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Abstract—A multi-layer volume rendering framework is presented. The final image is obtained by compositing a number of 

renderings, each being represented as a separate layer. This layer-centric framework provides a rich set of 2D operators and 

interactions, allowing both greater freedom and a more intuitive 2D-based user interaction. We extend the concept of 

compositing which is traditionally thought of as pertaining to the Porter and Duff compositing operators to a more general and 

flexible set of functions. In additional to developing new functional compositing operators, the user can control each individual 

layer’s  attributes, such as the opacity. They can also easily add or remove them from the composition set, change their order 

in the composition, and export and import the layers in a format readily utilized in a 2D paint package. This broad space of 

composition functions allows for a wide variety of effects and we present several in the context of volume rendering, including 

two-level volume rendering, masking, and magnification. We also discuss the integration of a 3D volume rendering engine 

with our 2.5D layer compositing engine. 

Index Terms—Volume visualization, interaction, volume rendering.

 

1 INTRODUCTION 

Volume rendering has proven to aid in the exploration and 
understanding of large volumes. While substantial research on 
transfer functions, volume segmentation, feature detection and 
rendering integrals has led to impressive results, very little research 
has gone into user interfaces for volume rendering. This paper builds 
on the previous research on segmenting and rendering volumes and 
examines a new system architecture that allows the power and ease 
of use found in typical 2D paint applications applied to volume 
rendering. 

We segment the workflow process of visualization into two 
distinct phases. First, traditional volume rendering applied to small 
regions of interest are rendered. Then, similar to a sort-last scheme 
for parallel rendering, we apply a compositing phase to the resulting 
renderings. We expose this compositing phase and provide a rich set 
of tools and operations to allow unique and effective visualizations 
that would be difficult in a traditional volume rendering setting. We 
adopt the concept of layers in a paint package, such as Photoshop 
[2]. Digital artists and technical illustrators have leveraged the power 
of the layer concept to quickly provide compositions, to remove or 
highlight parts of an image, to limit the application of a filter or 
image adjustment and a variety of additional affects. Often a user 
will use a copy of a layer to safely experiment with different 
manipulations or processing of an image. 

In this paper, we formalize our concept of layers to the field of 
volume rendering. We will present several basic examples of 
processes applied to layers for effective visualization, as well as 
some more advanced examples that would be difficult to achieve 
directly in a volume renderer. By allowing layers to be duplicated 
and processed, a rich set of effects can be achieved without the cost 
of redundant volume rendering. Additionally, we will present several 
techniques that mimic the results obtained in recent research reports, 
but achieved using a much simpler 2.5D paradigm. These techniques 
are not meant to replace previous work on volume rendering, but 
rather supplement them. We show examples resulting from our own 
3D volume renderer, but the application of layers can be applied to 
other systems and visualization as a whole. 

2 RELATED WORK 

There are many well known metaphors for visualization system 
architectures, from dataflows to spreadsheets. The Application 

Programming Environment, or aPe [8], system and the initial 
Application Visualization System (AVS) [19], combined a  dataflow 
system with a visual programming language. Using a rich set of pre-
built data filters and data mappers, the end-user could rapidly 
construct visualization applications using a computer assisted visual 
programming system. Even though AVS was intended as a tool for 
application developers to build turn-key applications for the 
developer’s specific application area, it was adopted by the end-users 
and used directly for their applications. This was in part due to the 
clean separation of the visualization process into filters and mappers, 
the ease of use of the visual programming metaphor and the 
flexibility to extend the system with user developed modules. This 
was truly the first visualization system for the masses. 

Other visualization systems have mimicked and extended AVS 
[1][22][16]. IBM Visualization Data Explorer enhances the data flow 
execution by minimizing redundant computations. The SciRun 
system allows for rapid prototyping of applications as is evident in 
their recent PowerApps [17]. Recently, VisTrails [3][6] provides a 
systematic tracking of the workflow evolution evident in a complex 
visualization task. By tracking the history or provenance of a 
visualization session, it allows the user to experiment with possible 
paths and manipulate the version tree. Compared to other systems, 
such an approach frees the user from the need for memorizing the 
changes that led to a particular visualization. 

