
The Potential of the Cell Broadband Engine for Data Mining

Gregory Buehrer
The Ohio State University

Columbus, OH, USA

buehrer@cse.ohio-state.edu

Srinivasan Parthasarathy
∗

The Ohio State University
Columbus, OH, USA

srini@cse.ohio-state.edu

ABSTRACT
In this article we examine the performance of key data min-
ing kernels on the STI Cell Broadband Engine architecture.
This architecture represents an interesting design point along
the spectrum of chipsets with multiple processing elements.
The STI Cell has one main processor and eight support pro-
cessing elements (SPEs), and while it represents a more gen-
eral purpose architecture when compared to graphics pro-
cessor units, memory management is explicit. Thus while it
is easier to program than GPUs it is not as easy to program
as current day dual and quad-core processors designed by
AMD and Intel.

We investigate the performance of three key kernels, namely
clustering, classification, and outlier detection on the STI
Cell along the axes of performance, programming complex-
ity and algorithm designs. Specifically, we formulate SIMD
algorithms for these workloads and evaluate them in detail
to determine both the benefits of Cell processor, as well as
its inherent bottlenecks. As part of our comparative anal-
ysis we juxtapose these algorithms with similar ones im-
plemented on modern architectures including the Itanium,
AMD Opteron and Pentium architectures. For the work-
loads we consider, the Cell processor is up to 34 times more
efficient than competing technologies. An important out-
come of the study, beyond the results on these particular
algorithms, is that we answer several higher level questions
designed explicitly to provide a fast and reliable estimate for
how well other data mining workloads will scale on the Cell
processor.

1. INTRODUCTION
Every so often, humankind makes a leap in its ability to

collect and store knowledge. From the carvings on pottery
in 3500 BC, to Chinese paper in 100 AD, we have found
that maintaining knowledge aids in the improvement and ad-
vancement of civilization. When this knowledge is lost, soci-

∗This work is supported in part by NSF grants #CAREER-
IIS-0347662, #RI-CNS-0403342, and #NGS-CNS-0406386.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

ety is set back considerably, at times for thousands of years.
Take for example, the Roman Empire. Their engineering ef-
forts produced such improvements as hydraulic cement and
the grain reaper. During the Dark Ages, both inventions
were lost. Farmers used a simple blade for nearly 2000 years,
until the reaper was reinvented by an Irish-American inven-
tor named Cyrus McCormick in 1834.

In efforts to avoid losing knowledge, and also to gain a
competitve edge, organizations collect and store large vol-
umes of data. In fact, even a simple home PC may contain
500GB or more of data. In an effort to harness this infor-
mation, organizations have turned to data mining. Data
mining is the process of converting vast amounts of this in-
formation into insight or knowledge in a semi-automated
fashion. A fundamental challenge is that the cost of ex-
tracting this information often grows exponentially with the
size of the data. As data mining is an interactive process,
short response times for querying and processing data sets
is crucial.

Researchers address long execution times along two av-
enues. First, the amount of computation can be pruned via
cleverly short circuiting the search space, or via intelligent
indices and other data structures. Second, algorithm de-
signers restructure and tune computations to improve the
utilization of the underlying hardware. As hardware de-
signers adapt to the ever-challenging workloads present in
modern computing, maintaining a high utilization of the
hardware is quite difficult. For example, recent projects by
the database community have leveraged the general purpose
nature of newer graphics cards for the TeraSort[10] project.

One such recent advancement in microprocessor design is
chip multiprocessing (CMP). CMP designs exhibit multiple
processing cores on one chip. CMPs arise in part because
of the inherent challenges with increasing clock frequencies.
The increase in processor frequencies over the past several
years has required a significant increase in voltage, which
has increased power consumption and heat dissipation. In
addition, increased frequencies require considerable exten-
sions to instruction pipeline depths. Finally, since memory
latency has not decreased proportionally to the increase in
clock frequency, higher frequencies are often not beneficial
due to poor memory performance. By incorporating thread
level parallelism, chip vendors can continue to improve IPC
by exploiting parallelism without raising frequencies. As
these low cost parallel chips become mainstream, designing
data mining algorithms to leverage them becomes an impor-
tant task. Current dual core chips include Intel’s Pentium
D, AMD’s Opteron, and IBM’s Power4. A joint venture

by Sony, Toshiba and IBM (STI) has produced a nine core
architecture called the Cell BDEA.

As a result of this advancement, parallel algorithm de-
signs will become increasingly important, even for main-
stream commodity applications, in order to realize perfor-
mance that is commensurate with such emerging processors.
The spectrum of emerging chipsets in this arena span dif-
ferent points on the design spectrum, ranging from graphics
processor units on one end to commercial general purpose
POSIX-style multicore CPUs from Intel, SUN and AMD.
The Cell chip is of particular interest because of its high
number of cores, its 200+ GFLOPs of compute power, and
its 25GB/s off chip bandwidth. All three values represent
breakthroughs in commodity processing. Cell is expected
to be used in high end super computing systems1 as kernel
accelerators.

The layout of the Cell chip lies somewhere between other
modern CMP chips and a high end GPU, since in some views
the eight SPUs mimic pixel shader units. Unlike GPUs, how-
ever, the Cell can chain its processors in any order, or have
them operate independently. Target applications include
medical imaging, physical model simulation, and consumer
HDTV equipment. While the Cell chip is quite new, several
workloads seem quite amenable to its architecture. For ex-
ample, high floating point workloads with streaming access
patterns are of particular interest. These workloads could
leverage the large floating point throughput. In addition,
because their access pattern is known a priori, they can use
software-managed caches for good bandwidth utilization.

This work seeks to map several important data mining
tasks onto the Cell, namely clustering, classification and
outlier detection. These are three fundamental data min-
ing tasks, often used independently or as precursors to solve
multi-step data mining challenges. In addition, all three
tasks have efficient solutions which leverage distance com-
putations. Specifically, we seek to make the following contri-
butions to the community. Our first goal is to pinpoint the
bottlenecks in scalability and performance when mapping
these workloads to this platform. We believe future stream-
ing architectures could benefit from this study as well. We
port these three tasks to the Cell, and present the reader
with a detailed study regarding their performance. More im-
portantly, our second goal is to answer the following higher
level questions for data mining applications.

• Can these applications leverage the Cell to efficiently
process large data sets? Specifically, does the small
local store prohibit mining large data sets?

• Will channel transfer time (bandwidth) limit scalabil-
ity? If not, what is the greatest bottleneck?

• Which data mining workloads can leverage SIMD in-
structions for significant performance gains?

• What metrics can a programmer use to quickly gage
whether an algorithm is amenable to the Cell?

• At what cost to programming development are these
gains afforded?

The outline of this paper is as follows. Related work is
presented in Section 2. A description of the Cell architec-
ture is given in Section 3. A background on the workloads in

1The IBM/DOE RoadRunner

question is presented in Section 4. In Section 5, we present
our Cell formulations of these workloads. We empirically
evaluate these approaches, and discuss our findings in Sec-
tions 6 and 7. Finally, concluding remarks are presented in
Section 8.

2. RELATED WORK
Several researchers have investigated improving the effi-

ciency of kMeans clustering [18]. Alsabti, Ranka and Singh[1]
use geometry trees to reduce runtimes by lowering the num-
ber of distance calculations required. Pelleg and Moore[19]
also employed a kd-tree in a similar fashion to improve the
kMeans clustering algorithm. These techniques define re-
gions in n-dimensional space to cluster points. Then, all
the points in a space can be assigned to a particular center.
Subsequent assignment calculations essentially need only to
verify the point lies within the bounding box. However, We-
ber and Zezula found that bounding trees do not scale well
with increasing dimensions [22], failing completely with as
little as 16 dimensions. They show that simple scans of the
data set greatly outperform geometric meta structures such
as bounding trees. Elkan [6] leverages a knowledge cache
from previous iterations to lower execution times.

