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Abstract— Dealing with high-resolution imagery with billions or trillions of samples is an enormous challenge that often 
overwhelms the graphics subsystem of any computer. Silicon Graphics, Inc. addressed this issue by providing explicit hardware 
support for offset registers and texture sub-loads in their InfiniteReality™ machine. The clipmap algorithm uses sub-textures and 
incremental updates based on a toroidal mapping to allow a smaller region to have high-resolution data, while surrounding 
regions have gradually decreasing resolution. To date, this capability is not supported on most graphics cards. This paper 
examines several strategies to support clipmapping on commodity GPUs using programmable shaders. We analyze issues 
associated with clipmaps and provide a taxonomy for clipmap rendering. We have implemented several shaders in our taxonomy 
and provide performance analysis on current GPUs. Proposals for more efficient hardware to support clipmapping are also 
presented. Throughout the paper, we provide several extensions to the basic clipmap algorithm, including support for compressed 
textures, better load balancing, and better support for missing data. Results are presented using our real-time flight simulator 
applied to large-scale databases. 

Index Terms—Terrain visualization, texture mapping, clipmapping, clipmap, mipmap. 

 

1 INTRODUCTION 

About three years ago, we started examining different solutions 
for achieving clipmapping using programmable GPUs for our real-
time simulators. As the performance of the GPU exponentially 
increased, our applications became increasingly CPU-bound, due 
to complex texture management and the severe restrictions 
imposed by conforming the geometry to texture boundaries. 
Exacerbating the situation was the customer demand for higher-
quality and higher-resolution imagery. Clipmaps allow for a 
transparent integration of high-resolution textures into an 
application. Clipmaps [Tanner98] require explicit hardware 
support for offset registers and texture sub-loads [Montrym97]. To 
date, replicating this capability on the GPU has not been possible. 
With programmable shaders and efficient software-based texture 
updates, we examine several possible solutions to emulate 
clipmaps on the GPU. Our overall system for real-time visual 
simulation, described in [Crawfis06], allows for efficient and 
asynchronous determination of geometry. We combine this with 
an asynchronous system for controlling and updating the texture 
data used in our clipmap implementations. This paper focuses on 
the rendering or shader support needed for clipmapping and the 
requirements a particular shader imposes on the texture update 
cycle. Our final system provides the following benefits: 
• Removal of the texture size limit. By providing clipmaps on 

consumer GPUs, functionality previously unavailable on a 
single chip GPU is now possible. 

• The absence of visual artifacts. Texture seams and blending 
artifacts prevalent in many texture management schemes are 
avoided by using a (logical) single texture. 

• Non-square textures: The overall high-resolution texture 
can be any size. Power-of-two and square textures are not 
required. 

• Sparse Textures: We do not require the entire texture to be 
present. Any missing data is handled seamlessly. This can 

lead to a substantial reduction in the database size for large 
areas having only a few pockets of high-resolution data, such 
as city data. 

• Low memory and texture usage: For 2Kx2K texture 
resolutions, each clip-level requires just 2MB of video 
memory using DXT1 compressed textures.  

• Asynchronous and amortized clipmap updates: Since each 
clip-level is independent, allowing asynchronous updates. We 
can update a level every nth frame, providing a complete 
update of all levels amortized over a user-specified duration. 

• Disjoint database development of the texture and 
geometry models. The expensive operation of pre-processing 
a database can be done independently of the texture database 
construction. Changing the image database does not require 
recalculating the geometry LOD information. 

• Minimal state changes. A single shader and set of textures 
can be used for the entire terrain or all geometric patches for 
the terrain. A single set of state changes is needed at the 
beginning of the frame, preventing GPU stall. 

2 RELATED WORK 

Typical high-resolution texturing systems use a software-based 
solution comprised of high-resolution textures split into tiles or a 
quad-tree arrangement [McReynolds05; Hoppe98; Cline98] that 
can be paged into video memory. This requires either subdividing 
the geometry at each tile boundary or rearranging the rendering 
pipeline to loop through each tile, masking out the pixels that do 
not project onto the texture. The process of clipping or re-
tessellating dynamic geometry to match each texture tile 
introduces additional complexities, as well as run-time 
performance issues. For terrain rendering, dynamic geometry is 
generated when switching between levels-of-detail in the 
underlying elevation data. Hesina et al. [Hesina05] also split the 
geometry to align with the textures. They use a 2-level texture 
cache to maintain the video and system management of the 
textures. We have adopted a similar scheme in our overall system, 
but do not require the geometry to be split according to texture 
boundaries. 
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Continuous LOD schemes determine the triangulation of the 
elevation at run-time based on the current viewer position and a 
desired sub-pixel error [Hwa04; Losasso04; Lindstrom02]. In 
general, a tight coupling between the texture and the geometric 
description or tessellation should be avoided, since it either 
restricts or complicates the tessellation and adds new visual 
quality issues that the application has to address. Where there is a 
large disparity between the color or texture sampling rate and the 
geometric sampling, clipping to artificial texture boundaries 
severely limits the efficiency of the resulting geometric batching. 
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Table 1. We have studied five approaches to clipmapping on 
the GPU as indicated by A, B, C, D, and E. Each of these 
requires differing sets of resources and exhibit different 
execution times, as will be analyzed in later sections. 

