

Layers for Effective Volume Rendering

Sundaresan Raman, Oleg Mishchenko, and Roger Crawfis, Member, IEEE Computer Society

Abstract—A multi-layer volume rendering framework is presented. The final image is obtained by compositing a number of

renderings, each being represented as a separate layer. This layer-centric framework provides a rich set of 2D operators and

interactions, allowing both greater freedom and a more intuitive 2D-based user interaction. We extend the concept of

compositing which is traditionally thought of as pertaining to the Porter and Duff compositing operators to a more general and

flexible set of functions. In additional to developing new functional compositing operators, the user can control each individual

layer’s attributes, such as the opacity. They can also easily add or remove them from the composition set, change their order

in the composition, and export and import the layers in a format readily utilized in a 2D paint package. This broad space of

composition functions allows for a wide variety of effects and we present several in the context of volume rendering, including

two-level volume rendering, masking, and magnification. We also discuss the integration of a 3D volume rendering engine

with our 2.5D layer compositing engine.

Index Terms—Volume visualization, interaction, volume rendering.

1 INTRODUCTION

Volume rendering has proven to aid in the exploration and
understanding of large volumes. While substantial research on
transfer functions, volume segmentation, feature detection and
rendering integrals has led to impressive results, very little research
has gone into user interfaces for volume rendering. This paper builds
on the previous research on segmenting and rendering volumes and
examines a new system architecture that allows the power and ease
of use found in typical 2D paint applications applied to volume
rendering.

We segment the workflow process of visualization into two
distinct phases. First, traditional volume rendering applied to small
regions of interest are rendered. Then, similar to a sort-last scheme
for parallel rendering, we apply a compositing phase to the resulting
renderings. We expose this compositing phase and provide a rich set
of tools and operations to allow unique and effective visualizations
that would be difficult in a traditional volume rendering setting. We
adopt the concept of layers in a paint package, such as Photoshop
[2]. Digital artists and technical illustrators have leveraged the power
of the layer concept to quickly provide compositions, to remove or
highlight parts of an image, to limit the application of a filter or
image adjustment and a variety of additional affects. Often a user
will use a copy of a layer to safely experiment with different
manipulations or processing of an image.

In this paper, we formalize our concept of layers to the field of
volume rendering. We will present several basic examples of
processes applied to layers for effective visualization, as well as
some more advanced examples that would be difficult to achieve
directly in a volume renderer. By allowing layers to be duplicated
and processed, a rich set of effects can be achieved without the cost
of redundant volume rendering. Additionally, we will present several
techniques that mimic the results obtained in recent research reports,
but achieved using a much simpler 2.5D paradigm. These techniques
are not meant to replace previous work on volume rendering, but
rather supplement them. We show examples resulting from our own
3D volume renderer, but the application of layers can be applied to
other systems and visualization as a whole.

2 RELATED WORK

There are many well known metaphors for visualization system
architectures, from dataflows to spreadsheets. The Application

Programming Environment, or aPe [8], system and the initial
Application Visualization System (AVS) [19], combined a dataflow
system with a visual programming language. Using a rich set of pre-
built data filters and data mappers, the end-user could rapidly
construct visualization applications using a computer assisted visual
programming system. Even though AVS was intended as a tool for
application developers to build turn-key applications for the
developer’s specific application area, it was adopted by the end-users
and used directly for their applications. This was in part due to the
clean separation of the visualization process into filters and mappers,
the ease of use of the visual programming metaphor and the
flexibility to extend the system with user developed modules. This
was truly the first visualization system for the masses.

Other visualization systems have mimicked and extended AVS
[1][22][16]. IBM Visualization Data Explorer enhances the data flow
execution by minimizing redundant computations. The SciRun
system allows for rapid prototyping of applications as is evident in
their recent PowerApps [17]. Recently, VisTrails [3][6] provides a
systematic tracking of the workflow evolution evident in a complex
visualization task. By tracking the history or provenance of a
visualization session, it allows the user to experiment with possible
paths and manipulate the version tree. Compared to other systems,
such an approach frees the user from the need for memorizing the
changes that led to a particular visualization.