Jin and Agrawal have several works targeted at solving par-
allel data mining workloads [13, 14] on both shared mem-
ory and distributed systems. They implement a framework
called FREERIDE for fast prototyping of data mining work-
loads on shared memory systems. A focus of the work is on
locking cost reduction, which does not appear to be the bot-
tleneck for the platforms targeted in this work.

k Nearest Neighbors [11] is used in many domains, such as
biology [12], chemistry, finance, and is the basis for many
machine learning techniques. Many researchers have in-
vestigated efficiency improvements for kNN , we mention
several of the most relevent [3, 20]. Wang and Wang [21]
develop a multi-level approximation scheme to query for
nearest neighbors in high dimensional data at remote sites.
Liao, Lopez and Leutenegger [17] redistribute data points
in a B-tree to improve execution times for nearest neigh-
bor queries for high-dimensional data, but their results are
approximate. Kulkarni and Orlandic [15] use clustering to
aggregate points into regions, thus allowing the algorithm
to prune unnecessary distance calculations. The method
maintains exact neighbors. Zaki, Ho and Agrawal [25] par-
allelized decision tree construction for classification. It is
not clear that their approach is readily portable to the Cell,
since the construction process uses significant main memory
for the meta structures, and the SPUs have limited memory.

Mining for outliers in high dimensional data has been of
recent interest. ORCA [2] uses a threshold to prune distance
calculations, and will be presented in Section 4. Chaudhary,
Szalay, and Moore [4] use kd-trees to improve execution
times when searching for outliers. Their approach is sim-
ilar to those employed by Alsabti, Ranka and Singh when
clustering with kMeans. Angiulli and Pizzuti define a metric
called weight to aid on finding outliers. They term weight
as the sum of the distances to the top K nearest neighbors.
This metric could be used in our algorithms without a sig-
nificant modification.

Kunzman, et al [16] adapted their parallel runtime frame-
work CHARM++, a parallel object-oriented C++ library, to
provide portability between the Cell and other platforms. In
particular, they proposed the Offload API, a general-purpose
API to prefetch data, encapsulate data, and peek into the
work queue.

Algorithm 1 kMeans

Input: Dataset D
Input: k, the number of centers
Output: Each d ∈ D ← closest center c ∈ C
1: while true do
2: changed=0
3: for each data point di ∈ D do
4: assignedCenter = di.center
5: for each center cj ∈ C do
6: d = dist(di,cj)
7: if d < di.Center then
8: di.centerDistance = d
9: di.center = j

10: end if
11: end for
12: if di.center <> assignedCenter then
13: changed++
14: end if
15: end for
16: for each center cj ∈ C do
17: cj = Mean of points i where ci=j
18: end for
19: if changed==0 then
20: break
21: end if
22: end while

Several sorting algorithms leverage SIMD programming,
and are relevant; we mention several here. Govindaraju et
al developed an efficient SIMD sorting network for GPUs
called TeraSort. It leverages the rasterization engine to exe-
cute bitonic sort. Zagha and Blelloch [24] developed a data-
parallel SIMD version of Radix sort for the Y-MP. Furtak,
Amaral and Niewiadomski [8] describe several methods to
improve the performance of sorting networks using SIMD in-
structions. They describe a two-pass approach, which first
approximately sorts using SIMD registers, and then uses tra-
ditional sorting such as merge sort to complete the process.
Among their results, they show that the branch reductions
afforded by a competing one pass vector sort improves over-
all execution times significantly.

We are not aware of existing work which attempts to
marry the Cell BDEA with data mining. Williams [23] et al
investigate the performance of the Cell for scientific work-
loads. They find that it provides a many-fold reduction in
execution times when compared to other processors. In par-
ticular, they show speedups for GEMM, Fast Fourier Trans-
form, and Stencil computations. They also suggest a data
path modification to improve the computational throughput
on double-precision workloads.

3. THE CELL BROADBAND ENGINE
The Cell Broadband Engine Architecture [5] (Cell) was

designed over a four year period primarily for the PlaySta-

25 GB/s

25 GB/s

35 GB/s
Memory

50 GB/s

256K

128 reg
3.2GHz 3.2GHz

128 reg

256K

50 GB/s 50 GB/s

256K

25 GB/s

25 GB/s 25 GB/s 25 GB/s

EIB 200 GB/s

50 GB/s

128 reg
3.2GHz

50 GB/s

25 GB/s

32K L1

512K L2

M/C I/O C

25 GB/s

128 reg

SPE SPE SPE

50 GB/s

256K

128 reg
3.2GHz 3.2GHz

128 reg

256K

50 GB/s

SPE SPE

PPE

SPE

3.2GHz 3.2GHz
128 reg

256K

50 GB/s 50 GB/s

256K

128 reg
3.2GHz 3.2GHz

128 reg

256K

50 GB/s

SPE SPE

25 GB/s25 GB/s 25 GB/s 25 GB/s 25 GB/s

Figure 1: The layout and bandwidth of the Cell pro-
cessor.

tion 3 gaming console. The chip is also available in com-
mercial blade servers through Mercury Computer Systems.
Highly tauted, it was the winner of the Microprocessor Best
Technology Award in 20042. It is surmised by the high per-
formance community that the Cell’s commercial uses will
allow it to be produced in sufficient quantities so as to sup-
port a low price tag. This thought, in conjunction with the
Cell’s significant floating point computational throughput
and high off chip bandwidth, have led to discussion regard-
ing utilizing the chip in large scale clusters.

The architecture features one general-purpose processing
element called the Power Processing Element (PPE) and
eight support processors called Synergistic Processing Ele-
ments (SPEs). It is depicted in Figure 1. The PPE is a two-
way SMT multithreaded Power 970 architecture compliant
core, while all SPEs are single threaded. All processors are
interconnected with a high-bandwidth ring network called
the EIB. The Cell’s design is one that favors bandwidth over
latency, as the memory model does not include a hierarchical
cache. In addition, it favors performance over programming
simplicity. The memory model is software controlled. For
example, all memory accesses must be performed by the pro-
grammer through DMA transfers calls, and the local cache
at each SPE is managed explicitly by the programmer. Al-
though this imparts a complexity on the programmer, it also
affords the potential for very efficient bandwidth use, since
each byte transferred is specifically requested by user soft-
ware. There is no separate instruction cache; the program
shares the local store with the data. Also, software mem-
ory management lowers required on-chip hardware require-
ments, thus lowering power consumption. At 3.2 GHz, an
SPE uses only 4 watts per core; as a comparison, a 1.4GHz
Itanium consumes about 130 watts.

Each SPE [7] contains an SPU and an SPF. The SPF
consists of a DMA (direct memory access) controller, and an
MMU (memory management unit) to interact with the com-
mon interconnect bus (EIB). Bandwidth from an SPE to the
EIB is about 25GB/s, both upstream and downstream (see
Figure 1). SPEs are SIMD, capable of operating on eight
16 bit operands in one instruction (or four 32 bit operands).
The floating point unit supports multiplication and subse-
quent accumulation in one instruction, (spu madd()), which

2http://www.power.org/news/besttechaward.pdf

can be issued every cycle (with a latency of 6 cycles). This
equates to about 25 GFLOPs per SPE, or 200 GFLOPs
for eight SPEs, a number far greater than competing com-
modity processors. Each SPU has a low-latency mailbox
channel to the PPU which can send one word (32 bits) at a
time and receive four words. SPEs have no branch predic-
tors. All branching is predicted statically at compile time,
and a misprediction requires about 20 cycles to load the new
instruction stream. Finally, the SPE supports in-order in-
struction issue only. Thus, the programmer must provide
sufficient instruction level parallelism so that compile-time
techniques can order instructions in a manner which mini-
mizes pipeline stalls.

