
Clipmapping on the GPU

Roger Crawfis, Member, IEEE Computer Society, Eric Noble, Michael Ford, Frederic Kuck, and Eric Wagner

Abstract— Dealing with high-resolution imagery with billions or trillions of samples is an enormous challenge that often
overwhelms the graphics subsystem of any computer. Silicon Graphics, Inc. addressed this issue by providing explicit hardware
support for offset registers and texture sub-loads in their InfiniteReality™ machine. The clipmap algorithm uses sub-textures and
incremental updates based on a toroidal mapping to allow a smaller region to have high-resolution data, while surrounding
regions have gradually decreasing resolution. To date, this capability is not supported on most graphics cards. This paper
examines several strategies to support clipmapping on commodity GPUs using programmable shaders. We analyze issues
associated with clipmaps and provide a taxonomy for clipmap rendering. We have implemented several shaders in our taxonomy
and provide performance analysis on current GPUs. Proposals for more efficient hardware to support clipmapping are also
presented. Throughout the paper, we provide several extensions to the basic clipmap algorithm, including support for compressed
textures, better load balancing, and better support for missing data. Results are presented using our real-time flight simulator
applied to large-scale databases.

Index Terms—Terrain visualization, texture mapping, clipmapping, clipmap, mipmap.

1 INTRODUCTION

About three years ago, we started examining different solutions
for achieving clipmapping using programmable GPUs for our real-
time simulators. As the performance of the GPU exponentially
increased, our applications became increasingly CPU-bound, due
to complex texture management and the severe restrictions
imposed by conforming the geometry to texture boundaries.
Exacerbating the situation was the customer demand for higher-
quality and higher-resolution imagery. Clipmaps allow for a
transparent integration of high-resolution textures into an
application. Clipmaps [Tanner98] require explicit hardware
support for offset registers and texture sub-loads [Montrym97]. To
date, replicating this capability on the GPU has not been possible.
With programmable shaders and efficient software-based texture
updates, we examine several possible solutions to emulate
clipmaps on the GPU. Our overall system for real-time visual
simulation, described in [Crawfis06], allows for efficient and
asynchronous determination of geometry. We combine this with
an asynchronous system for controlling and updating the texture
data used in our clipmap implementations. This paper focuses on
the rendering or shader support needed for clipmapping and the
requirements a particular shader imposes on the texture update
cycle. Our final system provides the following benefits:
• Removal of the texture size limit. By providing clipmaps on

consumer GPUs, functionality previously unavailable on a
single chip GPU is now possible.

• The absence of visual artifacts. Texture seams and blending
artifacts prevalent in many texture management schemes are
avoided by using a (logical) single texture.

• Non-square textures: The overall high-resolution texture
can be any size. Power-of-two and square textures are not
required.

• Sparse Textures: We do not require the entire texture to be
present. Any missing data is handled seamlessly. This can

lead to a substantial reduction in the database size for large
areas having only a few pockets of high-resolution data, such
as city data.

• Low memory and texture usage: For 2Kx2K texture
resolutions, each clip-level requires just 2MB of video
memory using DXT1 compressed textures.

• Asynchronous and amortized clipmap updates: Since each
clip-level is independent, allowing asynchronous updates. We
can update a level every nth frame, providing a complete
update of all levels amortized over a user-specified duration.

• Disjoint database development of the texture and
geometry models. The expensive operation of pre-processing
a database can be done independently of the texture database
construction. Changing the image database does not require
recalculating the geometry LOD information.

• Minimal state changes. A single shader and set of textures
can be used for the entire terrain or all geometric patches for
the terrain. A single set of state changes is needed at the
beginning of the frame, preventing GPU stall.

2 RELATED WORK

Typical high-resolution texturing systems use a software-based
solution comprised of high-resolution textures split into tiles or a
quad-tree arrangement [McReynolds05; Hoppe98; Cline98] that
can be paged into video memory. This requires either subdividing
the geometry at each tile boundary or rearranging the rendering
pipeline to loop through each tile, masking out the pixels that do
not project onto the texture. The process of clipping or re-
tessellating dynamic geometry to match each texture tile
introduces additional complexities, as well as run-time
performance issues. For terrain rendering, dynamic geometry is
generated when switching between levels-of-detail in the
underlying elevation data. Hesina et al. [Hesina05] also split the
geometry to align with the textures. They use a 2-level texture
cache to maintain the video and system management of the
textures. We have adopted a similar scheme in our overall system,
but do not require the geometry to be split according to texture
boundaries.

• Roger A. Crawfis is with The Ohio State University and DSCI, Inc., E-

Mail: crawfis@cse.ohio-state.edu.
• Eric Noble, Michael Ford, Frederic Kuck and Eric Wagner are with

DSCI, Inc. E-Mail: {enoble|mford|ckuck|ewagner}@dsci.com.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
2 November 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

mailto:tvcg@computer.org

Continuous LOD schemes determine the triangulation of the
elevation at run-time based on the current viewer position and a
desired sub-pixel error [Hwa04; Losasso04; Lindstrom02]. In
general, a tight coupling between the texture and the geometric
description or tessellation should be avoided, since it either
restricts or complicates the tessellation and adds new visual
quality issues that the application has to address. Where there is a
large disparity between the color or texture sampling rate and the
geometric sampling, clipping to artificial texture boundaries
severely limits the efficiency of the resulting geometric batching.

 Level Determination

 Implicit Explicit

None A B

Explicit Not explored C
Indexed Not explored D

 E
xt

en
t C

lip
pi

ng

Implicit E Not explored

Table 1. We have studied five approaches to clipmapping on
the GPU as indicated by A, B, C, D, and E. Each of these
requires differing sets of resources and exhibit different
execution times, as will be analyzed in later sections.

Our focus in this paper is applying clipmaps at a per-fragment
level. Previous work determined the projection of each triangle,
calculating the number of pixels from a triangle’s footprint in
screen space [Ephanov00]. This was done on the CPU and resulted
in poor performance, but aided in migrating users from legacy SGI
systems and clipmap databases. The recent advent of geometry
shaders would allow for this calculation on the GPU, making this
approach much more attractive. For large triangles, an improper
texture LOD would still be visible at oblique angles. The further
vertex would exhibit aliasing, while the closest vertex would be
blurred. Furthermore, if the triangle projected outside of the
texture, it was assigned a lower resolution texture. Recently,
shader programs have been used to allow a triangle to span up to
four textures, alleviating the need to clip the triangles by the tiled
texture boundaries [Ephanov06]. A triangle is still assumed to
project within a single clip-level.