Our focus in this paper is applying clipmaps at a per-fragment 
level. Previous work determined the projection of each triangle, 
calculating the number of pixels from a triangle’s footprint in 
screen space [Ephanov00]. This was done on the CPU and resulted 
in poor performance, but aided in migrating users from legacy SGI 
systems and clipmap databases. The recent advent of geometry 
shaders would allow for this calculation on the GPU, making this 
approach much more attractive. For large triangles, an improper 
texture LOD would still be visible at oblique angles. The further 
vertex would exhibit aliasing, while the closest vertex would be 
blurred. Furthermore, if the triangle projected outside of the 
texture, it was assigned a lower resolution texture. Recently, 
shader programs have been used to allow a triangle to span up to 
four textures, alleviating the need to clip the triangles by the tiled 
texture boundaries [Ephanov06]. A triangle is still assumed to 
project within a single clip-level. 

 Geometry clipmaps [Losasso04] render regular nested grids 
that are viewpoint centered. Each grid is rendered independently 
and blended with its parent. The texture maps are alpha blended to 
avoid seams. This was improved by pushing more of the 
computations onto the GPU by [Asirvatham04]. Clasen and Hege 
[Clasen06] extended this to planetary size data and spherical 
domains. Recently, they have examined the update strategy for 
geometry-clipmaps [Clasen07]. It should be noted, that Geometry 
Clipmaps are not the same as Tanner’s clipmaps. The differences 
are more than just geometry and imagery. Clipmaps allow for 
higher-resolution imagery than supported by the hardware for a 
single geometry patch. Geometry clipmaps are still restricted to 
the texture size limit of the hardware for both the displacement 
texture and the imagery texture. Rather than sending eometry 
batches down from a quad-tree, it sends view-dependent geometry 
batches based on the geometry clip-level. Our focus in this paper 
is to support the clipmaps of Tanner for imagery. This is needed to 
support non-geometry clipmap terrain engines. As will be shown 
these provide a much greater throughput than those of [Clasen07], 
as pointed out by Clasen. 

Adaptive 4-8 Texture Hierarchies [Hwa04] keep twice as much 
texture information in an effort to always provide a one-to-one 
pixel to texel ratio. The geometry and texture are both aligned 
with a diamond grid, requiring the textures to be rotated and 
resampled. Döllner et al. [Döllner 2000] use a multi-resolution 
technique specifically designed for terrain rendering. Wahl et al. 
[Wahl 2004] accelerate terrain rendering by combining geometric 
simplification, texture level-of-detail and texture compression with 
occlusion culling and imposters. Brodersen [Brodersen05] splits 
the textures rather than the geometry in his geometry mipmap 
(GeoMipMap) solution [DeBoer00]. The splits contain a grid of 
GeoMipMaps, which are traversed based on their texture during 
runtime.  MP-Grids [Hüttner98] use a lattice of mipmaps that are 
updated each frame based on the current view. Hua et al. [Hua04] 
use a quadtree with a LRU-based cache algorithm to manage their 
textures. 

Other researchers have examined the management of texture 
atlases for general scenes. Buchhotz and Döllner [Buchhotz05] use 
a quadtree subdivision containing a hierarchy of a texture atlas for 
each node. The GoLD [Borgeat05] algorithm requires an 
expensive pre-processing, providing a hierarchical segmentation 

of the geometry and the texture into patches. These are optimized 
into static LODs for efficient run-time execution. 

3 CLIPMAP CALCULATIONS 

The toroidal texture is ideal for incremental updates to a small 
roaming sub-image of a much larger image [Losasso04]. Without 
the toroidal mapping, the entire texture would need to be replaced 
each time it was updated. For large textures (2048x2048), 
transferring this amount of data across the PCI-Express bus is too 
expensive to accomplish within one frame for a real-time 
application. Double buffering could be used to amortize the 
updates over several frames, reducing the visible stall. We use a 
toroidal texture based on small sub-blocks of texels or tiles, 
restricting updates until an efficient buffer size is reached. This 
provides a more effective format for streaming from disk and 
decompression, similar to [Clasen07]. Our tile size varies from 642 
texels to 2562 texels. We use a tile size of 2562 texels for all results 
in this paper. 

3.1 Clipmap Decisions 

Texturing large models, such as terrain, boils down to determining 
the appropriate fragment color for each sample on the terrain. This 
process needs to consider two key aspects of the texturing: 

1. How fast does the texture vary across the sample? 
2. Given a discrete representation of the texture, what 

value should be returned for samples not lying at 
these impulse samples? 

The first issue needs to be addressed to avoid aliasing. The second 
issue revolves around the need for proper reconstruction and re-
sampling. For the purposes of this paper, we will use the hardware 
based bi-linear interpolation with anisotropic filtering for this 
issue and focus solely on the first issue above.  

In particular, we will examine the process of clipmapping to 
solve the anti-aliasing problem. The key problem here is the 
determination of the proper clip-level (or clip-levels for linear 
interpolation) to use for the fragment. The ideal clip-level would 
be the level corresponding to the texture magnification level, 
having a one-to-one mapping between the fragments and the 
texels. We examine two approaches for ensuring that the ideal 
level or texture is selected during the rendering pass. Using shader 
programs, the level can be determined using the derivative of the 
texture coordinates as a function of the screen space. We call this 
an Explicit Level Calculation. Alternatively, we can construct 
special mipmaps for each clip-level that provide this automatically 
in the resulting tri-linear interpolation. We call this approach 
Implicit Level Calculation. Both of these approaches will be 
discussed in more detail in Section 3.2. 