4. DATA MINING WORKLOADS
In this section, we briefly sketch the workloads under

study.

4.1 Clustering
Clustering is a process by which data points are grouped

together based on similarity. Objects assigned to the same
group should have high similarity, and objects between groups
should have low similarity. Clustering has many practical
applications, such as species grouping in biology, grouping
documents on the web, grouping commodities in finance and
grouping molecules in chemistry. It is considered an un-
supervised learning algorithm, since user input is minimal
and classes or group labels need not be determined a priori.
There are many different mechanisms by which objects of
a data set can be clustered, such as distance-based cluster-
ing, divisive clustering, agglomerative clustering, and proba-
bilistic clustering. kMeans [18] is a widely popular distance-
based clustering algorithm, and is the chosen algorithm for
our study.

As its name implies, the kMeans algorithm uses the aver-
age of all the points assigned to a center to represent that
center. The algorithm proceeds as follows. First, each data
object is assigned to one of the k centers at random. In
the second step, the centers are calculated by averaging
the points assigned to them. Third, each point is checked
against each center, to verify the point is assigned to the
center closest to it. If any point required reassignment, the
algorithm loops back to step two. The algorithm terminates
when a scan of the data set yields no reassignments. A
sketch is presented as Algorithm 1.

4.2 Classification
Classification is a common data mining task, whereby the

label or class of a data object is predicted. For example, a
classification algorithm may be used to predict whether a
loan applicant should be approved or rejected. Classification
is said to be supervised since classes are known and a train-
ing data set is provided, where each object in the set has
been labeled with the appropriate class. There are many
methods to predict labels. Examples include Bayesian net-
works, neural networks, nearest neighbors algorithms, and
decision tree algorithms. Algorithm designers are faced with
several challenges when designing these solutions, including
noise reduction, the curse of dimensionality, and scalability
with increasing data set size.

One of the most widely used classifiers is the k Nearest
Neighbors algorithm (kNN). kNN is said to work by anal-
ogy. A data object is classified by the most represented

label of its k closest neighbors. In the worst case, the algo-
rithm requires a distance calculation between each two data
points. The method is considered lazy because a model is
not built a priori ; instead the training data is inspected only
when a point is classified. In addition to avoiding model
construction, kNN requires essentially no parameters and
scales with data dimensionality. The data set is typically a
collection of n-dimensional points, and the similarity mea-
sure is Euclidean distance. A sketch of the algorithm is
presented as Algorithm 2.

4.3 Outlier Detection
Automatically detecting outliers in large data sets is a

data mining task which has received significant attention in
recent years [2, 4, 9]. Outlier detection can be used to find
network intrusions, system alarm conditions, physical sim-
ulation defects, noise in data, and many other anomalies.
The premise is that most data fit well to a model, save a
few points. These few points are then classified as outliers.
As with classification, there are two common techniques,
namely model-based approaches and distance-based meth-
ods. Model approaches build a model of the data, and then
output data which does not fit the model. Distance-based
approaches define a distance calculation, and label points
without nearby neighbors as outliers. Also like classification,
distance-based detections schemes are well received because
model construction is avoided, which is often a bottleneck
with high-dimensional data.

Algorithm 2 kNearestNeighbors

Input: Dataset D
Input: k, number of neighbors
Output: ∀di ∈ D, di.neighbors = closest k points to di

1: for each data point di ∈ D do
2: di.neighbors = ∅
3: for each data point dj ∈ D where di <> dj do
4: dis = dist(di,dj)
5: if |di.neighbors| < k then
6: di.neighbors = di.neighbors = ∪dj

7: else
8: if max(di.neighbors) > dis then
9: Remove farthest point in di.neighbors

10: di.neighbors = di.neighbors = ∪dj

11: end if
12: end if
13: di.class = class most seen in di.neighbors
14: end for
15: end for

ORCA[2] is an efficient distance-based outlier detection
algorithm developed by Bay and Schwabacher. It uses the
nearest k neighbors as a basis for determining an outlier.
The insight provided by ORCA is that once a point has k
neighbors which are closer to it than the kth nearest neigh-
bor of the weakest outlier, the point cannot be an outlier.
Therefore, processing of the data point is terminated. To
illustrate, consider the outliers in Table 1. This data repre-
sents the top 5 outliers, with the number of neighbors k = 4.
Thus, an outlier is determined by the distance to his 4th
neighbor. The weakest outlier is the outlier with the small-
est 4th neighbor, in this case outlier 5. The threshold is then
255.1, since if any data point has four neighbors closer than
255.1, that point cannot be an outlier. Often times, k near

Neighbors → 1st 2nd 3rd 4th

Outlier 1 147.6 151.2 179.1 655.1
Outlier 2 342.2 387.5 409.9 458.2
Outlier 3 100.0 131.4 219.1 325.1
Outlier 4 87.2 89.8 107.3 210.0
Outlier 5 31.0 151.2 179.1 255.1

Table 1: An example set of outliers, where outlier 5
is the weakest.

neighbors can be found by scanning just a small percentage
of the data set. A sketch of the algorithm is provided as
Algorithm 3.

For all three workloads we implement the Euclidean dis-
tance as our similarity metric, which is a special case (p=2)
of the Minkowski metric (given below).

D2(xi, xj) = (Σd
k=1(xi,k − xj,k)2)1/2 (1)

In practice, since the square root function maintains the
total order on positive reals, most implementations do not
take the square root of the distance. Based on our findings,
we believe any distance calculation which touches every byte
loaded will have similar results as those presented in Section
6.

Algorithm 3 ORCA

Input: Dataset D
Input: n, number of outliers
Input: k, number of neighbors
Output: O = top n outliers
1: O = ∅
2: Threshold = 0
3: for each data point di ∈ D do
4: di.Neighbors = ∅
5: for each data point dj ∈ D where di <> dj do
6: d = dist(di,dj);
7: if d < max(O) or |di.Neighbors| < k then
8: di.neighbors = di.neighbors ∪ dj

9: end if
10: if |di.Neighbors| = k and max(di.Neighbors) >

Threshold then
11: break;
12: end if
13: if |O| < n then
14: O = O ∪ di

15: else
16: if minDistance(O) then
17: Remove weakest outlier from O
18: O = O ∪ di

19: end if
20: end if
21: end for
22: Threshold = kth value from weakest(O).neighbor
23: end for

5. ALGORITHMS
Developing algorithms for the proposed workloads on the

Cell requires three components. First we must parallelize
the workload. This is direct, as at least two of the three
workloads are members of the embarrassingly parallel class
of data mining algorithms. Second, we require an efficient

data transfer mechanism to move data from from main mem-
ory to the local store. Third, we must restructure the al-
gorithm to leverage the Single Instruction Multiple Data
(SIMD) intrinsics available. In this section, we detail these
components.

5.1 KMeans on the Cell
Parallelization of kMeans is straightforward. We partition

the data set (which resides in main memory) such that two
conditions hold. First, the number of records assigned to
each processor is as balanced as possible. Second, the start
boundary of the each processor’s segment is aligned on a
16 byte boundary 3. This can be achieved by placing the
first record on a 16 byte boundary, and then verifying that
the number of records assigned to a processor satisfies the
constraint below.

records ∗ dim ∗ sizeof(float) % 16 == 0 (2)

We simply assign the processor an even share of records,
and add a record until it is properly aligned. If after adding
a user-defined threshold of additional records, it is still not
16 byte aligned, then we pad it with the necessary bytes.