 Geometry clipmaps [Losasso04] render regular nested grids
that are viewpoint centered. Each grid is rendered independently
and blended with its parent. The texture maps are alpha blended to
avoid seams. This was improved by pushing more of the
computations onto the GPU by [Asirvatham04]. Clasen and Hege
[Clasen06] extended this to planetary size data and spherical
domains. Recently, they have examined the update strategy for
geometry-clipmaps [Clasen07]. It should be noted, that Geometry
Clipmaps are not the same as Tanner’s clipmaps. The differences
are more than just geometry and imagery. Clipmaps allow for
higher-resolution imagery than supported by the hardware for a
single geometry patch. Geometry clipmaps are still restricted to
the texture size limit of the hardware for both the displacement
texture and the imagery texture. Rather than sending eometry
batches down from a quad-tree, it sends view-dependent geometry
batches based on the geometry clip-level. Our focus in this paper
is to support the clipmaps of Tanner for imagery. This is needed to
support non-geometry clipmap terrain engines. As will be shown
these provide a much greater throughput than those of [Clasen07],
as pointed out by Clasen.

Adaptive 4-8 Texture Hierarchies [Hwa04] keep twice as much
texture information in an effort to always provide a one-to-one
pixel to texel ratio. The geometry and texture are both aligned
with a diamond grid, requiring the textures to be rotated and
resampled. Döllner et al. [Döllner 2000] use a multi-resolution
technique specifically designed for terrain rendering. Wahl et al.
[Wahl 2004] accelerate terrain rendering by combining geometric
simplification, texture level-of-detail and texture compression with
occlusion culling and imposters. Brodersen [Brodersen05] splits
the textures rather than the geometry in his geometry mipmap
(GeoMipMap) solution [DeBoer00]. The splits contain a grid of
GeoMipMaps, which are traversed based on their texture during
runtime. MP-Grids [Hüttner98] use a lattice of mipmaps that are
updated each frame based on the current view. Hua et al. [Hua04]
use a quadtree with a LRU-based cache algorithm to manage their
textures.

Other researchers have examined the management of texture
atlases for general scenes. Buchhotz and Döllner [Buchhotz05] use
a quadtree subdivision containing a hierarchy of a texture atlas for
each node. The GoLD [Borgeat05] algorithm requires an
expensive pre-processing, providing a hierarchical segmentation

of the geometry and the texture into patches. These are optimized
into static LODs for efficient run-time execution.

3 CLIPMAP CALCULATIONS

The toroidal texture is ideal for incremental updates to a small
roaming sub-image of a much larger image [Losasso04]. Without
the toroidal mapping, the entire texture would need to be replaced
each time it was updated. For large textures (2048x2048),
transferring this amount of data across the PCI-Express bus is too
expensive to accomplish within one frame for a real-time
application. Double buffering could be used to amortize the
updates over several frames, reducing the visible stall. We use a
toroidal texture based on small sub-blocks of texels or tiles,
restricting updates until an efficient buffer size is reached. This
provides a more effective format for streaming from disk and
decompression, similar to [Clasen07]. Our tile size varies from 642
texels to 2562 texels. We use a tile size of 2562 texels for all results
in this paper.

3.1 Clipmap Decisions

Texturing large models, such as terrain, boils down to determining
the appropriate fragment color for each sample on the terrain. This
process needs to consider two key aspects of the texturing:

1. How fast does the texture vary across the sample?
2. Given a discrete representation of the texture, what

value should be returned for samples not lying at
these impulse samples?

The first issue needs to be addressed to avoid aliasing. The second
issue revolves around the need for proper reconstruction and re-
sampling. For the purposes of this paper, we will use the hardware
based bi-linear interpolation with anisotropic filtering for this
issue and focus solely on the first issue above.

In particular, we will examine the process of clipmapping to
solve the anti-aliasing problem. The key problem here is the
determination of the proper clip-level (or clip-levels for linear
interpolation) to use for the fragment. The ideal clip-level would
be the level corresponding to the texture magnification level,
having a one-to-one mapping between the fragments and the
texels. We examine two approaches for ensuring that the ideal
level or texture is selected during the rendering pass. Using shader
programs, the level can be determined using the derivative of the
texture coordinates as a function of the screen space. We call this
an Explicit Level Calculation. Alternatively, we can construct
special mipmaps for each clip-level that provide this automatically
in the resulting tri-linear interpolation. We call this approach
Implicit Level Calculation. Both of these approaches will be
discussed in more detail in Section 3.2.

In a perfect setting, the ideal level would be a sufficient
condition to support clipmaps. In practice, the clip-textures (or I/O

uniform float MaxAnisotropicSampling;
float alculateIdeal l(void) c Leve
 vec2 scaleHalf = vec2(0.5,0.5);

{

 vec2 ddx = scaleHalf *abs(dFdx(gl_TexCoord[0].st));
 vec2 ddy = scaleHalf *abs(dFdy(gl_TexCoord[0].st));
 float lddx = ddx.x + ddx.y;
 float lddy = ddy.x + ddy.y;
 float pMax = max(lddx, lddy);
 float pMin = min(lddx, lddy);
 pMin = max(pMin,1.0e-10);
 pMax = max(pMax 0e-10); ,1.
 float Aspect = min((pMax/pMin),
 MaxAnisotropicSampling);
 float fLevel = - log2(pMax/Aspect);
 return fLevel;
}

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

dy
dv

dx
dv

dy
du

dx
du ,,,maxlog 2λ

system providing the data) are updated asynchronously to the
renderer. Using texel information past the edge of a clip-level
results in unwanted artifacts, and a mechanism must be employed
to restrict an individual clip-level to its extent in world space.
Thus, the proper clip-level needs to take into account both anti-
aliasing and each clip-level’s extent. These are denoted as Level
Determination and Extent Clipping in Table 1.

We have developed and analyzed three different solutions for
restricting or clipping the texels to lie within each clip-level’s
extent. We also examined the performance in avoiding this step
altogether, labeled None. Our first approach is called Explicit
Clipping, in which we use a shader program to perform a
bounding box test. Alternatively, we have developed an approach
using an indexing structure to aid in the level determination. We
call this approach Indexed Clipping. A fourth approach examines
the use of opacity and texture filtering to perform the clipping.
This is termed Implicit Clipping.

Combining the anti-aliasing and the clipping provides a total of
eight possible techniques to explore. These are summarized in
Table 1. We have examined the five most interesting approaches
as indicated by the table. Section 3.3 will describe the various
clipping approaches in more detail. Section 4 presents an analysis
of the shader performance for each approach. In section 5, we
examine the software side of the clipmap, in particular, the work
required to move the clipmap center. Section 6 presents results
within our real-time terrain visualization system. We examine the
costs and benefits for each approach in section 7. This analysis
points to a final technique for clipmaps based on a wavelet-like
decomposition of the database. This approach and its improved
performance are discussed in section 8. We conclude the paper
with a few suggestions for future hardware that would greatly
reduce the resources required for clipmaps.

3.2 Determining the Ideal clip-level

We discuss two approaches to selecting the ideal clip-level. The
first is an explicit algorithm using well-known formulas. The
second massages the texture samplers to provide the correct level,
as a by-product of the tri-linear filtering.