In a perfect setting, the ideal level would be a sufficient 
condition to support clipmaps. In practice, the clip-textures (or I/O 



uniform float MaxAnisotropicSampling; 
float alculateIdeal l( void )  c Leve
   vec2 scaleHalf = vec2(0.5,0.5); 

{ 

   vec2 ddx = scaleHalf *abs(dFdx( gl_TexCoord[0].st )); 
   vec2 ddy = scaleHalf *abs(dFdy( gl_TexCoord[0].st )); 
   float lddx = ddx.x + ddx.y; 
   float lddy = ddy.x + ddy.y; 
   float pMax = max(lddx, lddy); 
   float pMin = min(lddx, lddy); 
   pMin = max(pMin,1.0e-10); 
   pMax = max(pMax 0e-10); ,1.
   float Aspect = min( (pMax/pMin),    
                        MaxAnisotropicSampling); 
   float fLevel = - log2( pMax/Aspect ); 
   return fLevel; 
} 
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system providing the data) are updated asynchronously to the 
renderer. Using texel information past the edge of a clip-level 
results in unwanted artifacts, and a mechanism must be employed 
to restrict an individual clip-level to its extent in world space. 
Thus, the proper clip-level needs to take into account both anti-
aliasing and each clip-level’s extent. These are denoted as Level 
Determination and Extent Clipping in Table 1. 

We have developed and analyzed three different solutions for 
restricting or clipping the texels to lie within each clip-level’s 
extent. We also examined the performance in avoiding this step 
altogether, labeled None. Our first approach is called Explicit 
Clipping, in which we use a shader program to perform a 
bounding box test. Alternatively, we have developed an approach 
using an indexing structure to aid in the level determination. We 
call this approach Indexed Clipping.  A fourth approach examines 
the use of opacity and texture filtering to perform the clipping. 
This is termed Implicit Clipping.  

Combining the anti-aliasing and the clipping provides a total of 
eight possible techniques to explore. These are summarized in 
Table 1. We have examined the five most interesting approaches 
as indicated by the table. Section 3.3 will describe the various 
clipping approaches in more detail. Section 4 presents an analysis 
of the shader performance for each approach. In section 5, we 
examine the software side of the clipmap, in particular, the work 
required to move the clipmap center. Section 6 presents results 
within our real-time terrain visualization system. We examine the 
costs and benefits for each approach in section 7. This analysis 
points to a final technique for clipmaps based on a wavelet-like 
decomposition of the database. This approach and its improved 
performance are discussed in section 8. We conclude the paper 
with a few suggestions for future hardware that would greatly 
reduce the resources required for clipmaps. 

3.2 Determining the Ideal clip-level 

We discuss two approaches to selecting the ideal clip-level. The 
first is an explicit algorithm using well-known formulas. The 
second massages the texture samplers to provide the correct level, 
as a by-product of the tri-linear filtering. 

3.2.1 Explicit Level Determination 
Mathematically, the texture minification at the current 

fragment can be approximated by the derivatives of the texel 
sampling with respect to screen space in both the x and y 
directions [Ewins98]. We treat level zero1 as the coarsest mipmap 
level (1 texel) and compute the magnification of this texel onto the 
screen space. This is accomplished by taking the derivative of the 
texture coordinates u and v. It is assumed that these texture 
coordinates span the entire database. We can compute the desired 
texture unit as: 

This level may not be integral, allowing for tri-linear interpolation 
between levels. It may also exceed the maximum level defined, 
resulting in texture magnification. We let the shaders that utilize 
this calculation determine the best action for magnification 
[Hadwiger 03]. Normally, a simple clamping is applied, but we 
have also experimented with extrapolation to provide greater 
contrast enhancement [McReynolds04]. The above calculation 
finds the maximum squishing of the texture in either the x or y axis 
of screen space for both of the texture coordinates. This provides a 
safe solution to avoid aliasing, but results in overly blurred texture 
filtering when a textured object is viewed obliquely. Anisotropic 
filtering or multi-sampling was added to the GPU to address this 
problem. The actual multi-sampling and filtering is done within 
the hardware texture-sampling unit and is implementation 
dependent. However, when selecting the texture level to use, we 
need to account for it in our level determination. To support this, 
we simply pass in the desired level of multi-sampling, 
MaxSampling, and update our calculations for the desired level 
based on the formula:  

Figure 1. Fragment shader routine to calculate the ideal level 
in the image pyramid. 
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Here, we have used a simplification to determine the distortion in 
x and y, to avoid an expensive square-root (See [Segal04] for 
details). A straightforward implementation in GLSL is provided in 
Figure 1. This is our Explicit Level determination algorithm. Wu 
[Wu98] presents an alternative approach towards calculating the 
mipmap level using bit-operators to avoid the logarithmic 
calculation. 

3.2.2 Implicit Level Determination 
Alpha testing allows for per-fragment clipping. A user-

specified threshold is tested against the fragment’s alpha value and 
either accepted or rejected from further processing. Blending 
provides a rich set of operators for combining two colors with 
associated weights (typically alpha values). Mipmaps are not 
needed for the clip-level textures, since by definition the next 
coarsest level is either the overall mipmap of the next lower-
resolution clip-level (i.e. a separate texture). We can use this extra 
dimension and set-up each clip-texture with a mipmap structure 
filled with a solid color of black and zero opacity. Now, when the 
texture fetch is performed, we will get a completely transparent 
(and black) color, the clip-texture color, or a mix of the two. We 
set the opacity of the clip-texture to one and use the formula below 
for calculating the clipmap color: 

( )∑
=

−+=
N

i
ii colorccolor

0

1 α

                                                 

plus one), ci is the color sampled from clip-level i’s texture, and αi 

where N is the number of texture units (i.e., number of clip levels 

 
Figure 2. Diagram for implicit level determination 

1 As opposed to OpenGL, which uses zero for the highest-resolution. Using 
zero for the lowest resolution allows for an infinite and increasing 
resolution specification. 