Efficient data transfer for kMeans is achieved by calculat-
ing a chunk size which results in landing on a record bound-
ary, is a multiple of 16, and is about 6KB. At values below
6KB, the startup cost to retrieve the first byte is not suffi-
ciently amortized. The maximum DMA call permitted by
the Cell is 16KB, but we found smaller values afforded bet-
ter load balancing opportunities. This chunk size can be
calculated by simple doubling as shown in Algorithm 4.

Algorithm 4 SPU GetChunksize

Input: M , the number of dimensions
Output: chunkSize is properly aligned
1: int chunkSize=sizeof(float)*M
2: int recordsToGet=1
3: while chunkSize < 4096 do
4: chunkSize*=2;
5: recordsToGet*=2;
6: end while

Restructuring kMeans to allow for SIMD distance calcula-
tions can be achieved by a) calculating the distance to mul-
tiple centers at once, b) calculating the distance between a
center and multiple data points at once, and c) calculating
multiple dimensions at once. We make use of two intrinsics,
namely v3 = spu sub(v1, v2) and v4 = spu madd(v1, v2, v3).
The former subtracts each element of vector v1 from v2 and
stores the result in v3. The latter multiples the elements
of v1 to v2, adds the result to v3 and stores it in v4. This
second instruction effectively executes 8 floating point op-
erations in a single instruction, with a 6 cycle latency. The
latency can be avoided by calculating multiple points.

The strategy for calculating distances is shown in Algo-
rithm 5. It is clear that the number of distance calculations
in the inner loop can be expanded to improve throughput by
further unrolling until each center in the chunk size is accom-
modated. In the case that the number of centers or dimen-
sions is not modulo the largest desired block, a simple itera-
tive halving flow of control is used to finish the calculation.

3The Cell’s DMA controller requires 16-byte boundaries.

Note that these will have branching, which incurs a 20 cycle
penalty. Fortunately, the intrinsic builtin expect(cond, 0)
can be employed to avoid penalty in the common case. Note
that the function spu extract(v, pos) extracts a scaler from
vector v at position pos. The if/then constructs after the
looping are replaced by spu sel() by the compiler, which
removes simple branching. The SPUs send the number of
reassigned data points back to the PPU through mailboxes.
If any SPU reassigned a data point, the centers are recal-
culated and the SPUs are sent a message to perform an-
other iteration; otherwise the SPUs are sent a message to
terminate. The pseudo code for the kMeans is shown in
Algorithms 6 and 7.

An important issue when using the Cell is that any meta
data which grows with the size of the data set cannot be
stored locally. In the case of kMeans, the center assignment
are an example of this type of data. The solution is to
preallocate storage with each record when the data is read
from disk. When each record is loaded from main memory
to the SPU, the meta data is loaded as well, and when the
record is purged from the SPU, the meta data is written to
main memory with the record. This allows the algorithm to
scale to large data sets.

Algorithm 5 AssignCenter

Input: Data record with M dimensions
Input: Centers C
Output: record.center← closest center c ∈ C
1: vector v1 = (vector float*)record
2: for i=0 to |C| step 2 do
3: vector v2=(vector float*)Center[i]
4: vector v3=(vector float*)Center[i+1]
5: vector float total,total2=0,0,0,0
6: for j = 0 to M/4 do
7: vector float res= spu sub(v1[j],v2[j])
8: vector float res2= spu sub(v1[j],v2[j])
9: total = spu madd(res,res,total)

10: total2 = spu madd(res2,res2,total2)
11: end for
12: if builtin expect(M % 4<>0,0) then
13: int k=j
14: for j = 0 to M % 4 do
15: float val1=(record[k*4+j]-center[i][k*4+j])
16: total +=val1*val1
17: float val2=(record[k*4+j]-center[i+1][k*4+j])
18: total2 +=val2*val2
19: end for
20: end if
21: float distance = spu extract(total,0) + ... (total,4)
22: float distance2 = spu extract(total2,0) + ... (total2,4)
23: if distance < record.centerDistance then
24: record.center=i
25: record.centerDistance=distance
26: end if
27: if distance2 < record.centerDistance then
28: record.center=i+1
29: record.centerDistance=distance2
30: end if
31: end for

Algorithm 6 kMeans PPU

Input: Dataset D
Input: P , the number of processors
Input: k, the number of centers
Output: Each d ∈ D ← closest center c ∈ C
1: Assign each d ∈ D a random center
2: Partition D among P SPUs
3: Spawn P SPU Threads
4: while true do
5: int changed=0
6: for each processor p do
7: changed += p.mailbox
8: end for
9: for each center cj ∈ C do

10: cj = Mean of points i where ci = j
11: end for
12: if changed==0 then
13: ∀p ∈ P, p.mailbox← 0
14: break;
15: else
16: ∀p ∈ P, p.mailbox← 1
17: end if
18: end while

Algorithm 7 KMeans SPU

Input: Dataset D, Address A
Input: M ,the number of dimensions
Input: k, the number of centers
Output: Each d ∈ D ← closest center c ∈ C
1: GetChunksize(Dp, I, K)
2: message=1
3: totalData = |D|
4: while message==1 do
5: Load centers C into local store via DMA call(s)
6: while totalData > 0 do
7: Load data Da into local store via DMA call
8: totalData = totalData - recordsToGet
9: for each data point dj ∈ Da do

10: assignedCenter = di.Center
11: AssignCenter(dj ,C)
12: if di.Center <> assignedCenter then
13: Changed++;
14: end if
15: end for
16: end while
17: p.mailBox ← changed
18: message ← p.mailbox
19: end while

5.2 kNN on the Cell
The main difference in construction between kMeans and

kNN is that with kMeans two streams are required4. The
first stream is the test data set (the data to be labeled) and
the second stream is the training data set (the prelabeled
data). The same chunk size is used for both streams, and is
calculated with Algorithm 4. However, the record size is the
dimensionality of the data plus k, where k is the number of
neighbors to store. This allocation allows the SPU to store

4If the centers in kMeans do not fit in the local store, then
both algorithms use two streams.

the IDs of the neighbors with the record, and limit local
meta data. This can be doubled if the user requires the
actual distances as well; otherwise only one array of size
k is kept on the local store to maintain this information
and is cleared after each data point completes. This is a
fundamental point when data mining on the Cell, which is to
say that meta data must be stored with the record, to allow
the Cell’s SPUs to process large data. Synchronization only
occurs at the completion of the algorithm. Pseudo code for
kNN has been omitted due to space constraints.

5.3 ORCA on the Cell
The ORCA construction is also similar to that of kMeans.

ORCA presents an additional challenge, however, because
the effectiveness of computation pruning is a function of the
threshold value. Without effective pruning, the algorithm
grows in average case complexity from O(nlgn) to O(n2).
)As the threshold increases, more pruning occurs. Parti-
tioning the data set evenly may result in an uneven outlier
distribution among the SPUs, thus the computation time
per SPU becomes unbalanced. We can correct this by shar-
ing local outliers between SPUs periodically. The strategy is
to synchronize often early in the computation, and less fre-
quently later in the computation. In the early stages, each
data point has a higher probability to increase the thresh-
old, since the set of outliers is incomplete. Recall that the
threshold is the neighbor in the weakest outlier with the
greatest distance. With all the SPUs maintaining separate
outlier tables, their thresholds will vary. In most cases the
thresholds will all be different, with the largest threshold
being the best pruner. However, if all the SPUs share their
data, the new threshold is most likely larger than any single
SPU’s current threshold. This is because the top five out-
liers from all the sets of outliers (one from each SPU) are
the true outliers. Therefore, frequent synchronization early
in the computation will support sifting these outliers to the
top.