3.2.1 Explicit Level Determination
Mathematically, the texture minification at the current

fragment can be approximated by the derivatives of the texel
sampling with respect to screen space in both the x and y
directions [Ewins98]. We treat level zero1 as the coarsest mipmap
level (1 texel) and compute the magnification of this texel onto the
screen space. This is accomplished by taking the derivative of the
texture coordinates u and v. It is assumed that these texture
coordinates span the entire database. We can compute the desired
texture unit as:

This level may not be integral, allowing for tri-linear interpolation
between levels. It may also exceed the maximum level defined,
resulting in texture magnification. We let the shaders that utilize
this calculation determine the best action for magnification
[Hadwiger 03]. Normally, a simple clamping is applied, but we
have also experimented with extrapolation to provide greater
contrast enhancement [McReynolds04]. The above calculation
finds the maximum squishing of the texture in either the x or y axis
of screen space for both of the texture coordinates. This provides a
safe solution to avoid aliasing, but results in overly blurred texture
filtering when a textured object is viewed obliquely. Anisotropic
filtering or multi-sampling was added to the GPU to address this
problem. The actual multi-sampling and filtering is done within
the hardware texture-sampling unit and is implementation
dependent. However, when selecting the texture level to use, we
need to account for it in our level determination. To support this,
we simply pass in the desired level of multi-sampling,
MaxSampling, and update our calculations for the desired level
based on the formula:

Figure 1. Fragment shader routine to calculate the ideal level
in the image pyramid.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
+=

Aspect

gMaxSamplinAspect

dy
dv

dy
du

dx
dv

dx
du

dy
dv

dy
du

dx
dv

dx
du

max
2

min

max

min

max

log

,min

2
1,

2
1min

2
1,

2
1max

ρλ

ρ
ρ

ρ

ρ

Here, we have used a simplification to determine the distortion in
x and y, to avoid an expensive square-root (See [Segal04] for
details). A straightforward implementation in GLSL is provided in
Figure 1. This is our Explicit Level determination algorithm. Wu
[Wu98] presents an alternative approach towards calculating the
mipmap level using bit-operators to avoid the logarithmic
calculation.

3.2.2 Implicit Level Determination
Alpha testing allows for per-fragment clipping. A user-

specified threshold is tested against the fragment’s alpha value and
either accepted or rejected from further processing. Blending
provides a rich set of operators for combining two colors with
associated weights (typically alpha values). Mipmaps are not
needed for the clip-level textures, since by definition the next
coarsest level is either the overall mipmap of the next lower-
resolution clip-level (i.e. a separate texture). We can use this extra
dimension and set-up each clip-texture with a mipmap structure
filled with a solid color of black and zero opacity. Now, when the
texture fetch is performed, we will get a completely transparent
(and black) color, the clip-texture color, or a mix of the two. We
set the opacity of the clip-texture to one and use the formula below
for calculating the clipmap color:

()∑
=

−+=
N

i
ii colorccolor

0

1 α

plus one), ci is the color sampled from clip-level i’s texture, and αi

where N is the number of texture units (i.e., number of clip levels

Figure 2. Diagram for implicit level determination

1 As opposed to OpenGL, which uses zero for the highest-resolution. Using
zero for the lowest resolution allows for an infinite and increasing
resolution specification.

the opacity. This formula is order dependent, starting with the
mipmap, and then painting (possibly transparent) colors on top. As
an example, consider the following. If the ideal level is 12.625 as
indicated in Figure 2, with 11 mipmap levels, we first look-up the
mipmap texture, resulting in a red color in the diagram. The first
clip-level would have texture magnification and select the clip-
texture color (green in the diagram, with opacity equal to one).
This would then overwrite the current color, resulting in green
(color under the green triangle). The second clip level (level 13)
would get a mix of black and the clip texture (blue). This is mixed
with the current color to provide the correct and final color
(turquoise). Since we do not know the proper level, we would
continue with the next clip-level. Since this level and all
subsequent levels will have texture minification, they will return a
black color with zero opacity and not change the final color. Note
that no calculation is performed to determine the clip-level. It
simply selects the proper color, and hence the proper level, using
texture filtering. We call this Implicit Level determination. By
definition, it requires that all clip-levels be sampled.

Once we have the ideal level, we need to determin

uniform sampler2D clipLevels[5];
uniform sampler2D levelMap;
uniform float mipLevels;
uniform float bias;
float calcIdealLevel(void);
vec4 cColor(void) cal
 float fLevel = calcIdealLevel() – mipLevels + bias;

{

 vec4 c1, c2;
 float maxLevel = texture2D(levelMap,gl_TexCoord[4].st).a;
 float newLevel = min(maxLevel,fLevel);
 int level1 = max(0,int(newLevel));
 int evel0 = max(0,level1-1); l
 float w = newLevel - float(level1);
 c1 = texture2D(clipLevels[level1], gl_TexCoord[level1].st);
 c2 = texture2D(clipLevels[level0], gl_TexCoord[level0].st);
 return mix(c1, c2, w);
}

Figure 3. Pseudo-code for the index-based clipping.

e the desired
or

3.3 Restricting the Level Based on Extents

osasso04],

 implementations, each
cli

f terrain rendering requires a robust

Given texture coordinates in the normalized coordinate system for
each clip-level, we need to take into consideration the toroidal

xture coordinate, (0,0), may lie
dow. Each clip-level texture uses

ether the corresponding texel is loaded and available for
 allow us to use a simple

estrict a level. For the highest

proper texture unit for the current projection, by ensuring that
the texel for this level is currently loaded. Several approaches for
this are discussed in the following section.

Most applications, including Geometric Clipmaps [L
restrict the geometry to texture boundaries. Geometric clipmaps
use a multi-pass solution, drawing a geometry batch restricted to
either the texture extent or the ideal level. The seams between
levels need to be blended together to avoid artifacts.

3.3.1 Coordinate System Changes
In the most general situation and in our

p-level is independently positioned. For tri-linear interpolation,
it is desirable for each clip-level to be contained within the region
covered by its parent level (i.e., the next coarsest level). The
mipmap level contains the entire database. We use two coordinate
systems for each clip-level and an additional coordinate system,
the world coordinate system, to describe the entire database. The
world coordinate system maps the database from geo-specific
coordinates to normalized coordinates going from zero to one.
Each clip-level can be thought of as a roaming window within the
global coordinates. We calculate the roaming window coordinates
in the normalized coordinate space to maintain precision. The final
coordinate system maps from the roaming window to the toroidal
layout of the texture. A common vertex shader is used for all of
the shaders in this paper. The user needs only to define the world-
space mapping; the clipmapping system automatically generates
the mappings for each level. The vertex shaders automatically
calculate the texture coordinates for each level using two dot
products per level.

