
Optimizing Multicast Performance in Large-Scale WLANs

Ai Chen, Dongwook Lee, and Prasun Sinha
Department of Computer Science and Engineering, The Ohio State University

email: {chenai, leedon, prasun}@cse.ohio-state.edu

Abstract

Support for efficient multicasting in WLANs can enable
new services such as streaming TV channels, radio chan-
nels, and visitor’s information. With increasing deploy-
ments of large-scale WLANs, such services can have a sig-
nificant impact. However, for a solution to be viable, the
mutlicast services must minimally impact the existing uni-
cast services which are currently the core services offered
by most WLANs. This paper focuses on three objective func-
tions motivated by different revenue functions and network
scenarios: maximizing the number of users (MNU), balanc-
ing the load among APs (BLA), and minimizing the load
of APs (MLA). We show that these problems are NP-hard
and present centralized approximation algorithms and dis-
tributed approaches to solve them. Using simulations we
evaluate the performance of these algorithms. We observe
that the number of users can be increased by up to 36.9%,
and the maximum AP load and the total load can be reduced
by up to 52.9% and 31.1%, respectively.

1 Introduction

The goal of anytime-anywhere connectivity is becoming
a reality with increasing deployment of large scale Wire-
less LANs. Networks deployed in industrial campuses, aca-
demic campuses, and cities are some scenarios that illus-
trate the scale at which WLANs are being deployed today.
The city-wide network in Chaska, Minnesota is one such
example that provides WLAN coverage in a 15 sq miles
area since Oct 20041. A similar network is operational in
Taipei2 that consists of 2300 APs and provides coverage to
50% of the city’s population, and is planned to be extended
to provide coverage to 90% of the city’s population in the
near future. While unicast services are essential for pro-
viding Internet access to individual users through WLANs,
efficient multicast support from the network can be lever-
aged for distribution of live or stored multimedia content.

1www.chaska.net
2http://english.taipei.gov.tw

Such services will enable distribution of multimedia rich
content such as local news, visitor’s information, and local
TV channels.

While introducing media-rich multicast streaming in
WLANs, it is critical to ensure that the multicast services
use the resources efficiently and the unicast services get
minimally effected. However, the 802.11 standard can not
efficiently maximize resource usage, since uncontrolled as-
sociation causes multiple APs with overlapping regions to
transmit the same multicast packets, thereby wasting re-
sources for unicast services. In this paper, we study how
to provide efficient multimedia multicast service to users
through controlling the user-to-AP association in WLANs.
Improving the efficiency of multicast services make it fea-
sible to introduce multicasting support while minimally im-
pacting unicast users.

Although association control has already been consid-
ered by both the research community and the industry, pre-
vious research on association control in WLANs primarily
focused on unicast traffic [11, 8, 26, 2, 14]. The problem of
unbalanced AP load under signal strength based association
is discussed in [11]. In [8, 26], new metrics are studied to
associate with APs instead of signal strength for only uni-
cast traffic. These works do not consider load-balancing
between APs. Recent work [2, 14] has explored the idea
of association control to balance the network load and pro-
vide max-min fairness among users. However, they do not
consider load balancing problems for multicast traffic. To
the best of our knowledge, we are the first to study the as-
sociation control for enabling efficient multicast streaming
sevices in WLANs.

We study three different objectives supported by differ-
ent revenue functions that can be used by the WLAN service
provider depending on the expected network scenario. We
believe these three objectives are most interesting for the
WLAN service provider and users.

• Maximize Number of Users (MNU): Under high load
scenarios, it may not be feasible to satisfy all the
users’ multicast requests. For such scenarios, it may
be critical to maximize the number of satisfied multi-
cast flows. If the service provider charges customers

1



based on the duration of the multicast flows, then this
objective function will be of interest.