Partitioning the data set proceeds as it did for the previ-
ous two workloads. However, the chunk size initially is set
at the first record size satisfying Equation 2 greater than 512
bytes. Each successive data movement is increased, until a
chunk size of about 4K is reached, which is optimal. As we
will see in Section 6, chunk sizes larger than 4K result in a
greater number of distance calculations.

At each synchronization point, each SPU writes its out-
liers to main memory. The synchronization is initiated by
each SPU writing 1 to its mailbox to the PPU. When all
SPUs have written to their mailboxes, the PPU then takes
the top n outliers from these eight sets and copies them back
to main memory. When the SPUs start the next chunk,
they also load the new outlier list, and with it the maxi-
mum threshold. When an SPU is finished with its portion
of the data set, it writes a 0 to its mailbox. The algorithm
terminates when all SPUs have written 0 to their mailboxes.

6. EVALUATION
In this section we present a detailed evaluation of the pro-

posed workloads and their optimizations on the Cell proces-
sor.

6.1 Experimental Setup
We execute the programs on a Playstation3 gaming con-

sole with Fedora Core 5 (PPC) installed. The PS3 pro-

vides the programmer with only six SPUs, as one is un-
available (rumored to be for improved yield) and another is
dedicated to the game console’s security features. It houses
256MB of main memory, of which about 175MB is available.
Performance-level simulation data, such as cycle counts, was
provided by the IBM Full System Simulator (Mambo), avail-
able in the IBM Cell SDK 5. Data was synthetically gener-
ated (32 bit floats). This allowed us to vary the number
of data points, number of training points, dimensionality,
and the number of outliers. Results on representative real
data sets for the target applications are very similar to the
corresponding synthetic data sets in our study.

As a comparison, we provide execution times for other
processors as well, as shown in Table 2. Therefore, a few
notes on these implementations. First, the only other mul-
tithreaded implementation is that for Intel’s PentiumD pro-
cessor, which has two processing cores. All other imple-
mentations were on single chip processors and use only one
thread. Compiler flags had a large impact on performance,
which is a topic in its own right. These implementations
were compiled with a variety of different flags, and the best
performing binaries are reported. For example, the Itanium
performed best with icc -fast, and for the Xeon processor,
the best performance was found with icc -xW which vector-
ized the code. In interesting cases, we provide two runtimes,
one for Intel’s compiler (icc) and another for the public gcc
compiler (at least -O3 flag).

We also experimented with providing the PPU with work,
which in principle is comparable to adding another SPU.
Speedups were the same as adding an additional SPU.

The columns of Tables 4, 7 and 8 are as follows. The first
column lists the trial number. The next four columns (five
for kNN and ORCA) are input parameters, as shown in
the headings. Each data point is an array of 32 bit floats.
Columns 6-11 are the cycle statistics of the SPUs as a results
of executing the program on the IBM simulator. Column 6
displays the Cycles required Per Instruction (CPI). Column
7 shows the percentage of the time that a single instruc-
tion is issued. Recall that the Cell SPU has two pipelines.
Column 8 shows the percentage of the cycles that an instruc-
tion is issued on both pipelines. If this column were 100%,
then all other columns would be 0% and the effective CPI
would be 0.5, which is optimal. Columns 9-11 display the
reason that there is not 100% double issue. Thus, columns
7-11 should sum to 100%. Branch stalls are due to branch
mispredictions. Dependency stalls are due to a variety of
reasons, for these workloads the common case is to stall on
FP6, the floating point unit. This typically suggests that an
instruction is waiting on the result of the previous instruc-
tion. Another common case is to stall waiting on a load
instruction, which requires six cycles and moves the data
from the local store to a register. Channel stalls are cycles
lost waiting on DMA calls to load data chunks to the lo-
cal store. Finally, the last column represents real execution
time on the PS3.

6.2 Instruction Mix
The instruction mixes for each workload are presented

in Table 3. From our description of these workloads, it
is clear that the distance calculation dominates execution
times, which is expected. Recall that our data sets are 32-bit
floats, and the Cell executes on 128-bit registers. For many

5http://www-128.ibm.com/developerworks/power/cell/

Processor Watts MHz Threads Compiler

Itanium 2 (g) 130 1400 1 gcc
Itanium 2 (i) 130 1400 1 icc

Xeon (g) 110 2400 1 gcc
Xeon (i) 110 2400 1 icc

Opteron 250 89 2400 1 gcc
Pentium D 95 2800 1 icc

Pentium D 2 95 2800 2 icc
Cell SPU 4 3200 1 IBM SDK 2

Cell 6 SPU 24 3200 6 IBM SDK 2
Cell 8 SPU (sim) 32 3200 8 IBM SDK 2

Table 2: Processors used for the evaluation.

kMeans kNN ORCA

FP 35% 34% 31%
ALU 17% 13% 23%

SHIFT 24% 26% 17%
LD/ST 10% 11% 13%

LOGICAL 11% 9% 6%
BRANCH 3% 5% 9%

Table 3: Instruction mixes for the Cell processor
implementations.

floating point operations, this equates to 4 flops per instruc-
tion. However, about 30% of our operations are spu madd()
instructions, which multiply and add four 32-bit values in
a single instruction. Therefore, although only 35% of the
instructions are floating point, in actuality this is closer to
65% of the effective operations in a non-vectorized imple-
mentation.

ORCA has the largest number of branch instructions at
9%. This is primarily because the threshold may eliminate
the need for a distance calculation for a given point, and
force the loop to terminate prematurely. Both ORCA and
kNN have more branching than kMeans because the nearest
neighbors are stored in a sorted array, which inherently adds
branching. All three workloads have a significant amount of
loads and stores, which are required to bring the data from
the local store to a register. Load and store instructions have
a six cycle latency (not accounting for the channel costs to
bring data chunks into the local store).

6.3 kMeans
The cycle statistics for kMeans is presented in Table 4

for various parameters. We fixed all trials to execute 30
iterations, to ease in comparisons. Interestingly, each iter-
ation has the exact same statistics, since the computation
is fixed and the SPU’s mechanics are deterministic (no dy-
namic branch prediction, no cache effects, in-order issue,
etc.).

From Table 4, we can see that only when the number of
centers is very low is there any appreciable channel delay.
Thus for kMeans it can be concluded that moving data to
and from the local store is not the bottleneck. In fact, most
of the slowdown with the first trials is not due to the chan-
nel, but because the number of dimensions is sufficiently
low to stall the pipeline on loop boundaries. This can be
addressed with vector pipelining, albeit painstakingly so.
Also, it would likely require padding, depending on the di-
mensionality of the data. Rather than use the memory space

Processor Time (sec) Slowdown

Itanium 2 g 66 51
Itanium 2 i 29 22

Xeon g 31 24
Xeon i 12 10

Opteron 250 19 15
Pentium D 16 13

Pentium D 2 9 7
Cell SPU 7.4 5.9

Cell 6 SPU 1.25 –
Cell 8 SPU (sim) 0.95 –

Table 5: kMeans execution time comparison for var-
ious processors.

(the PS3 only has 256MB) we chose to use looping. As
seen, when the number of dimensions increases, the SIMD
instructions can be issued in succession, improving CPI (and
FLOPs). For example, trial 1 uses 2 dimensions and has a
CPI of 2.0. Trial 5 increases the dimensions to 40, and the
resulting CPI drops to 1.21. Double issue rates rise from
9% to 20%. Our initial implementation did not use SIMD
instructions, and the CPI was quite low. Since each floating
point instruction performed only one operation, each loop
in the distance calculation used many instructions, and the
issue rate was high. After SIMD instructions were used, the
CPI increased, but execution execution times lowered.