3.3.2 No Clipping

Although our application o
solution, there are applications that may tolerate an inferior image
for a short duration, such as web-browsing and image zooming.
Other applications may be able to guarantee that the clip-levels are
always in synch and centered properly, eliminating the need for
clipping altogether. We include the possibility of simply ignoring
the clipping extent, both as a baseline for comparison and
completeness. For this shader, the fragment color is simply
calculated using linear interpolation between the clip-levels
indicated from the level determination.

3.3.3 Explicit Clipping

mapping within the texture. The te
in the middle of the roaming win
a wrapping mode to repeat the texture and allow for the toroidal
mapping. The valid roaming region in texture space for a clip-
level is (ox,oy) to (1+ox,1+oy). Thus, we need to pass in the origin
vector, (ox,oy), for each clip-level into the fragment shader. We
use a cascading set of conditionals to first check for the desired
level and then test whether the fragment falls within the texture’s
extent. If it does, the fragment’s color is calculated. If not, the
desired level is decremented. By ordering the conditionals
according to decreasing levels, the proper fragment color is
guaranteed. The fragment shader is rather lengthy and is included
in the supplemental materials. Only two texture look-ups are
performed when the desired level falls between two clip-levels or
the mipmap level and the first clip-level. One texture look-up is
needed for magnification or if the desired level falls within the
mipmap.

3.3.4 Indexing Structure

We can envision a map that indicates for each point in the world
space, wh
use. Having a mask for each level would
lookup to determine whether to r
level, this is obviously impractical, as it would require a texture
map for the look-up the size of the entire high-resolution imagery.
By quantizing the movement of the clip textures, we provide a
much coarser grid over the world. This allows for a mask to fit
into memory for moderately sized datasets. For clip-levels having
closure (that is, the coarsest level contains all of the higher-
resolution levels), we can compute a single 2D indexing structure
which encodes, for each quantized grid cell, the highest valid clip-
level covering this area. This index structure is passed into the
shader as another texture. We compute the quantized texture
coordinates from the world texture coordinates and look-up the
maximum valid clip-level. Taking the minimum of the level and
the ideal level provides the desired clip level. Pseudo-code2 for
this shader is provided in Figure 3. At most, two texture fetches

uniform sampler2D ipLevels[5]; cl
vec4 calcColor(void) {
 vec4 fragColor = texture2D(clipLevels[0], gl_TexCoord[0].st);
 vec4 newColor = texture2D(clipLevels[1], gl_TexCoord[1].st);
 fragColor
 newColor = texture2D(clipLevels[2], gl_TexCoord[2].st);

fragColor = *(1-newColor.a) + newColor;

 fragColor
 newColor = texture2D(clipLevels[3], gl_TexCoord[3].st);

fragColor = *(1-newColor.a) + newColor;

 fragColor = fragColor*(1-newColor.a) + newColor;
 newColor = texture2D(clipLevels[4], gl_TexCoord[4].st);
 fragColor = fragColor*(1-newColor.a) + newColor;
 return fragColor;
}

Figure 4. Fragment shader for implicit level determination and
implicit clipping (four clip-levels).

2 The actual shader and why this is pseudo-code is explained in the
discussion section.

are required for the tri-linear interpolation, and one for the
indexing.

An additional benefit to this index structure is its use for
missing tiles. The original clipmap algorithm supported databases
with differing resolutions. If data did not exist for a single texel,
the

plicit Level approach for calculating the ideal
s to perform the extent clipping
t-forward approach for this is to

ave a firm grasp of the various approaches for
erformance of
], we analyzed

. We show the performance on
the

sting (and
sur

down and has a high texture cache coherency. The shader avoids
nality.
aders

d texture updates from
swamping the system. Today’s GPUs are extremely powerful and,

 process the data faster than the
ent shaders require different update

veral frames?
nt on each other?

perly (in a flat plane)
e

era moves. The shaders A and B require a
.

Table 2. The output from NvPerfShader for each shader,
assuming four clip-levels, is shown. The target platform is the
NV40 architecture. The Pixel throughput assumes one cycle per
texture fetch measured in mega-pixels per second (MP/s). Shader
F is our Difference Encoder shader discussed in section 8.

 # instructions R-Registers
 entire clip-level was invalidated. The granularity for missing

data was thus at the entire clip-level, or about 2048 texels across.
Using the index structure, we can support a much finer granularity
for missing data.

3.3.5 Implicit Clipping

Similar to the Im
level, we examined approache
using opacity. The most straigh
expand the toroidal map and surround it with a border of texels
having zero opacity. This would require updating this border as
the clip-texture moved. As the toroidal texture is a repeating
texture, it fails once we sample past the border. To address this
limitation (repeating), we use a frame-buffer-object (FBO or p-
buffer) to unwrap the toroidal texture into another texture. This
allows us to use a clamp-to-border wrapping. The double
buffering of the textures also allows incremental updates to the
toroidal texture. Once the textures are unwrapped, the resulting
fragment shader is quite simple, as illustrated in Figure 4. From a
shader standpoint, there is no difference between the shaders for
approaches A (No Clipping) and E (Implicit Clipping). Rather
than testing the resulting opacity value, we sample all of the clip-
textures and composite them together. It is also possible to
implement this technique using register combiners and OpenGL
1.4.

4 CLIP-SHADER PERFORMANCE COMPARISON

Now that we h
rendering using clipmaps, we will examine the p
these shaders. Using nVidia’s ShaderPerf [Shader07
each individual shader. Table 2 provides the number of
instructions, number of cycles, number of registers and the
theoretical throughput for each shader. Shaders were analyzed
assuming four clip-levels on nVidia 6800 Ultra (NV40)
architectures. The Explicit Level determination with Explicit
Clipping, Shader C, requires the most instructions. The shaders
based on implicit level determination, A and E, require only 13
instructions and a minimal set of registers. The register usage is
important because the clipmap shader may be a small part of a
much larger shader incorporating lighting, bump-mapping and fog.
Shader F is discussed in section 8.

We also analyzed five separate static views for each shader.
These views are shown in Figure 5, and the rendering times for
each shader are reported in Table 3

 nVidia 6800 Ultra and 7800 GTX, as well as the ATI X1900.
Each view is rendered at full-screen, using a screen resolution of
1280 by 1024 with 4x FSAA. We used a maximum multi-
sampling value of 8x. Two views provide an oblique angle of the
San Francisco Bay at different locations. We also captured timings
looking straight down from these locations. A separate view is
taken from our Nevada database. The number of triangles in each
view is also reported. We also provide an image superimposing a
pseudo-coloring over one view similar to [Cantlay05].