the opacity. This formula is order dependent, starting with the 
mipmap, and then painting (possibly transparent) colors on top. As 
an example, consider the following. If the ideal level is 12.625 as 
indicated in Figure 2, with 11 mipmap levels, we first look-up the 
mipmap texture, resulting in a red color in the diagram. The first 
clip-level would have texture magnification and select the clip-
texture color (green in the diagram, with opacity equal to one). 
This would then overwrite the current color, resulting in green 
(color under the green triangle). The second clip level (level 13) 
would get a mix of black and the clip texture (blue). This is mixed 
with the current color to provide the correct and final color 
(turquoise). Since we do not know the proper level, we would 
continue with the next clip-level. Since this level and all 
subsequent levels will have texture minification, they will return a 
black color with zero opacity and not change the final color. Note 
that no calculation is performed to determine the clip-level. It 
simply selects the proper color, and hence the proper level, using 
texture filtering. We call this Implicit Level determination. By 
definition, it requires that all clip-levels be sampled. 

Once we have the ideal level, we need to determin

uniform sampler2D clipLevels[5]; 
uniform sampler2D levelMap; 
uniform float mipLevels; 
uniform float bias; 
float calcIdealLevel(void); 
vec4 cColor( void )  cal
   float fLevel = calcIdealLevel() – mipLevels + bias; 

{ 

   vec4 c1, c2; 
   float maxLevel = texture2D(levelMap,gl_TexCoord[4].st ).a; 
   float newLevel = min(maxLevel,fLevel); 
   int level1 = max(0,int(newLevel)); 
   int evel0 = max(0,level1-1);  l
   float w = newLevel - float(level1); 
   c1 = texture2D( clipLevels[level1], gl_TexCoord[level1].st ); 
   c2 = texture2D( clipLevels[level0], gl_TexCoord[level0].st ); 
   return mix(c1, c2, w); 
} 

Figure 3. Pseudo-code for the index-based clipping. 
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proper texture unit for the current projection, by ensuring that 
the texel for this level is currently loaded. Several approaches for 
this are discussed in the following section. 

Most applications, including Geometric Clipmaps [L
restrict the geometry to texture boundaries. Geometric clipmaps 
use a multi-pass solution, drawing a geometry batch restricted to 
either the texture extent or the ideal level. The seams between 
levels need to be blended together to avoid artifacts. 

3.3.1 Coordinate System Changes 
In the most general situation and in our

p-level is independently positioned. For tri-linear interpolation, 
it is desirable for each clip-level to be contained within the region 
covered by its parent level (i.e., the next coarsest level). The 
mipmap level contains the entire database. We use two coordinate 
systems for each clip-level and an additional coordinate system, 
the world coordinate system, to describe the entire database. The 
world coordinate system maps the database from geo-specific 
coordinates to normalized coordinates going from zero to one. 
Each clip-level can be thought of as a roaming window within the 
global coordinates. We calculate the roaming window coordinates 
in the normalized coordinate space to maintain precision. The final 
coordinate system maps from the roaming window to the toroidal 
layout of the texture. A common vertex shader is used for all of 
the shaders in this paper. The user needs only to define the world-
space mapping; the clipmapping system automatically generates 
the mappings for each level. The vertex shaders automatically 
calculate the texture coordinates for each level using two dot 
products per level.   

3.3.2 No Clipping 

Although our application o
solution, there are applications that may tolerate an inferior image 
for a short duration, such as web-browsing and image zooming. 
Other applications may be able to guarantee that the clip-levels are 
always in synch and centered properly, eliminating the need for 
clipping altogether. We include the possibility of simply ignoring 
the clipping extent, both as a baseline for comparison and 
completeness. For this shader, the fragment color is simply 
calculated using linear interpolation between the clip-levels 
indicated from the level determination. 

3.3.3 Explicit Clipping 

mapping within the texture. The te
in the middle of the roaming win
a wrapping mode to repeat the texture and allow for the toroidal 
mapping. The valid roaming region in texture space for a clip-
level is (ox,oy) to (1+ox,1+oy). Thus, we need to pass in the origin 
vector, (ox,oy), for each clip-level into the fragment shader. We 
use a cascading set of conditionals to first check for the desired 
level and then test whether the fragment falls within the texture’s 
extent. If it does, the fragment’s color is calculated. If not, the 
desired level is decremented. By ordering the conditionals 
according to decreasing levels, the proper fragment color is 
guaranteed. The fragment shader is rather lengthy and is included 
in the supplemental materials. Only two texture look-ups are 
performed when the desired level falls between two clip-levels or 
the mipmap level and the first clip-level. One texture look-up is 
needed for magnification or if the desired level falls within the 
mipmap. 

3.3.4 Indexing Structure 

We can envision a map that indicates for each point in the world 
space, wh
use. Having a mask for each level would
lookup to determine whether to r
level, this is obviously impractical, as it would require a texture 
map for the look-up the size of the entire high-resolution imagery. 
By quantizing the movement of the clip textures, we provide a 
much coarser grid over the world. This allows for a mask to fit 
into memory for moderately sized datasets. For clip-levels having 
closure (that is, the coarsest level contains all of the higher-
resolution levels), we can compute a single 2D indexing structure 
which encodes, for each quantized grid cell, the highest valid clip-
level covering this area. This index structure is passed into the 
shader as another texture. We compute the quantized texture 
coordinates from the world texture coordinates and look-up the 
maximum valid clip-level. Taking the minimum of the level and 
the ideal level provides the desired clip level. Pseudo-code2 for 
this shader is provided in Figure 3. At most, two texture fetches 