Other unique metaphors for visualization have been few and far
between. A spreadsheet approach was developed by Levoy [12] and
later extended by Jankun-Kelly and Ma [11]. Levoy uses images and
user controls as the values in the cells of the spreadsheet. A general
purpose programming language allows complex manipulations with
the data. Jankun-Kelly and Ma project the high dimensional
visualization parameter space to two-dimensional spreadsheet, and
also allow spreadsheet manipulations, such as rotations and
translations, bringing additional flexibility to processing the data
stored in the spreadsheet.

The specification of transfer functions using genetic algorithms
were explored by Marks et al. [14]. With their design galleries
approach, the tedious task of tweaking input parameters is done
automatically by the system. The system varies the input parameter
vector allowing the user to select from a collection of generated
results. The system changes the parameter values in a way to make
the output well-distributed. The Image Graphs [13] methodology
translates the process of data exploration into a graph representation,
where each node of the graph consists of an image and the
parameters used to produce it. This gives the user a clear
representation of the dependencies between the parameter values and
the visualization results.

• Sundaresan Raman, Oleg Mishchenko, and Roger Crawfis are with

the Department of Computer Science, Ohio State University
E-Mail: {ramansu|mishchen|crawfis}@cse.ohio-state.edu

Our framework exploits the dataflow metaphor. However, we
concentrate on the use of layers within the framework. The concept
of layers can be seamlessly integrated into all the systems described
above as a back-end system.

3 OUR APPROACH

In this section we shall first look at the layers and then at the
architecture of the system.

3.1 Layers

The layer concept is central to our framework. By using the term
layer, we refer to a 2D container for storing an image, on which a
number of operations are defined. The intuition for using layers
come from the fact that 2D image manipulation is often easier than
working with 3D volumes. A number of tasks for volume exploration
are performed by processing the layers instead of applying volume
rendering techniques.

User interaction with the system combines traditional tasks, but
also allows for a rich set of manipulations. Hence, we use the term
layer-centric to describe the framework. Manipulations include
applying a number of operators (programmable shaders) to an
individual layer, as well as specifying the order layers are combined.
From the user point of view, the way layers are manipulated in our
system is similar to the layers’ manipulation in Adobe Photoshop.
Users can create, delete, change the properties (for example, color
and opacity), enable or disable the layer, as well as process the layers
with the tools our system provides.

3.2 System Architecture

The central component responsible for the display of the final image
is a view. A view is associated with a compositing camera and a
viewport. A view also contains a list of layers. Each layer contains a
list of drawables, which are the entities that should be rendered. Each
drawable has a material associated with it. The material contains
attributes needed to render the drawable, for example, color and
opacity and a GLSL shader program. The shader provides the
implementation of the functionality for the material. All the entities
in the hierarchy support one-to-many or many-to-one relationships.

Fig. 1. System architecture

Multiple layers can be rendered with the same drawable or one
layer may render multiple drawables. If a layer contains zero
drawables, we refer to it as a null layer. Null layers are generated
using shaders which have access to the texture resources in the
system. Each layer generates a texture, allowing null layers to either
create new texture resources or process another layer’s texture. The
hierarchy of the major components is shown in the Figure 1.

Our system supports transfer function interface with a number of
pre-loaded transfer functions. There is also an editor for creating,

editing, compiling and linking shader programs. Compiling and
linking are done on the fly.

We employ the layer-based metaphor for the architecture of our
visualization system. From the implementation point of view, our
framework can be described as a dataflow. However, the difference
from other dataflow systems is that we don’t explicitly specify the
dataflow nor present it to the user. Ease of use in of our framework
comes from providing a list of tracked assets and a rich set of user
interfaces to build and edit each of the main components: drawables,
materials, shaders, layers, and views. Additional assets, such as
textures, shared numerical controls and cameras are maintained and
tracked by the system for use as shader variables or manipulator
controls. Figure 2 presents a screen-shot of our system, showing the
shader editor, material edit, 1D transfer-function editor and the layer
editor.