The San Francisco database is comprised of a 2048 by 2048
mipmap and five clip-levels. The Nevada database has a 2048 by
2048 mipmap and four clip-levels. Several intere

prising) numbers are found in this table (so much so, that we
re-checked the numbers three times). First, the fastest frame-rate is
reported on the 6800 Ultra for view SF1d. This view looks straight

of 2x to 5x. This indicates that even as the number of triangles
increases, the rendering time is fragment bound (mainly due to the
large image resolution and 4x full-screen anti-aliasing, FSAA).
For the 6800 and the x1900, oblique views are far more expensive
than downward looking views. This is still the case with the 7800,
but less so. Comparing shaders C and D, we see that for the 6800,
they are rather competitive. For the x1900, shader C is clearly
faster, while for the 7800 Shader D is faster. Shaders E and F are
consistently faster across the architectures.

5 CLIP-LEVEL UPDATING

While the shader performance is an important indicator of the
overall clipmap system performance, careful design is required to
prevent the software based clip-centering an

conditional logic and can be implemented in fixed functio
Going across the rows, there are differences between the sh

as will be shown, can often
application can feed it. Differ
strategies and computations, affecting the overall performance. All
approaches require that the individual clip-levels be updated.
Issues associated with updating the clipmaps are:

• How often do we check for updates?
• How do we center the clipmaps?
• What is the minimum shift required before performing

an update?
• How can we amortize the work across se
• What stages of the update are depende

As mentioned, for clipmaps to function pro
without clipping to the clip-level extents, we need to update th
clip-levels as the cam
very short update cycle. The other shaders are more forgiving
They will not produce wrong results, but too long of an update

cycles Pixel Throughput
A 13 3 8 800.0 MP/s
B 81 6 35 182.6 MP/s
C 137 8 44 145.5 MP/s
D 85 4 36 177.8 MP/s
E 13 3 8 800.0 MP/s
F 13 2 6 1,070.0 MP/s

 #tri A B C D E F
SF1 10.8K 83 28 28 28 83 45
SF1d 2.5K 348 71 60 65 348 115
SF2 27.0K 75 21 19 20 75 35
SF2d 2.5K 261 68 58 60 261 116 68

00
 U

ltr
a

Nevada 210.0K 80 32 25 31 80 36
SF1 10.8K 269 244 217 50 269 194
SF1d 2.5K 330 325 263 292 330 236
SF2 27.0K 93 85 85 34 93 78
SF2d 2.5K 250 205 205 200 250 170 x1

90
0

Nevada 210.0K 134 100 100 75 134 100
SF1 10.8K 178 100 66 100 178 177
SF1d 2.5K 263 252 147 232 263 320
SF2 27.0K 166 76 54 77 166 165
SF2d 2.5K 285 230 247 220 285 285 79

00
 G

TX

Nevada 210.0K 145 99 66 91 145 146
Table 3. Shader performance for five different views.
SF1d and SF2d indicate a downward looking view.

strategy will present noticeable blurring followed by a popping in
9

Figure 5. Top-row: two view of San Francisco, on oblique and one looking down, and a view of Nevada. Bottom-row, two more view of
San Francisco. The last image has a pseudo-color superimposed over the top-left image to indicate the clip-level the shader selected.
There are five clip level plus the mipmap. The mipmap is red to black. The clip-levels are yellow through magenta.

of the high-resolution data. For all of our tests, we target an
average update cycle of two complete updates per second. This
has proven to give very smooth and reasonable results. Ultimately,
this is dependent on how fast the camera can move. For flight
simulators, even with a relatively slow aircraft, rapid camera
movements may occur if the user is permitted free rotation of the
virtual camera. The clipmap should not be centered under the
camera, but at a position that covers the viewport. Finding an ideal
clipmap center can be quite involved, with no single correct
answer. Our centering algorithm for the flight simulator
continuously moves the clipmap levels based on the user location,
their viewing direction and a measure of the underlying terrain.

For this paper, we will concentrate on the factors influenced by
the choice of rendering shader. Our clipmapping system uses a
two-stage cache for updating the clip levels. Updating each level
sequentially would consist of the following stages:

1. Determine and fetch tiles changed from previous update
for level 0.

2. Push changed tiles onto the GPU for level 0.
3. Update any shader variables for level 0.
4. Update the texture coordinate generator or matrix for

level 0.
5. Determine and fetch tiles changed from previous update

for level 1.
… 6.

In addition to these stages, the index-based shader requires two

clipping shader, E, requires that the toroidal-based

vel 0.

ntly used for rendering changes,
 be updated. For
te as an atomic

r shader E, stages 3, 4, and 9 must operate

extra stages:

7. Calculate the index grid values (i.e., a level map).
8. Copy the level map to the GPU.

The implicit
texture be converted to a non-toroidal format. This adds the
following stages for this shader:

. Unwrap the toroidal texture for le
10. Unwrap the toroidal texture for level 1.
11. …

Any time a texture that is curre
texture coordinates and uniform variables need to
shaders A-D, this implies that stages 2-4 opera
operation. Fo
atomically. A similar constraint applies to the additional clip-
levels. The index-based shader requires a more stringent update.
Since the clipping is predicated upon the index structure,
whenever any clip-level changes the index structure needs to
change as well. There are several solutions for this, but our choice
performs stage 1 for all levels, followed by stage 7, and then
stages 2-4 (for each clip-level) and stage 8 are performed
atomically.

Note, that during typical usage, many of these stages may not
actually perform any changes to the system. In particular, the
higher-resolution clip-levels will change far more frequently than
the coarser clip-levels during a typically fly-through. Each stage
requires a vastly different amount of time, and even the same
stage’s time will vary substantially based on its work load. In
general, zero to fifteen tiles will be updated for a single clip-level.
The level map requires a complete texture upload. For four clip-
levels and a tile size of 256 by 256 texels, the level map occupies a
single channel 256 by 256 sized texture, equivalent to a single tile.

While each stage individually does not constitute a burden on
the computing resources, for several levels the total cost can tax
the overall system. The goals for our system are a sustained 60 fps
with no single frame taking more than 1/20th of a second. In the
next section, we analyze the total update plus rendering cycle of
our flight simulator and point out the differences in the update
cycles between the shaders.

6 PERFORMANCE

Finally, we analyzed the overall performance of shaders C, D, and
from a fly-thru over the San Francisco Bay.

ious performance
ach shader, which one is the best? Clearly
e best run-time performance. We can rate each

pported

aders C and D are slower

sing a calculated

tures would allow
for

ck to this approach is the lack of
com

bove. These shaders only require two or three
tex

loaded clip-levels. Clipmaps and shaders B and C must invalidate

E using 10,000 frames
This database uses DXT1 compressed imagery at 1/3 meter
resolution. A complete update cycle occurred twice per second.
The accompanying video takes the viewer along this flight and
illustrates the performance using our clipmapping system with
shaders C, D, and E. The graph in Figure 6 measures the frame-
time for each shader. We have zoomed into a typical 50-second
segment to better see the results. All of the methods provide
adequate performance, averaging from 100 to over 200 frames per
second. The level-map, shader D, clearly shows the updating of
the textures. Since all texture updates occur within a single frame,
its performance oscillates between the rendering time and the
update time. The explicit clipping, shader C, only needs to update
the clip-textures and the shader uniform variables. This is easily
amortized over many frames and the curves are difficult to
differentiate. Shader E is by far the fastest shader, but requires a
render-to-frame-buffer operation to rasterize the entire 2048 by
2048 clip-texture to perform the unwrapping of the toroidal layout.
We measured the cost associated with just this operation and
found that it takes 1.5 milliseconds on the 7800 GTX. This
operation is performed for each level only when a level changes.