                                                 

uniform sampler2D ipLevels[5];  cl
vec4 calcColor( void ) { 
   vec4 fragColor = texture2D(clipLevels[0], gl_TexCoord[0].st); 
   vec4 newColor  = texture2D(clipLevels[1], gl_TexCoord[1].st); 
   fragColor
   newColor  = texture2D(clipLevels[2], gl_TexCoord[2].st); 

fragColor = *(1-newColor.a) + newColor; 

   fragColor
   newColor  = texture2D(clipLevels[3], gl_TexCoord[3].st); 

fragColor = *(1-newColor.a) + newColor; 

   fragColor = fragColor*(1-newColor.a) + newColor; 
   newColor  = texture2D(clipLevels[4], gl_TexCoord[4].st); 
   fragColor = fragColor*(1-newColor.a) + newColor; 
   return fragColor; 
} 

Figure 4. Fragment shader for implicit level determination and 
implicit clipping (four clip-levels). 

2 The actual shader and why this is pseudo-code is explained in the 
discussion section. 



are required for the tri-linear interpolation, and one for the 
indexing. 

An additional benefit to this index structure is its use for 
missing tiles. The original clipmap algorithm supported databases 
with differing resolutions. If data did not exist for a single texel, 
the
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Table 2. The output from NvPerfShader for each shader, 
assuming four clip-levels, is shown. The target platform is the 
NV40 architecture. The Pixel throughput assumes one cycle per 
texture fetch measured in mega-pixels per second (MP/s). Shader 
F is our Difference Encoder shader discussed in section 8. 

 # instructions R-Registers 
 entire clip-level was invalidated. The granularity for missing 

data was thus at the entire clip-level, or about 2048 texels across. 
Using the index structure, we can support a much finer granularity 
for missing data. 

3.3.5 Implicit Clipping 

Similar to the Im
level, we examined approache
using opacity. The most straigh
expand the toroidal map and surround it with a border of texels 
having zero opacity. This would require updating this border as 
the clip-texture moved. As the toroidal texture is a repeating 
texture, it fails once we sample past the border. To address this 
limitation (repeating), we use a frame-buffer-object (FBO or p-
buffer) to unwrap the toroidal texture into another texture. This 
allows us to use a clamp-to-border wrapping. The double 
buffering of the textures also allows incremental updates to the 
toroidal texture. Once the textures are unwrapped, the resulting 
fragment shader is quite simple, as illustrated in Figure 4. From a 
shader standpoint, there is no difference between the shaders for 
approaches A (No Clipping) and E (Implicit Clipping). Rather 
than testing the resulting opacity value, we sample all of the clip-
textures and composite them together. It is also possible to 
implement this technique using register combiners and OpenGL 
1.4. 

4 CLIP-SHADER PERFORMANCE COMPARISON 

Now that we h
rendering using clipmaps, we will examine the p
these shaders. Using nVidia’s ShaderPerf [Shader07
each individual shader. Table 2 provides the number of 
instructions, number of cycles, number of registers and the 
theoretical throughput for each shader. Shaders were analyzed 
assuming four clip-levels on nVidia 6800 Ultra (NV40) 
architectures. The Explicit Level determination with Explicit 
Clipping, Shader C, requires the most instructions. The shaders 
based on implicit level determination, A and E, require only 13 
instructions and a minimal set of registers. The register usage is 
important because the clipmap shader may be a small part of a 
much larger shader incorporating lighting, bump-mapping and fog. 
Shader F is discussed in section 8. 

We also analyzed five separate static views for each shader. 
These views are shown in Figure 5, and the rendering times for 
each shader are reported in Table 3

 nVidia 6800 Ultra and 7800 GTX, as well as the ATI X1900. 
Each view is rendered at full-screen, using a screen resolution of 
1280 by 1024 with 4x FSAA. We used a maximum multi-
sampling value of 8x. Two views provide an oblique angle of the 
San Francisco Bay at different locations. We also captured timings 
looking straight down from these locations. A separate view is 
taken from our Nevada database. The number of triangles in each 
view is also reported. We also provide an image superimposing a 
pseudo-coloring over one view similar to [Cantlay05]. 

The San Francisco database is comprised of a 2048 by 2048 
mipmap and five clip-levels. The Nevada database has a 2048 by 
2048 mipmap and four clip-levels. Several intere

prising) numbers are found in this table (so much so, that we 
re-checked the numbers three times). First, the fastest frame-rate is 
reported on the 6800 Ultra for view SF1d. This view looks straight 

of 2x to 5x. This indicates that even as the number of triangles 
increases, the rendering time is fragment bound (mainly due to the 
large image resolution and 4x full-screen anti-aliasing, FSAA). 
For the 6800 and the x1900, oblique views are far more expensive 
than downward looking views. This is still the case with the 7800, 
but less so. Comparing shaders C and D, we see that for the 6800, 
they are rather competitive. For the x1900, shader C is clearly 
faster, while for the 7800 Shader D is faster. Shaders E and F are 
consistently faster across the architectures. 