Other unique metaphors for visualization have been few and far 
between. A spreadsheet approach was developed by Levoy [12] and 
later extended by Jankun-Kelly and Ma [11]. Levoy uses images and 
user controls as the values in the cells of the spreadsheet. A general 
purpose programming language allows complex manipulations with 
the data. Jankun-Kelly and Ma project the high dimensional 
visualization parameter space to two-dimensional spreadsheet, and 
also allow spreadsheet manipulations, such as rotations and 
translations, bringing additional flexibility to processing the data 
stored in the spreadsheet. 

The specification of transfer functions using genetic algorithms 
were explored by Marks et al. [14]. With their design galleries 
approach, the tedious task of tweaking input parameters is done 
automatically by the system. The system varies the input parameter 
vector allowing the user to select from a collection of generated 
results. The system changes the parameter values in a way to make 
the output well-distributed. The Image Graphs [13] methodology 
translates the process of data exploration into a graph representation, 
where each node of the graph consists of an image and the 
parameters used to produce it. This gives the user a clear 
representation of the dependencies between the parameter values and 
the visualization results. 
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Our framework exploits the dataflow metaphor. However, we 
concentrate on the use of layers within the framework. The concept 
of layers can be seamlessly integrated into all the systems described 
above as a back-end system. 
 

3 OUR APPROACH 

In this section we shall first look at the layers and then at the 
architecture of the system. 

 

3.1 Layers 

The layer concept is central to our framework. By using the term 
layer, we refer to a 2D container for storing an image, on which a 
number of operations are defined. The intuition for using layers 
come from the fact that 2D image manipulation is often easier than 
working with 3D volumes. A number of tasks for volume exploration 
are performed by processing the layers instead of applying volume 
rendering techniques. 

User interaction with the system combines traditional tasks, but 
also allows for a rich set of manipulations. Hence, we use the term 
layer-centric to describe the framework. Manipulations include 
applying a number of operators (programmable shaders) to an 
individual layer, as well as specifying the order layers are combined. 
From the user point of view, the way layers are manipulated in our 
system is similar to the layers’ manipulation in Adobe Photoshop. 
Users can create, delete, change the properties (for example, color 
and opacity), enable or disable the layer, as well as process the layers 
with the tools our system provides.  

3.2 System Architecture 

The central component responsible for the display of the final image 
is a view. A view is associated with a compositing camera and a 
viewport. A view also contains a list of layers. Each layer contains a 
list of drawables, which are the entities that should be rendered. Each 
drawable has a material associated with it. The material contains 
attributes needed to render the drawable, for example, color and 
opacity and a GLSL shader program. The shader provides the 
implementation of the functionality for the material. All the entities 
in the hierarchy support one-to-many or many-to-one relationships.  

Fig. 1. System architecture 

Multiple layers can be rendered with the same drawable or one 
layer may render multiple drawables. If a layer contains zero 
drawables, we refer to it as a null layer. Null layers are generated 
using shaders which have access to the texture resources in the 
system. Each layer generates a texture, allowing null layers to either 
create new texture resources or process another layer’s texture. The 
hierarchy of the major components is shown in the Figure 1. 

Our system supports transfer function interface with a number of 
pre-loaded transfer functions. There is also an editor for creating,  

editing, compiling and linking shader programs. Compiling and 
linking are done on the fly. 

We employ the layer-based metaphor for the architecture of our 
visualization system. From the implementation point of view, our 
framework can be described as a dataflow. However, the difference 
from other dataflow systems is that we don’t explicitly specify the 
dataflow nor present it to the user. Ease of use in of our framework 
comes from providing a list of tracked assets and a rich set of user 
interfaces to build and edit each of the main components: drawables, 
materials, shaders, layers, and views. Additional assets, such as 
textures, shared numerical controls and cameras are maintained and 
tracked by the system for use as shader variables or manipulator 
controls. Figure 2 presents a screen-shot of our system, showing the 
shader editor, material edit, 1D transfer-function editor and the layer 
editor. 