The hierarchy of the entities shown in Figure 1 makes it
convenient to make the system event based. Whenever any entity
changes, the changes are propagated upwards to the entities that are
above in the hierarchy, finally leading to the rendering of the image,
if necessary. For example, if a material property is changed, it fires
an event to all the drawables that share that material. All of these
drawables fire events to their parent layers. These layers in turn, fire
events to the view and the view fires an event to invalidate the
screen.

4 APPLICATIONS OF LAYERS

In this section, we describe some of the applications of the layer
based volume rendering. We simulate several recent research
contributions using simple 2D operators. While not as general as the
3D contributions, they achieve similar results with lower
computational complexity and often a simpler and more intuitive
user interface. There are a number of properties that layers provide
that are useful to list here before presenting the actual applications.
Keeping in mind these properties not only provide better
understanding, but also may lead to new ideas of how to use the
layers for volume rendering.

We specify the relationships between layers, views and drawables
in the following way. Let V be the set of views, L the set of layers
and D the set of drawables. We define the function space F as the set
of all functions or operators that map a set of drawables to a layer,
i.e. f: Dn � L. Likewise, we define the function space G as the set of
all functions that map a set of layers to a view, i.e. g: Ln � V, as
shown in Figure 3. Layer manipulation is specified by the
compositing shaders (functions). Each layer is an entity to which
functions are applied. We can also define the function space LF as
the set of all functions that map L

n to L. The composition of
functions f and g, where f, and g belong to LF, is denoted as
f o g = f(g); This operator is not commutative, i.e. f(g) ≠ g(f).

Fig. 2. User Interface Screenshot

Fig. 3. The relationships between layers, drawables and views

A simple set of layer manipulations is the set of image processing

algorithms, such as blurring and desaturation. Geometric
transformations, such as image warping and distortion, can also be
achieved.

4.1 Basic Layer Manipulation

Layers can be seen as a control for interactivity. This is achieved by
keeping the set of active layers small. While navigating in a huge
dataset, only a low resolution layer may be turned on, providing
interactive speed of exploration. Interactivity is especially important
for effective volume navigation. By performing volume
manipulations, such as rotations, the user often gets a better
understanding of the volume. This is due to receiving necessary
depth cues, as well as the fact that the human visual system is
especially good at detecting movement. When the user zooms in on a
selected region of interest, a layer with higher resolution is turned on,
providing the necessary level of detail.

Layers are a way to provide the context to the user. Context and
regions of interest may be rendered to separate layers and thus
processed separately. Such a divide and conquer approach helps to
focus on a single layer. This is achieved by turning off the context
layers while manipulating the layer in focus. Bringing up the context
is done by turning on the inactive layers. On the other hand, in some
cases operators that provide focus + context functionality may be
applied to a single layer.

Layers can be reused. Computationally expensive volume
rendering can be avoided in some cases by reusing an already
rendered image. When reusing several layers, the overall system
performance benefits significantly.

In the next section we provide more concrete examples of
applications we have explored with our framework to provide an
effective visualization.

4.2 Two Level Volume Rendering

Two level volume rendering [10][9] is an effective technique in
volume rendering, combining a number of transfer functions and/or
rendering types in the final image. Different transfer functions and/or

Fig. 4. Top: Two Level Volume Rendering with layers. Bottom: The

path of a ray through the volume is divided into segments,

corresponding to the different materials in the dataset.

rendering modes are better suited for different types of materials in a
dataset. In a medical dataset, for example, bones may be rendered
with a MIP, while skin and blood vessels with DVR, or vice versa,
depending on the user preferences and the particular application. We
achieve results similar to the ones of the two level approach by
rendering each of the different styles in a separate layer and then
compositing them into a final image.