5 CLIP-LEVEL UPDATING 

While the shader performance is an important indicator of the 
overall clipmap system performance, careful design is required to 
prevent the software based clip-centering an

conditional logic and can be implemented in fixed functio
Going across the rows, there are differences between the sh

as will be shown, can often
application can feed it. Differ
strategies and computations, affecting the overall performance. All 
approaches require that the individual clip-levels be updated. 
Issues associated with updating the clipmaps are: 

• How often do we check for updates? 
• How do we center the clipmaps? 
• What is the minimum shift required before performing 

an update? 
• How can we amortize the work across se
• What stages of the update are depende

As mentioned, for clipmaps to function pro
without clipping to the clip-level extents, we need to update th
clip-levels as the cam
very short update cycle. The other shaders are more forgiving
They will not produce wrong results, but too long of an update 

# cycles Pixel Throughput 
A 13 3 8 800.0 MP/s 
B 81 6 35 182.6 MP/s 
C 137 8 44 145.5 MP/s 
D 85 4 36 177.8 MP/s 
E 13 3 8 800.0 MP/s 
F 13 2 6 1,070.0 MP/s 

  #tri A B C D E F 
SF1  10.8K 83 28 28 28 83 45 
SF1d  2.5K 348 71 60 65 348 115 
SF2  27.0K 75 21 19 20 75 35 
SF2d  2.5K 261 68 58 60 261 116 68

00
 U

ltr
a 

Nevada 210.0K 80 32 25 31 80 36 
SF1  10.8K 269 244 217 50 269 194 
SF1d  2.5K 330 325 263 292 330 236 
SF2  27.0K 93 85 85 34 93 78 
SF2d  2.5K 250 205 205 200 250 170 x1

90
0 

Nevada 210.0K 134 100 100 75 134 100 
SF1  10.8K 178 100 66 100 178 177 
SF1d  2.5K 263 252 147 232 263 320 
SF2  27.0K 166 76 54 77 166 165 
SF2d 2.5K 285 230 247 220 285 285 79

00
 G

TX
 

Nevada 210.0K 145 99 66 91 145 146 
Table 3. Shader performance for five different views. 
SF1d and SF2d indicate a downward looking view. 



strategy will present noticeable blurring followed by a popping in 
9

 
Figure 5. Top-row: two view of San Francisco, on oblique and one looking down, and a view of Nevada. Bottom-row, two more view of 
San Francisco. The last image has a pseudo-color superimposed over the top-left image to indicate the clip-level the shader selected. 
There are five clip level plus the mipmap. The mipmap is red to black. The clip-levels are yellow through magenta. 

of the high-resolution data. For all of our tests, we target an 
average update cycle of two complete updates per second. This 
has proven to give very smooth and reasonable results. Ultimately, 
this is dependent on how fast the camera can move. For flight 
simulators, even with a relatively slow aircraft, rapid camera 
movements may occur if the user is permitted free rotation of the 
virtual camera. The clipmap should not be centered under the 
camera, but at a position that covers the viewport. Finding an ideal 
clipmap center can be quite involved, with no single correct 
answer. Our centering algorithm for the flight simulator 
continuously moves the clipmap levels based on the user location, 
their viewing direction and a measure of the underlying terrain. 

For this paper, we will concentrate on the factors influenced by 
the choice of rendering shader. Our clipmapping system uses a 
two-stage cache for updating the clip levels. Updating each level 
sequentially would consist of the following stages: 

1. Determine and fetch tiles changed from previous update 
for level 0. 

2. Push changed tiles onto the GPU for level 0. 
3. Update any shader variables for level 0. 
4. Update the texture coordinate generator or matrix for 

level 0. 
5. Determine and fetch tiles changed from previous update 

for level 1. 
… 6. 

In addition to these stages, the index-based shader requires two 

clipping shader, E, requires that the toroidal-based 

vel 0. 

ntly used for rendering changes, 
 be updated. For 
te as an atomic 

r shader E, stages 3, 4, and 9 must operate 

extra stages: 

7. Calculate the index grid values (i.e., a level map). 
8. Copy the level map to the GPU. 

The implicit 
texture be converted to a non-toroidal format. This adds the 
following stages for this shader: 

. Unwrap the toroidal texture for le
10. Unwrap the toroidal texture for level 1. 
11. … 

Any time a texture that is curre
texture coordinates and uniform variables need to
shaders A-D, this implies that stages 2-4 opera
operation. Fo
atomically. A similar constraint applies to the additional clip-
levels. The index-based shader requires a more stringent update. 
Since the clipping is predicated upon the index structure, 
whenever any clip-level changes the index structure needs to 
change as well. There are several solutions for this, but our choice 
performs stage 1 for all levels, followed by stage 7, and then 
stages 2-4 (for each clip-level) and stage 8 are performed 
atomically.  

Note, that during typical usage, many of these stages may not 
actually perform any changes to the system. In particular, the 
higher-resolution clip-levels will change far more frequently than 
the coarser clip-levels during a typically fly-through. Each stage 
requires a vastly different amount of time, and even the same 
stage’s time will vary substantially based on its work load. In 
general, zero to fifteen tiles will be updated for a single clip-level. 
The level map requires a complete texture upload. For four clip-
levels and a tile size of 256 by 256 texels, the level map occupies a 
single channel 256 by 256 sized texture, equivalent to a single tile. 

While each stage individually does not constitute a burden on 
the computing resources, for several levels the total cost can tax 
the overall system. The goals for our system are a sustained 60 fps 
with no single frame taking more than 1/20th of a second. In the 
next section, we analyze the total update plus rendering cycle of 
our flight simulator and point out the differences in the update 
cycles between the shaders. 