The hierarchy of the entities shown in Figure 1 makes it 
convenient to make the system event based. Whenever any entity 
changes, the changes are propagated upwards to the entities that are 
above in the hierarchy, finally leading to the rendering of the image, 
if necessary. For example, if a material property is changed, it fires 
an event to all the drawables that share that material. All of these 
drawables fire events to their parent layers. These layers in turn, fire 
events to the view and the view fires an event to invalidate the 
screen. 

4 APPLICATIONS OF LAYERS 

In this section, we describe some of the applications of the layer 
based volume rendering. We simulate several recent research 
contributions using simple 2D operators. While not as general as the 
3D contributions, they achieve similar results with lower 
computational complexity and often a simpler and more intuitive 
user interface. There are a number of properties that layers provide 
that are useful to list here before presenting the actual applications. 
Keeping in mind these properties not only provide better 
understanding, but also may lead to new ideas of how to use the 
layers for volume rendering. 

We specify the relationships between layers, views and drawables 
in the following way. Let V be the set of views, L the set of layers 
and D the set of drawables. We define the function space F as the set 
of all functions or operators that map a set of drawables to a layer, 
i.e. f: Dn � L. Likewise, we define the function space G as the set of 
all functions that map a set of layers to a view, i.e. g: Ln � V, as 
shown in Figure 3. Layer manipulation is specified by the 
compositing shaders (functions). Each layer is an entity to which 
functions are applied. We can also define the function space LF as 
the set of all functions that map L

n to L. The composition of 
functions f and g, where f, and g belong to LF, is denoted as  
f o g = f(g); This operator is not commutative, i.e. f(g) ≠ g(f). 

Fig. 2. User Interface Screenshot 



Fig. 3. The relationships between layers, drawables and views  
 
A simple set of layer manipulations is the set of image processing 

algorithms, such as blurring and desaturation. Geometric 
transformations, such as image warping and distortion, can also be 
achieved. 

4.1 Basic Layer Manipulation 

Layers can be seen as a control for interactivity. This is achieved by 
keeping the set of active layers small. While navigating in a huge 
dataset, only a low resolution layer may be turned on, providing 
interactive speed of exploration. Interactivity is especially important 
for effective volume navigation. By performing volume 
manipulations, such as rotations, the user often gets a better 
understanding of the volume. This is due to receiving necessary 
depth cues, as well as the fact that the human visual system is 
especially good at detecting movement. When the user zooms in on a 
selected region of interest, a layer with higher resolution is turned on, 
providing the necessary level of detail. 

Layers are a way to provide the context to the user. Context and 
regions of interest may be rendered to separate layers and thus 
processed separately. Such a divide and conquer approach helps to 
focus on a single layer. This is achieved by turning off the context 
layers while manipulating the layer in focus. Bringing up the context 
is done by turning on the inactive layers. On the other hand, in some 
cases operators that provide focus + context functionality may be 
applied to a single layer. 

Layers can be reused. Computationally expensive volume 
rendering can be avoided in some cases by reusing an already 
rendered image. When reusing several layers, the overall system 
performance benefits significantly. 

In the next section we provide more concrete examples of  
applications we have explored with our framework to provide an 
effective visualization. 

4.2 Two Level Volume Rendering 

Two level volume rendering [10][9] is an effective technique in 
volume rendering, combining a number of transfer functions and/or 
rendering types in the final image. Different transfer functions and/or 

Fig. 4. Top: Two Level Volume Rendering with layers. Bottom: The 

path of a ray through the volume is divided into segments, 

corresponding to the different materials in the dataset. 