Hence, zero to 2n updates may occur per second, where n is the
number of clip-levels.

7 DISCUSSION

So, having a thorough understanding of the var

uniform sampler2D clipLevels[4];
uniform sampler2D levelMap;
float calcIdealLevel(void);
vec4 calcColor(void)
{
 float fLevel = calcIdealLevel();
 vec4 color, color2;
 float maxLevel = 16.0*texture2D(levelMap,gl_TexCoord[4].st).a;
 float newLevel = min(floor(maxLevel),ceil(fLevel));
 int evel = int(newLevel); l
 float w = fLevel - float(level) + 1.0;
 w = min(w,1.0);
 if(level >= 3 && fLevel >= 4.000000)
 {
 color = texture2D(clipLevels[3], gl_TexCoord[3].st);
 color2 = color;
 }
 else if(level == 3)
 {
 color = texture2D clipLevels[2], gl_TexCoord[2].st); (
 color2 = texture2D(clipLevels[3], gl_TexCoord[3].st);
 }
 else if(level == 2)
 {
 color = texture2D clipLevels[1], gl_TexCoord[1].st); (
 color2 = texture2D(clipLevels[2], gl_TexCoord[2].st);
 }
 else if(level == 1)
 {
 color = texture2D clipLevels[0], gl_TexCoord[0].st); (
 color2 = texture2D(clipLevels[1], gl_TexCoord[1].st);
 }
 else if(level <= 0)
 {
 color = texture2D(clipLevels[0], gl_TexCoord[0].st);
 color2 = color;
 }
 color = mix(color, color2, w);
 return color;

characteristics of e
shader E exhibits th
shader based on four characteristics:

• Shader performance
• Maximum single frame-time
• Video memory usage
• Scalability with texture size
• Granularity of missing data su

The performance measurements for sh
than one would hope or expect. A major reason for this is the lack
of support for indexing into the sampler array u
value. While this is legal in the OpenGL GLSL specification,
existing hardware or compilers only support constant indexes.
This requires us to check every single clip-level and encapsulate
the texture fetching inside conditional logic. Figure 7. shows the
actual shader used for three clip-levels with shader C. The next
generation of hardware provides for a new construct called a
Texture Array [MSDN07]. This will allow direct indexing into an
array of textures and allow for the shaders depicted earlier. We
simulated this for the level map shader, D. With direct indexing,
we can reduce the complexity to 30 instructions, 3 registers and 14
cycles for a theoretical throughput of 457 MP/s.

The maximum single frame time is the rendering time plus the
maximum clipmap update time. As shown, this is dominated by
the update time. Double buffering of the clip-tex

}

Figure 7. Fragment shader routine used in the level-map
shader.

 updates (or partial updates) to occur across many frames. This
would be particularly helpful for index-based clipping, shader D.
This shader requires one additional texture for the level map. This
texture only needs to be a single channel, so at most 4MB of
additional video memory is required with a level map of size 2048
by 2048. This texture also affects the scalability or maximum
virtual clipmap size. With a tile size of 256 and a maximum
texture size of 2048, we are limited to a clipmap having at most
512K texels on a side (eight clip-levels). Increasing the tile size
and the maximum texture size (DirectX 10 requires a minimum
size of 8192) can extend this.

Un-wrapping the toroidal textures for shader E requires an
additional texture for each clip-level at the same resolution as the
clip-texture. A major drawba

pressed FBO formats. As such, our DXT1 compressed
textures are expanded into full 32-bit RGBA textures. The
mipmap texture can be left in a compressed format. For four clip-
levels, this increases the video resources from 10.6MB (mipmap
plus 4 clip levels all DXT1 compressed) to 96MB (same as before
plus an additional 4 clip-levels uncompressed and mipmapped).
While video memory has increased substantially, a near ten-fold
increase in usage makes it more difficult to choose this as the
optimal shader.

For scalability, shaders C and D’s performance does not scale
very effectively. This is primarily due to the lack of indexing
support noted a

Clipmap Performance over San Francisco

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

Frame number

FP
S

Shader C Shader D Shader E

Figure 6. Frame-rates from flying around the San Francisco database
for shaders C, D and E with and without updates.

ture look-ups, so they should exhibit better performance once
this problem is corrected. The use of texture sets will also allow
for a greater number of textures. Currently, only sixteen texture
units are allowed. Using eight or ten of these for clipmapping
restricts the number of textures that can be used for other routines
in the shader (e.g., lighting). Our next set of experiments will
examine the DirectX 10 hardware.

The level map shader was designed to allow for partially

the entire clip-level if a tile’s information was not pre-fetched
properly, or does not exist in the database. This has an impact
mo

, shader E, using
ike decomposition. Since

al penalty

nd the texture updates into the GPU. Our solution
is

ire contiguous data. See
[K

city value for the clipping.
color and lower resolution mipmap

leve e of ½ for each clip-level texture.
ct as shader E, but only requires 24-bit

ity images. The major
dra

y the introduction of Texture Sets, as
indicated above. For the difference encoded shader and for shaders
A, B, and E, a new clamping option is needed. Clamping to border

ing textures are not

key functions of clipmaps, and we report performance on current

plementations are

liam Flanigan for help in producing the video
segments and figure 2.

, pp. 27-46.
[Blow00] Blow, Jonathon, Terrain Rendering at High Levels of Detail,

Game Developers Conference 2000, (March 20-24), San

re on the border of areas scanned at different resolutions. For
shaders A and E, we can add in transparent tiles, and allow for
missing data at the tile granularity.

8 DIFFERENCE ENCODED CLIPMAPS

As a final experiment, we decided to extend the implicit clipping
with implicit level determination shader
compressed textures based on a wavelet-l
every texture is used in this shader, there is no addition
for reconstructing the texture from the difference coefficients. This
approach also allows us to incorporate the missing tile support of
the level map.