6 PERFORMANCE 



Finally, we analyzed the overall performance of shaders C, D, and 
from a fly-thru over the San Francisco Bay. 

ious performance 
ach shader, which one is the best? Clearly 
e best run-time performance. We can rate each 

pported 

aders C and D are slower 

sing a calculated 

tures would allow 
for

ck to this approach is the lack of 
com

bove. These shaders only require two or three 
tex

loaded clip-levels. Clipmaps and shaders B and C must invalidate 

E using 10,000 frames 
This database uses DXT1 compressed imagery at 1/3 meter 
resolution. A complete update cycle occurred twice per second. 
The accompanying video takes the viewer along this flight and 
illustrates the performance using our clipmapping system with 
shaders C, D, and E. The graph in Figure 6 measures the frame-
time for each shader. We have zoomed into a typical 50-second 
segment to better see the results. All of the methods provide 
adequate performance, averaging from 100 to over 200 frames per 
second. The level-map, shader D, clearly shows the updating of 
the textures. Since all texture updates occur within a single frame, 
its performance oscillates between the rendering time and the 
update time. The explicit clipping, shader C, only needs to update 
the clip-textures and the shader uniform variables. This is easily 
amortized over many frames and the curves are difficult to 
differentiate. Shader E is by far the fastest shader, but requires a 
render-to-frame-buffer operation to rasterize the entire 2048 by 
2048 clip-texture to perform the unwrapping of the toroidal layout. 
We measured the cost associated with just this operation and 
found that it takes 1.5 milliseconds on the 7800 GTX. This 
operation is performed for each level only when a level changes. 

Hence, zero to 2n updates may occur per second, where n is the 
number of clip-levels. 

7 DISCUSSION 

So, having a thorough understanding of the var

uniform sampler2D clipLevels[4]; 
uniform sampler2D levelMap; 
float calcIdealLevel(void); 
vec4 calcColor( void ) 
{ 
   float fLevel = calcIdealLevel(); 
   vec4 color, color2; 
   float maxLevel = 16.0*texture2D(levelMap,gl_TexCoord[4].st ).a;
   float newLevel = min(floor(maxLevel),ceil(fLevel)); 
   int evel = int(newLevel);  l
   float w = fLevel - float(level) + 1.0; 
   w = min(w,1.0); 
   if( level >= 3 && fLevel >= 4.000000 ) 
   { 
      color = texture2D( clipLevels[3], gl_TexCoord[3].st ); 
      color2 = color; 
   } 
   else if( level == 3 ) 
   { 
      color = texture2D  clipLevels[2], gl_TexCoord[2].st ); (
      color2 = texture2D( clipLevels[3], gl_TexCoord[3].st ); 
   } 
   else if( level == 2 ) 
   { 
      color = texture2D  clipLevels[1], gl_TexCoord[1].st ); (
      color2 = texture2D( clipLevels[2], gl_TexCoord[2].st ); 
   } 
   else if( level == 1 ) 
   { 
      color = texture2D  clipLevels[0], gl_TexCoord[0].st ); (
      color2 = texture2D( clipLevels[1], gl_TexCoord[1].st ); 
   } 
   else if( level <= 0 ) 
   { 
      color = texture2D( clipLevels[0], gl_TexCoord[0].st ); 
      color2 = color; 
   } 
   color = mix(color, color2, w); 
   return color; 

characteristics of e
shader E exhibits th
shader based on four characteristics: 

• Shader performance 
• Maximum single frame-time 
• Video memory usage 
• Scalability with texture size 
• Granularity of missing data su

The performance measurements for sh
than one would hope or expect. A major reason for this is the lack 
of support for indexing into the sampler array u
value. While this is legal in the OpenGL GLSL specification, 
existing hardware or compilers only support constant indexes. 
This requires us to check every single clip-level and encapsulate 
the texture fetching inside conditional logic. Figure 7. shows the 
actual shader used for three clip-levels with shader C. The next 
generation of hardware provides for a new construct called a 
Texture Array [MSDN07]. This will allow direct indexing into an 
array of textures and allow for the shaders depicted earlier. We 
simulated this for the level map shader, D. With direct indexing, 
we can reduce the complexity to 30 instructions, 3 registers and 14 
cycles for a theoretical throughput of 457 MP/s. 

The maximum single frame time is the rendering time plus the 
maximum clipmap update time. As shown, this is dominated by 
the update time. Double buffering of the clip-tex

} 

Figure 7. Fragment shader routine used in the level-map 
shader. 

 updates (or partial updates) to occur across many frames. This 
would be particularly helpful for index-based clipping, shader D.   
This shader requires one additional texture for the level map. This 
texture only needs to be a single channel, so at most 4MB of 
additional video memory is required with a level map of size 2048 
by 2048. This texture also affects the scalability or maximum 
virtual clipmap size. With a tile size of 256 and a maximum 
texture size of 2048, we are limited to a clipmap having at most 
512K texels on a side (eight clip-levels). Increasing the tile size 
and the maximum texture size (DirectX 10 requires a minimum 
size of 8192) can extend this. 

Un-wrapping the toroidal textures for shader E requires an 
additional texture for each clip-level at the same resolution as the 
clip-texture. A major drawba

pressed FBO formats. As such, our DXT1 compressed 
textures are expanded into full 32-bit RGBA textures. The 
mipmap texture can be left in a compressed format. For four clip-
levels, this increases the video resources from 10.6MB (mipmap 
plus 4 clip levels all DXT1 compressed) to 96MB (same as before 
plus an additional 4 clip-levels uncompressed and mipmapped). 
While video memory has increased substantially, a near ten-fold 
increase in usage makes it more difficult to choose this as the 
optimal shader. 

For scalability, shaders C and D’s performance does not scale 
very effectively. This is primarily due to the lack of indexing 
support noted a

Clipmap Performance over San Francisco
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Figure 6. Frame-rates from flying around the San Francisco database 
for shaders C, D and E with and without updates.

ture look-ups, so they should exhibit better performance once 
this problem is corrected. The use of texture sets will also allow 
for a greater number of textures. Currently, only sixteen texture 
units are allowed. Using eight or ten of these for clipmapping 
restricts the number of textures that can be used for other routines 
in the shader (e.g., lighting). Our next set of experiments will 
examine the DirectX 10 hardware. 