The example is shown in Figure 4. Two different transfer
functions are used to render the foot dataset. On the left, DVR is
used to create a flat-looking representation of the foot; it is rendered
to a top layer. The center image is a DVR rendering of the bones; it
is rendered to a bottom layer. In the right is the resulting composited
image; the blending level was set to 0.5, i.e. the top layer (skin) is
semi-transparent. According to the notation introduced above, there
are two functions, DVR1 and DVR2 that map D to L. The
compositing function maps the resulting two layers to V. This is a
rather simple example, using only one drawable and two layers.

The approach described above provides results that slightly differ
from the results obtained with the original two level volume
rendering. In two level volume rendering, when the ray traverses
through the volume, the type of local rendering is selected depending
on the type of material encountered in the dataset. The accumulated
color and opacity for all ray segments are then composited to
produce the final result. Our approach differs in the order in which
the segments are composited. In two level volume rendering, the
order of compositing corresponds to the order in which the ray
encounters the materials. With our approach, all the segments
corresponding to the same material in the dataset are composited
separately. Then these intermediate results are composited to
produce the final image. This is illustrated by the scheme at the
bottom of Figure 4. Given two kinds of materials in the dataset,
denoted as A and B, the compositing for two level volume rendering
gives I = A1*B1*A2*B2*A3; while with our approach I =
A1*A2*A3*B1*B2. Compositing is not commutative, thus in general
the results are different, though for some specific cases they may be
the same.

Fig. 5. 2D magnification. Lenses applied to both kidneys. Occluding

ribs are rendered in a separate layer and are not distorted.

4.3 2D Magnification

Lenses are useful when text or images needs magnification. In
volume rendering, 3D lens have been around for about a decade. It
is probably the best and simplest example of a focus + context
technique. Zooming in a specified region of interest gives the user
the necessary detail for exploration, while the region outside the lens
keeps the context necessary for volume navigation. This area has
received much attention [4][23]. Bier et al [5] came up with a user
interface that could employ Magic lens filter to modify the
presentation of an object. Viega et al [20], in 1996, came up with flat
lenses and volumetric lenses. Recently, Wang et al [21] developed a
framework that provides a variety of GPU-accelerated volumetric
lenses.

In our system we use a 2D lens. The zooming effect is achieved
by distorting the texture representing the layer. Computationally this
allows us to get magnification at almost no cost, since we do not
need to re-render the drawables within the layer. Typically, a 2D lens
would be applied to the final image. We apply the lens to a single
layer (which may be the final image). Applying the zooming

operator to a single layer and not to the final composited image,
gives a number of interesting results. First, keeping the context non-
zoomed can be useful. An example is shown in Figure 5. The kidney
and the ribs are rendered to different layers. The kidneys are focused
and magnified, while the ribs are not distorted. We allow for multiple
lenses, as shown in Figure 5, where both kidneys are magnified.

There are two ways to achieve 3D magnification; one way is to
change the field of view and the other is to traverse through the
volume, moving the camera closer to the region of interest. Moving
the camera changes the occlusion or ray integration. Thus, 2D lens
may be a better choice when magnification is needed without
distortion.

4.4 Masking

Masking is a technique used to remove occlusion from a specific
area of interest. Given a number of input layers, a masking operator
selects and/or blends them according to some specified criteria, such
as the opacity. Consider the torso dataset in Figure 9. Keeping the
skin visible while trying to explore the skeleton and inner structures,
results in a cluttered image. We would like to get an image with the
skeleton and other inner structures visible, but only selectively make
the skin visible. This can be achieved in the following fashion.

First, skin and skeleton are rendered into two separate layers. The
skeleton is rendered to a bottom layer and the skin to the top one. A
masking operator makes a part of a top layer transparent, which in
turn makes the previous layer visible. An example of this type of
masking is shown in Figure 9. The image has two layers composited
and the lens makes the enclosed area in the outer layer transparent,
thereby displaying the previous layer.

Second, any type of 2D texture could be used as a mask by
having a threshold on the opacity values. This approach is used to get
the results in Figure 9. The image with skin is rendered on top of the
skeleton image. The masking operator checks the opacity value in
the skeleton image, and if it is higher than the threshold, blends the
skeleton image with the skin layer. Otherwise, only skin is rendered.
The user specifies the blending level; in this case, the final image
was generated with blending set to 0.8.