The challenge here was incorporating the DXT1 compression
into the solution. DXT1 compressed images are one sixth the size
of an uncompressed RGB texture. This reduces the bandwidth on
the I/O system a

an iterative difference encoding / reconstruction / compression
process. We start with an uncompressed version of our database,
where the high-resolution imagery has been filtered and down-
sampled for each lower-resolution level. Additionally, we break
each level into tiles according to the user specified tile size (we
found that 256 works well). The lowest levels are coalesced into
the mipmap image for the database. We apply a compression
algorithm [Brown07] on the mipmap to generate the DXT1
compressed version of the mipmap. We then take the DXT1
version, upsample it by two and subtract it from the uncompressed
imagery for the next level. This signed distance is scaled and
biased to the range zero to one. We then apply DXT1 compression
on this difference image. The remaining steps repeat this process
except that the reconstruction combines all of the previous levels
by up-sampling the mipmap by the appropriate power of two,
inverting the scale and bias on the difference image, up-sampling
and adding to the up-sampled mipmap.

We remove any tiles that do not contribute to the final
reconstruction (constant grey), providing some additional database
compression. These grey tiles are added back in during run-time
by the system, as the textures requ

raus04] for an alternative towards this. The shader reconstructs
the fragment color using the formula:

This equation does not rely on the opa
Instead, we set the border

ls to a constant grey valu
This provides the same affe
RGB textures for the unwrapping. Fewer DXT1 compression
artifacts are visible on magnification, as the difference images are
approximated better by the 16-bit color quantization and linear
color table used in the compression.

In summary, this shader looks the most promising. It has the
small tile-size support for missing data or databases with different
levels of resolution. It has an extremely fast and compact fragment
shader, and it produces the best qual

wback is the extra video memory required for unwrapping the
textures. In the following section, we propose some simple
extensions to existing hardware to improve the performance of the
various techniques.

9 PROPOSED HARDWARE EXTENSIONS

The most pressing extension needed for shaders C and D has
already been addressed b

provides the desired behavior if the roam
toroidally mapped. An extension that would allow the
specification of an alternate border location in which the texture
coordinate is first clamped to the toroidal border and then wrapped
would be ideal. For shader E and the difference encoded shader,
this would eliminate the need to unwrap the toroidal textures.
Alternatively, a fast texture shift to unwrap the toroidal textures
that did not require rendering to a frame buffer object would allow
compressed textures in both the wrapped and unwrapped versions,
providing a significant savings in video memory.

10 CONTRIBUTIONS AND FUTURE WORK

In this paper we have presented, to our knowledge, the first
implementation of clipmapping on the GPU. We illustrate several
possible approaches, providing a taxonomy in terms of the two

hardware. Several efficient and practical im
illustrated and shown in real applications. Finally, we offer
suggestions for future hardware that will make clipmapping on the
GPU even more efficient.

As hardware advances, the possible approaches presented here
undoubtedly will change, and different implementations will
present themselves. In particular, we are beginning to investigate
the remainder of the shaders from Table 1. At first, we did not
think these would be interesting choices, but preliminary results
seem to indicate that at least one might be a viable alternative. We
intend to repeat our experiments on the new DirectX 10
compatible hardware, as well as other architectures such as the
Xbox 360. Clipmaps are usually presented as an extension to
mipmaps, but this is not a necessary condition. Our current work
is exploring the separation of the larger multi-resolution texture
space into layers that operate autonomously.

We also plan to investigate similar approaches presented here
to address the blending problems with Geometric Clipmaps and
other GPU-based terrain meshing algorithms. Variants of the
implicit techniques may be useful in the vertex shaders to control
the meshing without introducing seams. A final area of
investigation entails extending the tile updating to include
synthesized texture based Wang Tiles [Cohen03] [Wei04]
[Lagae06], or texture splats [Lefebvre05]. We also plan to
investigate the use of Adaptive Texture mapping [Kraus04] in this
synthesis process.

ACKNOWLEDGEMENTS

The authors wish to thank Kelley Rice for suggestions on
improving the paper, Luke Molnar for assistance in creating the
databases, and Wil

REFERENCES
[Asirvatham05] Asirvatham, A., H. Hoppe. Terrain Rendering Using

GPU-Based Geometry Clipmaps, in GPU Gems 2, Addison-
Wesley, 2005

in
Jose, CA, Proceedings, available as:
http://number-none.com/blow/papers/terrain_rendering.pdf.
Borgeat, L., Godin, G., Blais, F., Massicotte, P., and [Borgeat05]
Lahanier, C. GoLD: interactive display of huge colored and
textured models. ACM Transactions on Graphics 24, 3,
SIGGRAPH 2005, (Jul. 2005), pp. 869-877.
] Brodersen, A. Real-time visualization of large [Brodersen05
textured terrains. In Proceedings of the 3rd international
Conference on Computer Graphics and interactive
Techniques in Australasia and South East Asia, Dunedin,

()∑
=

−+=
N

i
icmipMapcolor

0
2

1

New Zealand, GRAPHITE '05. ACM Press, New York,
NY, pp. 439-442.

[Brown07] Brown, S., Squish – DXT Compression Library.
 (http://www.sjbrown.co.uk/?code=squish).
 Buchholz, H., and J. Döllner. View-Dependent Rendering of
Multiresolution Texture-Atlases. IEEE Visualization 2005,
(Minneapolis, MN), pp. 215-222.
Cantlay, I. 2005. M

[Buchholz05]

[Cantlay05] ipmap-level measurement. GPU Gems II,

[Cignoni03] onchio,

on, DC, pp. 147-154.

 EuroVis 2006 – Proc. Eurographics / IEEE VGTC

[Clasen07]

lze,

line98] Cline, D. and Egbert, P. K. Interactive display of very large

[Cohen03] iller, S., and Deussen, O. Wang
Tiles for image and texture generation. ACM Transactions

[Crawfis06]

stems, Proceedings

[DeBoer00]
: .

437-449.
Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., P
F., and Scopigno, R. Planet-Sized Batched Dynamic
Adaptive Meshes (P-BDAM). IEEE Visualization 2003.
IEEE Computer Society, Washingt

[Clasen06] Clasen, M. H.-C. Hege: Terrain Rendering using Spherical
Clipmaps,
Symposium on Visualization, pp. 91-98, 2006.

Clasen, M., H.-C. Hege, Clipmap-based Terrain Data
Synthesis, Simulation und Visualisierung 2007, T. Schu
B. Preim, H. Schumann (eds.), SDS Publishing House, San
Diego, 2007, pp. 385-398

[C
textures. In Proceedings of the Conference on
Visualization '98 (October 1998). IEEE Computer Society
Press, Los Alamitos, CA, pp. 343-350.
Cohen, M. F., Shade, J., H

on Graphics 22, 3 (Jul. 2003), pp. 287-294.
Crawfis, R., F. Kuck, E. Noble, E. Wagner, Asynchronous
Continuous Level-Of-Detail and Texture-Mapping for
Large-Scale Terrain Rendering Sy
IMAGE 2006.
De Boer, W. H., 2000. Fast terrain rendering using
geometrical mipmapping. Available on-line at
(http://www.flipcode.com/articles/article_geomipmaps.pdf).
Döllner, J., Baumann, K., and Hinrichs, K. Texturing
techniques for terrain visualization. In Proc. of the 11th Ann.
IEEE Visualizat

[Döllner00]

ion Conference (Vis) 2000, pp. 227--234.