The level map shader was designed to allow for partially 



the entire clip-level if a tile’s information was not pre-fetched 
properly, or does not exist in the database. This has an impact 
mo

, shader E, using 
ike decomposition. Since 

al penalty 

nd the texture updates into the GPU. Our solution 
is 

ire contiguous data. See 
[K

city value for the clipping. 
color and lower resolution mipmap 

leve e of ½ for each clip-level texture. 
ct as shader E, but only requires 24-bit 

ity images. The major 
dra

y the introduction of Texture Sets, as 
indicated above. For the difference encoded shader and for shaders 
A, B, and E, a new clamping option is needed. Clamping to border 

ing textures are not 

 
key functions of clipmaps, and we report performance on current 

plementations are 

liam Flanigan for help in producing the video 
segments and figure 2. 

, pp. 27-46. 
[Blow00] Blow, Jonathon, Terrain Rendering at High Levels of Detail, 

Game Developers Conference 2000, (March 20-24), San 

re on the border of areas scanned at different resolutions. For 
shaders A and E, we can add in transparent tiles, and allow for 
missing data at the tile granularity. 

8 DIFFERENCE ENCODED CLIPMAPS 

As a final experiment, we decided to extend the implicit clipping 
with implicit level determination shader
compressed textures based on a wavelet-l
every texture is used in this shader, there is no addition
for reconstructing the texture from the difference coefficients. This 
approach also allows us to incorporate the missing tile support of 
the level map. 

The challenge here was incorporating the DXT1 compression 
into the solution. DXT1 compressed images are one sixth the size 
of an uncompressed RGB texture. This reduces the bandwidth on 
the I/O system a

an iterative difference encoding / reconstruction / compression 
process. We start with an uncompressed version of our database, 
where the high-resolution imagery has been filtered and down-
sampled for each lower-resolution level. Additionally, we break 
each level into tiles according to the user specified tile size (we 
found that 256 works well). The lowest levels are coalesced into 
the mipmap image for the database. We apply a compression 
algorithm [Brown07] on the mipmap to generate the DXT1 
compressed version of the mipmap. We then take the DXT1 
version, upsample it by two and subtract it from the uncompressed 
imagery for the next level. This signed distance is scaled and 
biased to the range zero to one. We then apply DXT1 compression 
on this difference image. The remaining steps repeat this process 
except that the reconstruction combines all of the previous levels 
by up-sampling the mipmap by the appropriate power of two, 
inverting the scale and bias on the difference image, up-sampling 
and adding to the up-sampled mipmap. 

We remove any tiles that do not contribute to the final 
reconstruction (constant grey), providing some additional database 
compression. These grey tiles are added back in during run-time 
by the system, as the textures requ

raus04] for an alternative towards this. The shader reconstructs 
the fragment color using the formula: 

This equation does not rely on the opa
Instead, we set the border 

ls to a constant grey valu
This provides the same affe
RGB textures for the unwrapping. Fewer DXT1 compression 
artifacts are visible on magnification, as the difference images are 
approximated better by the 16-bit color quantization and linear 
color table used in the compression. 

In summary, this shader looks the most promising. It has the 
small tile-size support for missing data or databases with different 
levels of resolution. It has an extremely fast and compact fragment 
shader, and it produces the best qual

wback is the extra video memory required for unwrapping the 
textures. In the following section, we propose some simple 
extensions to existing hardware to improve the performance of the 
various techniques. 

9 PROPOSED HARDWARE EXTENSIONS 

The most pressing extension needed for shaders C and D has 
already been addressed b

provides the desired behavior if the roam
toroidally mapped. An extension that would allow the 
specification of an alternate border location in which the texture 
coordinate is first clamped to the toroidal border and then wrapped 
would be ideal. For shader E and the difference encoded shader, 
this would eliminate the need to unwrap the toroidal textures. 
Alternatively, a fast texture shift to unwrap the toroidal textures 
that did not require rendering to a frame buffer object would allow 
compressed textures in both the wrapped and unwrapped versions, 
providing a significant savings in video memory. 

10 CONTRIBUTIONS AND FUTURE WORK 

In this paper we have presented, to our knowledge, the first 
implementation of clipmapping on the GPU. We illustrate several 
possible approaches, providing a taxonomy in terms of the two

hardware. Several efficient and practical im
illustrated and shown in real applications. Finally, we offer 
suggestions for future hardware that will make clipmapping on the 
GPU even more efficient. 

As hardware advances, the possible approaches presented here 
undoubtedly will change, and different implementations will 
present themselves. In particular, we are beginning to investigate 
the remainder of the shaders from Table 1. At first, we did not 
think these would be interesting choices, but preliminary results 
seem to indicate that at least one might be a viable alternative. We 
intend to repeat our experiments on the new DirectX 10 
compatible hardware, as well as other architectures such as the 
Xbox 360. Clipmaps are usually presented as an extension to 
mipmaps, but this is not a necessary condition. Our current work 
is exploring the separation of the larger multi-resolution texture 
space into layers that operate autonomously. 

We also plan to investigate similar approaches presented here 
to address the blending problems with Geometric Clipmaps and 
other GPU-based terrain meshing algorithms. Variants of the 
implicit techniques may be useful in the vertex shaders to control 
the meshing without introducing seams. A final area of 
investigation entails extending the tile updating to include 
synthesized texture based Wang Tiles [Cohen03] [Wei04] 
[Lagae06], or texture splats [Lefebvre05]. We also plan to 
investigate the use of Adaptive Texture mapping [Kraus04] in this 
synthesis process. 
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