There are other flavours of masking functionality that our
framework provides. Correa et al [7] came up with a technique for
interactive manipulation of volumetric models like deformation or
cuts. We simulate volumetric cuts using a 2D cut operator. An
example cut of the foot dataset is shown in accompanying video. In
Figure 9(e) we show a screenshot from the animation. In Figure 6 we
show different styles of masking available to the user. Notice that
there may be more than one location to apply a masking operator to
as well as it is possible to apply the operator to different layers.

Fig. 6. Different masking styles.

4.5 Slab-based Rendering

Layers are most useful when the data is segmented into several parts
and each part is rendered to a separate layer. We have had much
success in applying a two-step volume rendering based on slabs. A
volume is partitioned into slabs that are either view-aligned or
aligned to the world axis most perpendicular to the desire viewing
plane. Each slab is rendered to a corresponding layer. In the
accompanying animated gif, we use view aligned slabs and show one
of the application of slabs: slab-based traversal through the volume.
Slab-based traversal can be viewed as an application of a meta-
operator to a set of layers. The meta-operator specifies the operator
that should be applied to a particular layer (and thus slab), as well as
the time when the operator should be applied. A simple example is
an application of a window function to a set of layers. We implement
the traversal by changing the opacity of the current layer, starting
from the top one.

The results of slab-based traversal are similar to the results
obtained by the use of a slice plane that is moved through the
volume. However, our slab-based approach has a major advantage.
Every change in the location of the slice plane results in re-rendering
of the volume. With slabs, once they are rendered, traversal is based
only on changing opacities of the corresponding layers.

In its simplest form, this can be thought of as a voxelization and
volume rendering. The voxelization process integrates rays through
the slab and stores the result to a layer. The final compositing is a
simple volume rendering with a small number of slices. We typically
use less than ten slabs. As such, very fast and efficient compositions
are possible. Of coarse, a much broader set of compositing
operations are also possible.

4.6 Drop Shadows

Figure 7 shows a compositing operation that produces a drop
shadow. The volume is rendered to a layer and a copy of the layer is
made. The shadow operator processes the layer and colours the parts
with non-zero opacity with black. A shift operator moves the
rendering of the shadow. Finally, the volume rendering and the
shadow renderings are composited to get the result shown in the
figure. This example illustrates an

Fig. 7. Drop shadow.

important concept of layer reuse. We could render the volume twice
with a different transfer function to achieve the same result;
however, our layer approach is superior in terms of computational
cost.

4.7 Blur and Desaturation

Keeping the amount of visual information presented to the user
limited is crucial for effective volume exploration. Too many details
can distract the user from the features he/she is interested in. One
effective way of dealing with the problem is defocusing or
desaturating the context, keeping high-level detail and/or colors only
in the region of focus. Another option is to use a masking pattern,
such as hatch pattern. Examples of these approaches are shown in
Figure 8.

Fig. 8. Left: Gaussian blur. Center: Desaturation. Right: Hatch pattern.

This is an example of layer reuse. Instead of utilizing two transfer
functions and re-rendering the volume twice, by processing a layer or
a set of layers we can achieve the desired effect. (in the above
example a single layer keeps both the context and the region of
interest). This example along with the previous one illustrate the
flexibility of layers: if necessary, multiple layers can be used to
achieve the desired result; however, for some applications a
relatively simple operator and only one layer are enough.

4.8 Creating Scientific Illustrations

One interesting application that our framework is suitable for is
creating scientific illustrations. An example is shown in Figure 9(g).
To make this image, we used two features of our framework:
exporting and importing the layers. Grid texture was loaded in a
separate layer and the head rendered on top of it with opacity set to
0.8. The resulting image was exported to Photoshop, where the labels
were added.
 Texture import can be useful for loading any kind of ruler or
some other background. This is a common practice in digital art,
where the background may be a hand-drawn sketch to use as a
template. It will not be used in the final composition, but provides a
valuable reference. Likewise, during a volume rendering session, it
may be useful to display an image of a reference model, allowing the
user to determine the settings and shaders to best match the reference
point of view and feature highlights.