 

rendering modes are better suited for different types of materials in a 
dataset. In a medical dataset, for example, bones may be rendered 
with a MIP, while skin and blood vessels with DVR, or vice versa, 
depending on the user preferences and the particular application. We 
achieve results similar to the ones of the two level approach by 
rendering each of the different styles in a separate layer and then 
compositing them into a final image. 

The example is shown in Figure 4. Two different transfer 
functions are used to render the foot dataset. On the left, DVR is 
used to create a flat-looking representation of the foot; it is rendered 
to a top layer. The center image is a DVR rendering of the bones; it 
is rendered to a bottom layer. In the right is the resulting composited 
image; the blending level was set to 0.5, i.e. the top layer (skin) is 
semi-transparent. According to the notation introduced above, there 
are two functions, DVR1 and DVR2 that map D to L. The 
compositing function maps the resulting two layers to V. This is a 
rather simple example, using only one drawable and two layers. 

The approach described above provides results that slightly differ 
from the results obtained with the original two level volume 
rendering. In two level volume rendering, when the ray traverses 
through the volume, the type of local rendering is selected depending 
on the type of material encountered in the dataset. The accumulated 
color and opacity for all ray segments are then composited to 
produce the final result. Our approach differs in the order in which 
the segments are composited. In two level volume rendering, the 
order of compositing corresponds to the order in which the ray 
encounters the materials. With our approach, all the segments 
corresponding to the same material in the dataset are composited 
separately. Then these intermediate results are composited to 
produce the final image. This is illustrated by the scheme at the 
bottom of Figure 4. Given two kinds of materials in the dataset, 
denoted as A and B, the compositing for two level volume rendering 
gives I = A1*B1*A2*B2*A3; while with our approach I = 
A1*A2*A3*B1*B2. Compositing is not commutative, thus in general 
the results are different, though for some specific cases they may be 
the same. 

Fig. 5. 2D magnification. Lenses applied to both kidneys. Occluding 

ribs are rendered in a separate layer and are not distorted. 

4.3 2D Magnification 

Lenses are useful when text or images needs magnification. In 
volume rendering, 3D lens have been around for about a decade.  It 
is probably the best and simplest example of a focus + context 
technique. Zooming in a specified region of interest gives the user 
the necessary detail for exploration, while the region outside the lens 
keeps the context necessary for volume navigation. This area has 
received much attention [4][23]. Bier et al [5] came up with a user 
interface that could employ Magic lens filter to modify the 
presentation of an object. Viega et al [20], in 1996, came up with flat 
lenses and volumetric lenses. Recently, Wang et al [21] developed a 
framework that provides a variety of GPU-accelerated volumetric 
lenses. 

In our system we use a 2D lens. The zooming effect is achieved 
by distorting the texture representing the layer. Computationally this 
allows us to get magnification at almost no cost, since we do not 
need to re-render the drawables within the layer. Typically, a 2D lens 
would be applied to the final image. We apply the lens to a single 
layer (which may be the final image). Applying the zooming 



operator to a single layer and not to the final composited image, 
gives a number of interesting results. First, keeping the context non-
zoomed can be useful. An example is shown in Figure 5. The kidney 
and the ribs are rendered to different layers. The kidneys are focused 
and magnified, while the ribs are not distorted. We allow for multiple 
lenses, as shown in Figure 5, where both kidneys are magnified.  

There are two ways to achieve 3D magnification; one way is to 
change the field of view and the other is to traverse through the 
volume, moving the camera closer to the region of interest. Moving 
the camera changes the occlusion or ray integration. Thus, 2D lens 
may be a better choice when magnification is needed without 
distortion. 

4.4 Masking 

Masking is a technique used to remove occlusion from a specific 
area of interest. Given a number of input layers, a masking operator 
selects and/or blends them according to some specified criteria, such 
as the opacity. Consider the torso dataset in Figure 9. Keeping the 
skin visible while trying to explore the skeleton and inner structures, 
results in a cluttered image. We would like to get an image with the 
skeleton and other inner structures visible, but only selectively make 
the skin visible. This can be achieved in the following fashion. 