The scalability is healthy from 1 to 6 SPUs. For example,
in trials 13 and 14, one SPU required 13.97 seconds and 6
SPUs required 2.38 seconds, for a speedup of 5.86. This near
6-fold speedup when moving from 1 to 6 SPUs is consistent
in the other trials as well. Varying data set size behaved as
expected, namely that twice as many points required about
twice as much time (given the number of centers was far
smaller than the number of data points). A final point to
mention is that CPI and other statistics was generally fixed
for a set of input parameters, regardless of the number of
SPUs used. This is because, as long as there are sufficient
data points to fill one DMA load, and the channel contention
is low, the SPUs will be performing independently.

Table 5 illustrates the performance advantage of the Cell
executing kMeans as compared to other commodity pro-
cessors. The parameters were DataPoints=200K, Dimen-
sions=60, and Centers=24. The second best performance
was afforded by the PentiumD, which is also a CMP. Because
we do not have access to a real 8 core Cell, the slowdown
column uses only our 6 core PS3 execution times.

6.4 kNN
The cycle statistics for kNN are provided in Table 7 for

varying parameters. As with kMeans, kNN does not exhibit
channel latency issues. Also, it can be seen that scalability is
near linear. For example at 10 neighbors and 80 dimensions
(trials 5 and 6), the execution time is reduced from 12.29 to
2.06 seconds, a 5.95-fold reduction when moving from 1 SPU
to 6 SPUs. Also, in trials 2 and 6, the CPI is reduced from
1.53 to 1.02 when the workload rises from 10 neighbors and
12 dimensions to 10 neighbors and 80 dimensions. A larger
number of dimensions results in longer record vectors, thus
allowing more SIMD instructions per loop.

Increasing the number of neighbors degrades performance.
This can be seen between the first trial and the third trial,

Trial Input Output

Centers Dimensions Data SPUs CPI % Single % Dble % Branch % Dep. %Channel Exec.
Points Issue Issue Stalls Stalls Stalls Time(sec)

1 10 2 200000 1 2.00 32 9 16 40 0 1.17
2 10 2 200000 6 2.00 33 9 17 38 3 0.20
3 10 10 200000 1 1.32 40 18 18 20 0 2.18
4 10 10 200000 6 1.32 40 18 18 19 1 0.37
5 10 40 200000 1 1.21 42 20 14 24 0 3.49
6 10 40 200000 6 1.21 41 20 14 25 1 0.77
7 20 40 200000 1 1.17 43 21 13 23 0 4.87
8 20 40 200000 6 1.18 43 20 13 23 1 0.84
9 20 100 200000 1 1.16 44 21 7 28 0 8.91
10 20 100 200000 6 1.16 44 21 7 27 1 1.54
11 40 100 100000 1 1.05 49 23 5 23 0 6.98
12 40 100 100000 6 1.05 49 23 5 23 0 1.19
13 40 100 200000 1 1.05 49 23 5 23 0 13.9
14 40 100 200000 6 1.05 49 23 5 23 0 2.38
15 40 100 400000 1 1.05 48 23 5 24 0 28.1
16 40 100 400000 6 1.05 49 22 5 23 1 4.97

Table 4: Statistics for Kmeans on the Cell processor.

Processor Time (sec) Slowdown

Itanium 2 g 24 86
Itanium 2 i 9.46 34

Xeon g 9.44 34
Xeon i 8.02 28

Opteron 250 6.79 24
Pentium D 8.7 31

Pentium D (2) 4.64 16
Cell SPU 1.65 5.9

Cell 6 SPU 0.28 –
Cell 8 SPU (sim) 0.21 –

Table 6: Execution time comparison for various pro-
cessors running K nearest neighbors.

where every parameter is held constant except for the num-
ber of neighbors, which is increased from 10 to 100. The
subsequent CPI drops from 1.53 to 1.75, and branch stalls
increase from 14% to 18%. Whenever a point dj is found to
be closer to the point being processed di, dj must be added
to di’s neighbor list. This requires removing the weakest
neighbor from the list and inserting dj in sorted order. A
larger neighbor list requires more search time, because a
point is more likely to be a neighbor, and because adding
that neighbor will be more costly. Recall that each (stati-
cally) mispredicted branch is a 20 cycle penalty.

An execution time comparison for kNN is provided in
Table 6. The parameters were TrainingPoints=20K, Test-
Points=2K, Dimensions=24, and Neighbors=10. As was the
case with kMeans, the PentiumD’s two execution cores af-
ford it the second lowest execution times.

6.5 ORCA
The cycle statistics for ORCA, collected from the simu-

lator, are presented in Table 8. As with the previous two
workloads, scalability from 1 to 6 SPUs is excellent. The
CPI clearly drops when the number of neighbors increases,
because we have more branch misprediction due to insert-
ing and sorting into a longer neighbor list. Branch stalls
increase from 12% to 24% when increasing the neighbor list
from 10 to 100 (trials 1 and 3). This also occurred with
kNN .

The algorithm handles increasing dimensions well, as seen

Processor Time (sec) Slowdown

Itanium 2 g 138 19
Itanium 2 i 148 21

Xeon g 147 21
Xeon i 128 18

Opteron 250 131 18
Pentium D 126 18
Pentium D 71 10
Cell SPU 46 6.5

Cell 6 SPU 7.1 –
Cell 8 SPU (sim) 5.3 –

Table 9: Execution time comparison for various pro-
cessors running ORCA.

in trials 2 and 8. The dimensions is increased from 12 to 60,
but the execution time only increases 21%. The increased
dimensions improve the CPI. While the CPI only drops from
1.47 to 1.28, we point out that each additional FP instruc-
tion executes approximately 6 operations, and these oper-
ations are only 31% of the workload. Doubling the data
set size from 100K to 200K requires 2.5-fold longer running
times. This not surprising, since the worst case performance
of the underlying algorithm is O(n2).

The execution times for running ORCA on the Cell are
compared with the other processors in Table 9. The param-
eters are DataPoints=200K, Dimensions=32, Outliers=10,
and Neighbor=40. The PentiumD is competitive, as the in-
creased branching degrades the Cell’s performance. Still,
the Cell is several times quicker than the others, at least 6.5
times faster than the PentiumD.

6.6 Channel Stalls
If a significant amount of an algorithm’s time is spent

waiting for data transfers, the potential speedup of multiple
execution threads may not be realized. In this experiment,
we vary the data transfer size from 64 bytes to 8192 bytes
for ORCA, in an effort to gain insight on channel stalls
on a real machine, since our earlier channel stall data was
given by the simulator. All values for this experiment are
taken from trials on the PS3, and all trials use six SPUs to
maximize DMA contention.

Recall that the exact chunk size must be a) a multiple

Trial Input Output

Neighbors Dim Train Test SPUs CPI % Single % Dble % Branch % Dep. %Channel Exec.
(k) Points Points Issue Issue Stalls Stalls Stalls Time(sec)

1 10 12 100000 1000 1 1.53 41 12 14 32 0 3.05
2 10 12 100000 1000 6 1.53 41 12 14 33 0 0.51
3 100 12 100000 1000 1 1.75 39 9 18 33 0 3.78
4 100 12 100000 1000 6 1.69 39 10 17 33 0 0.59
5 10 80 100000 1000 1 0.99 49 26 4 21 0 12.29
6 10 80 100000 1000 6 1.02 48 25 5 22 0 2.06
7 10 80 100000 2000 1 1.00 48 26 6 20 0 24.58
8 10 80 100000 2000 6 1.00 49 25 4 22 0 4.11
9 10 80 100000 5000 1 0.99 48 27 5 20 0 61.5
10 10 80 100000 5000 6 0.99 48 27 4 21 0 10.56

Table 7: Statistics for k Nearest Neighbors on the Cell processor.