5 IMPLEMENTATION

Our system is implemented in C# and OpenGL [15], with the use of
the Tao framework [17] that provides OpenGL bindings for C#.
Shader programs are written in GLSL. We use 3D texture-based
volume rendering with back to front compositing for the attached
volume renderer.

The system is event based. Any change in any of the entities in
the architecture hierarchy forces the events to fire and propagate
through the hierarchy. The components that are registered to receive
a particular type of event perform the necessary actions to update
their state upon receiving the corresponding event. This keeps the
number of state changes minimal. For example, if user changes a
transfer function for one specific region of interest, only events
corresponding to this change are fired. This finally leads to re-
rendering of the specified region of interest. No other components
are updated and unnecessary redraws are not performed.

While performance was not a concern when designing the
system, we achieve a number of performance benefits. Eliminating
unnecessary redraws as described above can bring significant
performance improvements. This is especially noticeable with
multiple ROIs and layers. Other performance advantages come
directly from the layer properties and the way layers are utilized for
particular tasks. As mentioned previously, we can control
interactivity by turning off some expensive volume renderings while
volume exploration. This is most applicable whenever there is a
camera change event that makes all the layers invalid. Also, reuse of
layers, as we saw in section 4, helps us avoid redundant volume
renderings.

6 CONCLUSION

We have presented a layer-based volume rendering system. The ease
of use and flexibility of layers allow the user to perform a variety of
volume exploration tasks. In our future research work, we plan to
automate the process of layer manipulation. With the current
implementation of the system, the user is given full control over of
layer manipulation, including layer creating. This, however, implies
that the user should carefully consider how to select layers and
operators for a particular task. Often this is a tedious and trial-and-
error process. In case the layers, regions of interest and operators are
not selected properly, the result may be of no use. Thus our goal is to
make the process of translating the problem into layers paradigm
automated or semi-automated. For example, the user may be
suggested to select a number of volume exploration scenarios when
loading datasets into the system.

We are also going to focus on further development of the system
architecture. Current design allows separating the system into
independent components, making the system suitable for remote
volume rendering applications and collaborative visualization.
Datasets may be rendered at a powerful graphics workstation and the
results may be sent over the network to other computers or handheld
devices. This also brings the questions of the user interfaces on the
smaller screens, as well as the questions of how to distribute the most
computationally expensive jobs in case there is more than one
powerful graphics machine.

REFERENCES

[1] G. Abrams and L. Trenish, “An Extended Data-Flow Architecture for

Data Analysis and Visualization,” Proc. IEEE Visualization 1995, IEEE

CS Press, Los Alamitos, Calif., 1995, pp. 263-270.

[2] Adobe Photoshop. http://www.adobe.com/

[3] L.Bavoil, S.P. Callahan, P.J.Crossno, J. Freire, C. E. Scheidegger, C.T.

Silva, and H. T. Vo. VisTrails: enabling interactive multiple-view

visualizations In Proceedings of IEEE Visualization, 2005, Vis'05, 135-

142

[4] E. Bier, M.C. Stone, K. Pier, W. Buxton, and T.D. DeRose, 1993.

Toolglass and Magic Lenses: The Seethrough Interface, Proc ACM

SIGGRAPH 1993, Anaheim, CA, Aug 1993, 73-80.

[5] E. Bier, M.C. Stone, and K. Pier, 1997. Enhanced Illustration Using

Magic Lens Filters. IEEE Comput. Graph. Appl. 17, 6 (Nov. 1997), 62-

70.

[6] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo,

VisTrails: Visualization Meets Data Management. SIGMOD 2006, June

27-29, 2006, Chicago, IL

[7] C. D. Correa, D. Silver, and M Chen. Feature Aligned Volume

Manipulation for Illustration and Visualization. IEEE Transactions on

Visualization and Computer Graphics 12, 5 September 2006

[8] Dyer, D. S. 1990. Visualization: A Dataflow Toolkit for Visualization.