First, skin and skeleton are rendered into two separate layers. The 
skeleton is rendered to a bottom layer and the skin to the top one. A 
masking operator makes a part of a top layer transparent, which in 
turn makes the previous layer visible. An example of this type of 
masking is shown in Figure 9. The image has two layers composited 
and the lens makes the enclosed area in the outer layer transparent, 
thereby displaying the previous layer. 

Second, any type of 2D texture could be used as a mask by 
having a threshold on the opacity values. This approach is used to get 
the results in Figure 9. The image with skin is rendered on top of the 
skeleton image. The masking operator checks the opacity value in 
the skeleton image, and if it is higher than the threshold, blends the 
skeleton image with the skin layer. Otherwise, only skin is rendered. 
The user specifies the blending level; in this case, the final image 
was generated with blending set to 0.8. 

There are other flavours of masking functionality that our 
framework provides. Correa et al [7] came up with a technique for 
interactive manipulation of volumetric models like deformation or 
cuts. We simulate volumetric cuts using a 2D cut operator. An 
example cut of the foot dataset is shown in accompanying video. In 
Figure 9(e) we show a screenshot from the animation. In Figure 6 we 
show different styles of masking available to the user. Notice that 
there may be more than one location to apply a masking operator to 
as well as it is possible to apply the operator to different layers. 

Fig. 6. Different masking styles. 

4.5 Slab-based Rendering 

Layers are most useful when the data is segmented into several parts 
and each part is rendered to a separate layer. We have had much 
success in applying a two-step volume rendering based on slabs. A 
volume is partitioned into slabs that are either view-aligned or 
aligned to the world axis most perpendicular to the desire viewing 
plane. Each slab is rendered to a corresponding layer. In the 
accompanying animated gif, we use view aligned slabs and show one 
of the application of slabs: slab-based traversal through the volume. 
Slab-based traversal can be viewed as an application of a meta-
operator to a set of layers. The meta-operator specifies the operator 
that should be applied to a particular layer (and thus slab), as well as 
the time when the operator should be applied. A simple example is 
an application of a window function to a set of layers. We implement 
the traversal by changing the opacity of the current layer, starting 
from the top one. 

The results of slab-based traversal are similar to the results 
obtained by the use of a slice plane that is moved through the 
volume. However, our slab-based approach has a major advantage. 
Every change in the location of the slice plane results in re-rendering 
of the volume. With slabs, once they are rendered, traversal is based 
only on changing opacities of the corresponding layers. 

In its simplest form, this can be thought of as a voxelization and 
volume rendering. The voxelization process integrates rays through 
the slab and stores the result to a layer. The final compositing is a 
simple volume rendering with a small number of slices. We typically 
use  less than ten slabs. As such, very fast and efficient compositions 
are possible. Of coarse, a much broader set of compositing 
operations are also possible. 

4.6 Drop Shadows 

Figure 7 shows a compositing operation that produces a drop 
shadow. The volume is rendered to a layer and a copy of the layer is 
made. The shadow operator processes the layer and colours the parts 
with non-zero opacity with black. A shift operator moves the 
rendering of the shadow. Finally, the volume rendering and the 
shadow renderings are composited to get the result shown in the 
figure. This example illustrates an  

Fig. 7. Drop shadow. 

 
important concept of layer reuse. We could render the volume twice 
with a different transfer function to achieve the same result; 
however, our layer approach is superior in terms of computational 
cost. 

4.7 Blur and Desaturation 

Keeping the amount of visual information presented to the user 
limited is crucial for effective volume exploration. Too many details 
can distract the user from the features he/she is interested in. One 
effective way of dealing with the problem is defocusing or 
desaturating the context, keeping high-level detail and/or colors only 
in the region of focus. Another option is to use a masking pattern, 
such as hatch pattern. Examples of these approaches are shown in 
Figure 8. 



Fig. 8. Left: Gaussian blur. Center: Desaturation. Right: Hatch pattern. 

