives. For these experiments, we have up to 32
processes running on four nodes of our test bed.

Figure 7(a) shows the latency of MPI Allreduce
operations. The allreduce latency for MPICH2 is about
264.0 microseconds as compared to 48.47 microseconds
for the MVAPICH2-R implementation. Clearly, the
MVPAICH2-R performance is over 80% better than
that of MPICH2 over TCP/IP. In Figure 7(b) we show
the performance of the MPI Allgather operation. The
latencies for MPI allgather are 302.48 microseconds and
47.92 microseconds for MPICH2 and MVAPICH2-R,
respectively. MVAPICH2-R is about 84% better for MPI
Allgather.
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MPI Barrier performance is shown in Figure 8(a).
As clearly seen, MPI-iWARP implementation significantly
outperforms MPICH2 over TCP/IP. MVAPICH-R performs
about 80% better than MPICH2 for a 32 process execution
of IMB barrier.

4.5. NAS Parallel Benchmarks

In this section we present the application-level
performance benefits of MPI-iWARP for the NAS
parallel benchmarks. We run 16 processes on four nodes
for these experiments.

Figure 8(b) shows the relative performances of IS and
CG running over MVAPICH2-R with MPICH2 taken as the
base case. We observe that IS performs about 15% better
while running over MVAPICH2-R. Similarly, we show that
CG performs about 4% better in case of MVAPICH2-R.

As clearly observed in our experiments, iWARP based
MPI implementations provide significant performance
gains over the traditional TCP/IP stack based MPI
implementations.

5. Related Work

Several researchers have looked at improving application
performance over modern networks. In particular, various
MPI designs including [4, 16, 6, 21] have all provided high
performance MPI implementations over various modern
interconnects. While these implementations provide high
performance MPI designs on networks other than Ethernet,
our current work enables a high performance MPI over
Ethernet networks.

Several optimizations like RDMA based data transfers
[18], multiple data streams [17], novel collective algorithms
[24, 19, 23], etc. all have further improved the performance
of applications through the MPI implementations. Our
current work provides an MPI implementation over
Ethernet networks and can leverage the work done in many
of these directions.

6. Conclusions

The growing popularity of compute clusters and the
wide spread use of compute applications have gone hand in
hand with the technology advances of modern interconnects
and corresponding high performance MPIs. With the
recent introduction of iWARP standard, RDMA and zero-
copy data transfer capabilities have been introduced and
standardized for Ethernet networks. While traditional
Ethernet networks have largely been limited to the
traditional kernel based TCP/IP stacks and their inherent
limitations, the iWARP capabilities of the newer GigE and
10 GigE adapters have broken this barrier. These potential
benefits that are now provided by the Ethernet networks can
be exploited for increased performance gains and need to be
leveraged by middleware and applications.

In order to enable applications to harness the
performance benefits of iWARP and to study the
quantitative extent of such improvements, in this paper we
have presented a high performance MPI implementation
over the Open Fabrics verbs, MPI-iWARP. Our preliminary
results with Chelsio T3B adapters have shown an
improvement of up to 37% in bandwidth, 75% in latency
and about 80% for a MPI barrier (32 processes) as
compared to MPICH2 over TCP/IP.

It is to be noted that the current costs of the iWARP
adapters are expected to be higher than the corresponding
simple Ethernet adapters. These costs however, are
expected to decrease with wider adaptation of iWARP.

MPI-iWARP has been developed based on the
MVAPICH2 code base and is now a part of the MVAPICH2
0.9.8 release distribution. As future work we plan to
perform further in-depth application level evaluation and
scalability studies of the MPI-iWARP design.
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