Trial Input Output

Neighbors Dim. Outliers Data SPUs CPI % Single % Dble % Branch % Dep. %Channel Exec.
(k) Points Issue Issue Stalls Stalls Stalls Time(sec)

1 10 12 10 100000 1 1.40 49 11 12 28 0 15.8
2 10 12 10 100000 6 1.47 48 10 12 27 0 2.69
3 100 12 10 100000 1 1.96 35 8 24 22 0 65.31
4 100 12 10 100000 6 1.94 36 8 23 22 0 11.39
5 10 24 10 100000 1 1.36 53 10 10 27 0 15.36
6 10 24 10 100000 6 1.38 52 10 11 27 0 2.56
7 10 60 10 100000 1 1.28 59 9 6 26 0 19.36
8 10 60 10 100000 6 1.28 59 9 6 25 1 3.28
9 10 60 10 200000 1 1.27 59 9 6 25 0 48.26
10 10 60 10 200000 6 1.27 60 9 5 26 1 8.21
11 10 24 100 100000 1 1.36 53 10 10 27 0 28.2
12 10 24 100 100000 6 1.38 52 10 9 28 1 4.77

Table 8: Statistics for ORCA on the Cell processor.

of 16 bytes, and b) on a record boundary. Thus for this
experiment we let a record be four single precision floats.
The size of the data set is 80,000 records, the number of
centers, neighbors and outliers are 10. As can be seen in
Table 10, very small chunk sizes degrade performance sig-
nificantly. However, at 64 bytes, only approximately 50% of
the slowdown is attributed to cycles waiting on the channel
load to complete. The balance is due to a) the decrease in
SIMD parallelization (only a few calculations can be vector-
ized at once) and the increased number of instructions to set
up channel transfers. Although in our previous experiments
transfer sizes were about 6K, this experiment shows that
if they are sufficiently small, channel stalls can be rather
costly.

The break in the curve occurs with transfers of at least
256 bytes. At this value, the number of DMA loads re-
quired to process the data set dropped from 175 million to
only 9.6 million, and the cost of each transfer only increased
from 1216 cycles to 1504 cycles. The end execution time
dropped from 28 seconds to 4.31 seconds. The lowest execu-
tion time occurs at a transfer size of 4096 bytes. The reason
is that transfers larger than 4096 have only a marginal im-
provement in transfer time per byte, but incur a significant
increase in the number of computations made. Recall that
each synchronization allows SPUs to share their largest out-
liers and threshold values. These synchronizations generally
increase the average threshold at the SPUs and afford im-
proved pruning. Also we note that the cycles stalls per byte
continually decreases as the size of the transfer is increased.

7. DISCUSSION
In this section, we revisit the questions posed in the Sec-

tion 1.
Can data mining applications leverage the Cell to

efficiently process large data sets? The answer for the
applications considered is yes. The small local store of the
SPU did not pose a practical limitation. In most cases, only
two buffers were needed, each of which was the size of an
efficient data transfer (near 6KB). Only with kMeans did we
use more than 15KB, since the full set of centers was kept
on the SPU. Note that even here we could have avoided this
extra buffer space – see for example our approach with kN-
earest Neighbors. Basically, the O(n2) comparisons among
the centers and the loaded points amortize the data loads
to a sufficiently inexpensive cost. The overall insight here
is that any meta data associated with a record can be in-
lined with that record, and moved to main memory when
the record is ejected from the local store. For example, cal-
culating k neighbors for D records requires k ∗D ∗ 4 bytes.
With low dimensional data, the number of records a DMA
call can transfer becomes significant, and the local storage
to maintain the k neighbors locally becomes the storage bot-
tleneck. By simply inlining the k neighbors with the record,
this storage requirement is mitigated (at the cost of lower
cross-computational throughput per transfer). However, the
local store size may be of greater concern with very large pro-
grams, since the instruction store and data store are shared.

Will channel transfer time (bandwidth) limit scal-
ability? If not, what is the greatest bottleneck? From
our experience (not just limited to this study), workloads
which touch every loaded byte require less execution time
on the Cell than on competing processors, regardless of the
floating point computation requirements. For many data
mining applications, this will be the case. Several stud-
ies, including one by Williams et al [23] recommend double
buffering to reduce channel delays. For our workloads the
channel stall times were relatively nominal when compared
to other issues, such as branch and dependency stalls. For

Bytes 64 128 256 512 1024 2048 4096 8192

Execution time (sec) 28.2 13.7 4.31 2.78 1.82 1.45 1.20 1.40
DMA Loads (Millions) 175 78 29 9.6 3.3 1.0 0.36 0.10
Calculations (Millions) 216 218 222 226 228 243 264 303
Cycles per DMA Load 1216 1332 1483 1504 1950 2130 3960 7550
Channel wait time (sec) 11.1 5.01 1.89 0.64 0.26 0.11 0.07 0.04

Table 10: Channel costs as a function of data chunk size for 6 SPEs.

example, from Table 4 we can see that in kMeans only 10
centers and 2 dimensions was sufficient to reduce channel
stalls to 3% of the cycle time.

As a test, we implemented a simple GetMax() program,
which sifts through an array for the largest value. It was
three times faster on the Cell than on the Xeon, with no
special buffering or SIMD instructions. The lost time wait-
ing on channel stalls was overcome by the fact that each
SPU only searched 1/8th the data. As shown in Tables 4, 7
and 8, branching is a significant bottleneck. From our expe-
rience, it is a penalty which can be difficult to avoid. Using
select() instructions will only remove the simplest cases. De-
pendency stalls appear high as well, but these costs can be
lowered with additional loop unrolling and SIMD vectoriza-
tion, and in fact were more than twice as high before we
unrolled the outer loops. Branching is a natural program-
ming concept and is used frequently. Eliminating branches,
particularly when each flow of control requires complex op-
erations, is not trivial and often cannot be amortized. For
example, in our simple merge sort algorithm, up to 20% of
the stall time was due to branching. In another test applica-
tion, we implemented merge sort. We found it to be almost
twice as fast as any other processor in our study, without
using SIMD instructions. The Cell’s benefit was the multi-
ple concurrent cores. However, branching stalls were quite
high. Also, the final merge was done such that each succes-
sive stage used only have the processors, with the last merge
performed by the PPU. We are in the process of improving
its performance, a topic for future work.

Which data mining workloads can leverage SIMD
instructions for significant performance gains? Any
distance-based algorithm has the potential for significant
gains. This work targets data mining workloads which are,
in some senses, the best case for the Cell. An algorithm
designer can leverage the Cell’s high GFLOP throughput to
churn the extensive floating point calculations of these work-
loads. Also, the predictable nature of the access patterns
(namely streaming) allow for large data transfers, where
each byte in the transfer will be used in an operation. In
these situations, the Cell can be extremely efficient. In many
trials, our results from the Cell’s real execution times via
the PS3 exhibit many-fold GFLOP improvements over the
theoretical maximums for all other processors in this study.
This is due to the 25+ GFLOPs afforded by each SPU. We
are currently designing pattern mining algorithms for the
Cell, which do not have distance calculations. Our initial
findings suggest that these algorithms also stand to benefit,
primarily due to the additional threads of program control.