This is an example of layer reuse. Instead of utilizing two transfer 
functions and re-rendering the volume twice, by processing a layer or 
a set of layers we can achieve the desired effect. (in the above 
example a single layer keeps both the context and the region of 
interest). This example along with the previous one illustrate the 
flexibility of layers: if necessary, multiple layers can be used to 
achieve the desired result; however, for some applications a 
relatively simple operator and only one layer are enough. 

4.8 Creating Scientific Illustrations 

One interesting application that our framework is suitable for is 
creating scientific illustrations. An example is shown in Figure 9(g). 
To make this image, we used two features of our framework: 
exporting and importing the layers. Grid texture was loaded in a 
separate layer and the head rendered on top of it with opacity set to 
0.8. The resulting image was exported to Photoshop, where the labels 
were added.  
     Texture import can be useful for loading any kind of ruler or 
some other background. This is a common practice in digital art, 
where the background may be a hand-drawn sketch to use as a 
template. It will not be used in the final composition, but provides a 
valuable reference. Likewise, during a volume rendering session, it 
may be useful to display an image of a reference model, allowing the 
user to determine the settings and shaders to best match the reference 
point of view and feature highlights.  

5 IMPLEMENTATION 

Our system is implemented in C# and OpenGL [15], with the use of 
the Tao framework [17] that provides OpenGL bindings for C#. 
Shader programs are written in GLSL. We use 3D texture-based 
volume rendering with back to front compositing for the attached 
volume renderer. 

The system is event based. Any change in any of the entities in 
the architecture hierarchy forces the events to fire and propagate 
through the hierarchy. The components that are registered to receive 
a particular type of event perform the necessary actions to update 
their state upon receiving the corresponding event. This keeps the 
number of state changes minimal. For example, if user changes a 
transfer function for one specific region of interest, only events 
corresponding to this change are fired. This finally leads to re-
rendering of the specified region of interest. No other components 
are updated and unnecessary redraws are not performed. 

While performance was not a concern when designing the 
system, we achieve a number of performance benefits. Eliminating 
unnecessary redraws as described above can bring significant 
performance improvements. This is especially noticeable with 
multiple ROIs and layers. Other performance advantages come 
directly from the layer properties and the way layers are utilized for 
particular tasks. As mentioned previously, we can control 
interactivity by turning off some expensive volume renderings while 
volume exploration. This is most applicable whenever there is a 
camera change event that makes all the layers invalid. Also, reuse of 
layers, as we saw in section 4, helps us avoid redundant volume 
renderings. 

6 CONCLUSION 

We have presented a layer-based volume rendering system. The ease 
of use and flexibility of layers allow the user to perform a variety of 
volume exploration tasks. In our future research work, we plan to 
automate the process of layer manipulation. With the current 
implementation of the system, the user is given full control over of 
layer manipulation, including layer creating. This, however, implies 
that the user should carefully consider how to select layers and 
operators for a particular task. Often this is a tedious and trial-and-
error process. In case the layers, regions of interest and operators are 
not selected properly, the result may be of no use. Thus our goal is to 
make the process of translating the problem into layers paradigm 
automated or semi-automated. For example, the user may be 
suggested to select a number of volume exploration scenarios when 
loading datasets into the system. 

We are also going to focus on further development of the system 
architecture. Current design allows separating the system into 
independent components, making the system suitable for remote 
volume rendering applications and collaborative visualization. 
Datasets may be rendered at a powerful graphics workstation and the 
results may be sent over the network to other computers or handheld 
devices. This also brings the questions of the user interfaces on the 
smaller screens, as well as the questions of how to distribute the most 
computationally expensive jobs in case there is more than one 
powerful graphics machine. 
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Fig. 9. Top Row: (a) skeleton and (b) skin rendered to separate layers. (c)The result of applying masking operator to (b) and (a).     
(d) Without masking, image is cluttered. Bottom Row: (e) Volumetric cut. (f) Masking with lens. (g) Scientific Illustration made with our 
system. 