 B.

[Ephanov00]

,

[Ewins98] P. F.

[Hadwiger03]

[Hesina05]
lity City Walk-throughs. 9

11-2, pp. 305-308.
[Hoppe98]

IS '98:

[Hüttner98]

[Hwa04] oy, K. I. 2004.

 DC, pp.

[Kraus02]

 01 - 02, 2002).

 [Lefebvre05] et, F. Texture sprites:

mbia, April 03 - 06, 2005).

[Levenberg02

[Duchaineau97] Duchaineau, M. A., Wolinsky, M., Sigeti, D. E.,
Miller, M. C., Aldrich, C., and Mineev-Weinstein, M.
1997. ROAMing terrain: Real-time optimally adapting
meshes. In IEEE Visualization '97, IEEE, pp. 81-88.

 Ephanov, A., System and method for simulating clip
texturing. U.S. Patent 6924814 (August 2005).

[Ephanov06] Ephanov, A., C. Coleman, Virtual Texture: A Large Area
Raster Resource for the GPU. In Proceedings
Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC) 2006, (December 2006)
pp. 645-656.
Ewins, J. P., Waller, M. D., White, M., and Lister,
Mipmap Level Selection for Texture Mapping. IEEE
Transactions on Visualization and Computer Graphics 4,
4 (Oct. 1998), pp. 317-329.
 Hadwiger, M., Thomas Theußl, Helwig Hauser, Eduard
Gröller.
Mipmapping With Procedural and Texture-Based
Magnification, SIGGRAPH 2003 Technical Sketch.
Hesina, G., S. Maierhofer, and R. Tobler, Texture
Management for high-qua th

International Symposium on Planning and IT, (2004)
ISBN 3-901673-
Hoppe, H. 1998. Smooth view-dependent level-of-detail
control and its application to terrain rendering. In V
Proceedings of the conference on Visualization '98, IEEE
Computer Society Press, Los Alamitos, CA, USA, pp. 35-42.

[Hua04] Hua, W., Zhang, H., Lu, Y., Bao, H., and Peng, Q. 2004.
Huge texture mapping for real-time visualization of large-
scale terrain. In VRST '04: Proceedings of the ACM
symposium on Virtual reality software and technology, ACM
Press, New York, NY, USA, pp. 154-157.
Hüttner, Tobias, High Resolution Textures, Late Breaking
Hot Topics, IEEE Visualization 98 CD-ROM Proc., IEEE
Computer Society, Los Alamitos, Calif., Oct. 1998.
Hwa, L. M., Duchaineau, M. A., and J
Adaptive 4-8 Texture Hierarchies. In Proceedings of the
Conference on Visualization '04 (October 2004). IEEE
Visualization. IEEE Computer Society, Washington,
219-226.
Kraus, M. and Ertl, T. 2002. Adaptive texture maps. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware (Saarbrucken, Germany,
September

[Lagae06] Lagae, A. and Dutré, P. 2006. An alternative for Wang tiles:
colored edges versus colored corners. ACM Trans. Graph.
25, 4 (Oct. 2006), 1442-1459.
 Lefebvre, S., Hornus, S., and Neyr
texture elements splatted on surfaces. In Proceedings of the
2005 Symposium on interactive 3D Graphics and Games
(Washington, District of Colu
SI3D '05. ACM Press, New York, NY, pp. 163-170.
] Levenberg, J. Fast view-dependent level-of-detail
rendering using cached geometry. In VIS '02: Proceedings
of the conference on Visualization '02, IEEE Computer
Society, Washington, DC, USA.

[Lindstrom02] Lindstrom, P., and Pascucci, V. Terrain
simplification simplified: A general framework for view-
dependent out-of-core visualization. IEEE Transactions on
Visualization and Computer Graphics 8, 3, pp. 239-254.

sso[Losasso04] Losa , F., and Hoppe, H. Geometry clipmaps: terrain
rendering using nested regular grids. ACM Transactions
on Graphics 23, 3 (Aug.), pp. 769-776.
05] McReynolds, Tom, and David Blythe Advanced[McReynolds

[MSDN07] per Center.

Graphics Programming Using OpenGL, Morgan
Kaufmann (2005), ISBN 1558606599.
Microsoft DirectX Develo
http://msdn.microsoft.com/directx.
Montrym, J. S., Baum, D. R., Dignam, D. L., and Migdal, C.
J. InfiniteReality: a real-time graphics s

[Montrym97]
ystem. International

ess/Addison-Wesley

[Segal04]

[Shader07]

[Tanner98] igdal, C. J., and Jones, M. T. The clipmap:
8 Con rence

[Wahl04] ahl, R., M. Massing, P. Degener, M. Guthe, R. Klein,

[Wei 04]

-63.
3]

[Wu98]
Report,

Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 97). ACM Pr
Publishing Co., New York, NY, pp. 293-302.
Segal, M, K. Akeley, The OpenGL Graphics System: A
Specification (Version 2.0 - October 22, 2004), Silicon
Graphics, Inc.
ShaderPerf (2007), nVidia Developer Tools
(http://developer.nvidia.com/object/nvshaderperf_home.html
)
Tanner, C. C., M
A virtual mipmap. In SIGGRAPH 9 fe
Proceedings, Addison Wesley, ACM SIGGRAPH, 151-158.
W
Scalable compression and rendering of textured terrain
data, in Journal of WSCG, volume 12, 2004.
Wei, L. Tile-based texture mapping on graphics hardware.
In Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS Conference on Graphics Hardware,
HWWS '04. ACM Press, New York, NY, pp. 55

[Williams8 Williams, L. Pyramidal parametrics. In Proceedings of
SIGGRAPH '83. ACM Press, New York, NY, 1-11.
Wu, K. Direct Calculation of Mipmap Level for Faster
Texture Mapping, Hewlett-Packard Labs Technical
HPL-98-112 (June 1998).

	1 Introduction
	2 Related Work
	3 Clipmap Calculations
	3.1 Clipmap Decisions
	3.2 Determining the Ideal clip-level
	3.2.1 Explicit Level Determination
	3.2.2 Implicit Level Determination

	3.3 Restricting the Level Based on Extents
	3.3.1 Coordinate System Changes
	3.3.2 No Clipping
	3.3.3 Explicit Clipping
	3.3.4 Indexing Structure
	3.3.5 Implicit Clipping

	4 Clip-Shader Performance Comparison
	5 Clip-Level Updating
	6 Performance
	7 Discussion
	8 Difference Encoded Clipmaps
	9 Proposed Hardware Extensions
	10 Contributions and Future Work