IEEE Comput. Graph. Appl. 10, 4 (Jul. 1990), 60-69.

[9] M. Hadwiger, C. Berger, and H. Hauser, 2003. High-Quality Two-Level

Volume Rendering of Segmented Data Sets on Consumer Graphics

Hardware. In Proceedings of the 14th IEEE Visualization 2003 (Vis'03)

(October 22 - 24, 2003). IEEE Visualization. IEEE Computer Society,

Washington, DC, 40.

[10] H. Hauser, L. Mroz, G. Bischi,,and M. Gröller. 2001. Two-Level

Volume Rendering. IEEE Transactions on Visualization and Computer

Graphics 7, 3 (Jul. 2001), 242-252.

[11] T.J. Jankun-Kelly and K.-L. Ma, “A Spreadsheet Interface for

Visualization Exploration,” In Proc. Visualization 2000 Conf., ACM

Press, New York, Oct. 2000.

[12] M. Levoy, 1994. Spreadsheets for images. In Proceedings of the 21st

Annual Conference on Computer Graphics and interactive Techniques

SIGGRAPH '94. ACM Press, New York, NY, 139-146.

[13] K.L. Ma, ªImage Graphs: A Novel Approach to Visual Data

Exploration, Proc. IEEE Visualization '99, pp. 81-88, 1999.

[14] J. Marks, B.Andalman, P.Beardsley, W.Freeman, S.Gibson, J.Hodgins,

T.Kang, B.Mirtich, H.Pfister, W.Ruml, K.Ryall, J.Seims, and S.Shieber,

1997. Design galleries: a general approach to setting parameters for

computer graphics and animation. In Proceedings of the 24th Annual

Conference on Computer Graphics and interactive Techniques

International Conference on Computer Graphics and Interactive

Techniques. ACM Press/Addison-Wesley Publishing Co., New York,

NY, 389-400.

[15] OpenGL http://www.opengl.org

[16] S.G. Parker and C.R. Johnson, 1995. SCIRun: A scientific programming

environment for computational steering. In Proceedings of the 1995

ACM/IEEE Conference on Supercomputing (Cdrom) – volume 00 (San

Diego, CA, December 04-08, 1995) Supercomputing ’95. ACM Press,

New York, NY, 52.

[17] PowerApps. http://software.sci.utah.edu/scirun.html

[18] Tao Framework, http://www.taoframework.com

[19] C. Upson, T. Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel, J.

Vroom, R. Gurwitz, and A. van Dam, 1989. The Application

Visualization System: A Computational Environment for Scientific

Visualization. IEEE Comput. Graph. Appl. 9, 4 (Jul. 1989), 30-42.

[20] J. Viega, M. Conway, G. Williams, and R. Pausch, 1996. 3D Magic

Lenses. In Proceedings of the 9th Annual ACM Symposium on User

Interface Software and and Technology. Seattle, WA, Nov 06-08, 1996,

UIST 96, ACM Press, New York, NY, 51-58.

[21] L. Wang, Y. Zhao, K. Mueller, and A. Kaufman, 2005 The Magic

Volume Lens: An Interactive Focus+Context Technique for Volume

Rendering. In Proceedings of IEEE Visualization '05, 367-374, 2005.

[22] M.Young, D.Argiro,and S.Kubica, 1995. Cantata: visual programming

environment for the Khoros system. SIGGRAPH Comput. Graph. 29, 2

(May. 1995), 22-24.

[23] J. Zhou, M. Hinz, and K. D. Tonnies. Focal region-guided feature-based

volume rendering. In Proceedings 1st International Symposium on 3D

Data Processing Visualization and Transmission (3DPVT), pages 87--

90, Padova, Italy, June 2002.

Fig. 9. Top Row: (a) skeleton and (b) skin rendered to separate layers. (c)The result of applying masking operator to (b) and (a).
(d) Without masking, image is cluttered. Bottom Row: (e) Volumetric cut. (f) Masking with lens. (g) Scientific Illustration made with our
system.