What metrics can a programmer use to quickly gauge
whether an algorithm is amenable to the Cell? There
are two questions to pose when evaluating the applicability
of the Cell to workload. First, is the access pattern pre-
dictable? If so, then it is likely that chunks of data can

be transferred to an SPU and most of those chunks will be
involved in a computation. Second, is the workload par-
allelizable? In our experience, this question is often easily
answered. Data mining applications in particular exhibit
significant data-level parallelism, since it is common that
each data object must be inspected.

At what cost to programming development are these
gains afforded? Parallel programming is challenging, re-
gardless of the target platform. For someone with parallel
programming experience, the programming model afforded
by the Cell is somewhat more difficult than conventional
CMPs, such as Intel’s PentiumD processors. The program-
mer must explicitly move data to and from main memory as
necessary. However, after about a month of programming
the Cell, we did not find this cumbersome. Several sources
compare the Cell processor to GPGPUs. Both own multi-
ple small processing elements which can be pipelined, both
support SIMD instructions, and both require explicit data
movement by the programmer. However, the Cell supports
a very typical programming environment. The programmer
uses everyday C functions, such as malloc(), and spawns
threads in the same manner as traditional pthread models.

An added benefit of choosing the Cell as a development
platform is that the Mambo Simulator is quite useful when
tuning implementations. It provides cycle-level accuracy for
the SPUs, and allows one to step through assembly level
executions a cycle at a time. The programmer clearly sees
which instruction stall the pipelines. In this regard, while
prototype-level programs are unnaturally difficult to imple-
ment, highly efficient implementations may in fact be easier.
A natural future direction then is to develop a framework
which allows the programmer to specify data mining compu-
tations in a higher level language for fast prototyping. We
are currently investigating such a platform.

8. CONCLUSION
In this work, we design and develop data mining algo-

rithms and strategies for the Cell BDEA. Specifically, we
illustrate that clustering, classification, and outlier detec-
tion can leverage the available bandwidth and floating point
throughput to experience many-fold execution time reduc-
tions, when compared with similar codes on other commod-
ity processors. In addition, we provide insight into the na-
ture of a larger class of algorithms which can be executed
efficiently on such a CMP platform. We believe that the
findings in this effort are applicable to other domains which
are considering the Cell processor as well. The structure of
the general purpose CPU is in state of marked reconstruc-
tion, and future algorithm designers must consider these new
platforms to see maximum utilization.

As part of ongoing and future work, we are investigating
data mining algorithms which make use of complex pointer-
based meta structures. Our initial experience suggests that

such algorithm would be rather cumbersome, and not overly
efficient if implemented on the Cell. The local store does not
have sufficient space to store the tree, which would require
excessive transfers. Our observations in this study imply it
is unlikely these transfers would be efficient.

9. REFERENCES
[1] K. Alsabti, S. Ranka, and V. Singh. An efficient

kmeans clustering algorithm. In In Proceedings of the
IPPS/SPDP Workshop on High Performance Data
Mining (HPDM), 1998.

[2] S. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a
simple pruning rule. In Proceedings of the 9th
International Conference on Knowledge Discovery and
Data mining (KDD), pages 478–487, 2003.

[3] Paul B. Callahan and S. Rao Kosaraju. A
decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body
potential fields. J. ACM, 42(1):67–90, 1995.

[4] Amitabh Chaudhary, Alexander S. Szalay, and
Andrew W. Moore. Very fast outlier detection in large
multidimensional data sets. In ACM SIGMOD
Workshop on Research Issues on Data Mining and
Knowledge Discovery, 2002.

[5] Thomas Chen, Ram Raghavan, Jason Dale, and Eiji
Iwata. Cell broadband engine architecture and its first
implementation: A performance view. In IBM
DeveloperWorks, http://www-
128.ibm.com/developerworks/power/library/pa-
cellperf/,
2005.

[6] C. Elkan. Using the triangle inequality to accelerate
kmeans. In In Proceedings of the International
Conference on Machine Learning (ICML), 2003.

[7] B. Flachs, S. Asano, S.H. Dhong, P. Hofstee,
G. Gervais, R. Kim, T. Le1, P. Liu1, J. Leenstra,
J. Liberty, B. Michael, H. Oh1, S. M. Mueller,
O. Takahashi, A. Hatakeyama, Y. Watanabe, and
N. Yano3. A streaming processing unit for a cell
processor. In Proceedings of the International
Solid-State Circuits Conference, 2005.

[8] Timothy Furtak, Jose Nelson Amaral, and Robert
Niewiadomski. Using simd registers and instructions
to enable instruction-level parallelism in sorting
algorithms. In University of Alberta Technical Report
TR07-02, 2007.

[9] A. Ghoting, S. Parthasarathy, and M. Otey. Fast
mining of distance-based outliers in high dimensional
datasets. In Proceedings of the SIAM International
Conference on Data Mining (SDM), 2006.

[10] N. K. Govindaraju, J. Gray, R. Kumar, , and
D. Manocha. Gputerasort: High performance graphics
coprocessor sorting for large database management. In
Technical Report MSR-TR-2005-183, 2005.

[11] J. Han and M. Kamber. In Data Mining: Concepts
and Techniques, 2000, 1967. Morgan Kaufmann
Publishers.

[12] P. Horton and K. Nakai. Better prediction of protein
cellular localization sites with the k nearest neighbors
classifier. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular

Biology (ISMB), pages 147–152, San Diego, California,
USA, 2000.

[13] R. Jin and G. Agrawal. A middleware for developing
parallel data mining implementations. In Proceedings
of SIAM International Conference on Data Mining
(SDM), 2001.

[14] R. Jin and G. Agrawal. Shared Memory
Parallelization of Data Mining Algorithms:
Techniques, Programming Interface, and Performance.
In Proceedings of the Second SIAM International
Conference on Data Mining, 2002.

[15] Sachin Kulkarni and Ratko Orlandic.
High-dimensional similarity search using
data-sensitive space partitioning. In Proceedings of the
17th International Conference on Database and Expert
Systems Applications (DEXA), 2006.

[16] D. Kunzman, G. Zheng, E. Bohm, and L. Kale.
Charm++, offload api, and the cell processor. In
Proceedings of the Workshop on Programming Models
for Ubiquitous Parallelism at PACT, 2006.

[17] S. Liao and M. Lopez S. Leutenegger. High
dimensional similarity search with space filling curves.
In Proceedings of the 17th International Conference on
Data Engineering, 2001.

[18] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the 5th Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[19] D. Pelleg and A. Moore. Accelerating exact kmeans
algorithms with geometric reasoning. In Proceedings of
the International Conference on Knowledge Discovery
and Data Mining (SIGKDD), 1999.

[20] Thomas Seidl and Hans-Peter Kriegel. Optimal
multi-step k-nearest neighbor search. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 154 – 165, Seattle,
Washington, United States, 1998.

[21] Changzhou Wang and Xiaoyang Sean Wang.
High-dimensional nearest neighbor search with remote
data centers. Knowl. Inf. Syst., 4(4):440–465, 2002.

[22] R. Weber and P. Zezula. The theory and practice of
searches in high dimensional data spaces. In
Proceedings of the 4th DELOS Workshop on Image
Indexing and Retrieval, 1997.

[23] S. Williams, J. Shalf, L. Oliker, S. Kamil,
P Husbands, and K. Yelick. The potential of the cell
processor for scientific computing. In Proceedings of
Computing Frontiers, 2006.

[24] Marco Zagha and Guy E. Blelloch. Radix sort for
vector multiprocessors. In Proceedings of the
International Conference on Supercomputing, pages
712–721, 1991.

[25] M. Zaki, C. Ho, and R. Agrawal. Parallel classification
for data mining on shared memory multiprocessors. In
Proceedings of the International Conference on Data
Engineering (ICDE), 1999.