• Balance Load among APs (BLA): In case the users’
requests can be all met, it is critical to balance the mul-
ticast load so that the available fraction of time for uni-
cast is also balanced. More precisely the objective here
is to minimize the maximum multicast duration of an
AP. This will lead to fairer share of the unicast band-
width in case of uniform distribution of users across
APs. If the revenue function gives higher weightage to
unicast traffic and the revenue function for unicast traf-
fic is convex, then BLA will likely lead to improved
revenue. It is known that convex functions are max-
imized when the resources are uniformly distributed
[12].

• Minimize Load of APs (MLA): The objective is to
reduce the summation of multicast load across all the
APs in the WLAN. This will maximize the total avail-
able time for unicasting. Under revenue models where
there is a flat rate per byte of unicast data, and a sce-
nario with a sufficient number of users requesting uni-
cast traffic, MLA may be the desired objective function
for the service provider.

We make the following contributions in this paper. First,
we show the NP-hardness of the three problems even if we
restrict the problem so that multicast/broadcast packets are
always transmitted at the basic rate. Second, we reduce the
three problems to other known problems and present cen-
tralized approximation algorithms. For MNU, MLA and
BLA, we present approximation algorithms with approxi-
mation factors of 8, log 8

7
(n) + 1 and ln(n) respectively.

Third, we present distributed approaches to solve the prob-
lems, although we believe that in smaller WLANs (of the
order of 100 APs) centralized algorithms are still feasible
to execute. Note that distributed solutions are preferred in
large networks, as centralized solutions will lead to more
frequent changes in associations causing increased signal-
ing traffic over the wireless links. Fourth, through simula-
tions we study the performance of the proposed distributed
and centralized solutions for the three objectives. We ob-
serve that the number of users can be increased by up to
36.9%, and the maximum AP load and the total load can
be reduced by up to 52.9% and 31.1%, respectively. We
also evaluate the optimality of MLA, BLA, and MNU algo-
rithms and find our centralized and distributed algorithms
are very efficient compared with the optimal solutions.

The rest of the paper is organized as follows. Section 2
summarizes relevant related work. Section 3 defines the net-
work model, the problems, the notations, and the terminol-
ogy used in the paper. The centralized and distributed algo-
rithms for MNU, BLA, and MLA are described in Sections

4, 5, and 6 respectively. Section 7 presents a detailed eval-
uation of our approach and comparison with signal strength
based approach using simulations. The future work is de-
scribed in Section 8. Finally, Section 9 concludes the paper.

2 Related Work

In this section, we outline related works in the areas of
MAC layer multicast/broadcast and controlled association
in wireless networks.

MAC Layer Multicast Protocols: IEEE 802.11 MAC
protocol implements multicast using broadcast. As the
802.11 broadcast is unreliable, several protocols [15, 22,
23, 24, 21, 6, 20, 10] have been proposed to improve re-
liability. Kuri and Kasera [15] proposed a reliable multicast
protocol for WLANs. Tang and Gerla [22, 23] extended the
broadcast mechanism of 802.11 that tries to confirm that at
least one receiver receives the broadcast packet in ad hoc
networks. In [24], Tang and Gerla proposed BMW (Broad-
cast Medium Window) protocol which implements broad-
cast based on unicast and lets receivers overhear packets.
In [21], Sun et al. proposed BMMM (Batch Mode Multi-
cast MAC) protocol to implement reliable MAC layer mul-
ticast. Some MAC layer multicast/braodcast protocols, such
as BPBT [6], RMAC [20], and 80211MX [10], use busy-
tone to implement multicast reliability, while Chaporkar et
al. [3, 4] proposed algorithms for maximizing throughput
for MAC layer wireless multicast using busy tones. Our
association control algorithms are independent of the MAC
layer protocol, and the efficiency of the MAC layer protocol
can increase the efficiency of our algorithms.

Association Control: In 802.11 networks user nodes of-
ten use signal strength as the key metric in selecting the AP.
The problem of unbalanced AP load under signal strength
based association was discussed in [11]. In [8, 26], new
metrics were studied to select a unicast AP instead of signal
strength. Packet error rate and number of users were used
in [8]. The authors showed deployability and robustness
of their AP selection architecture. Association time, system
load, and signal/noise ratio (SNR) together were used to ini-
tiate handoff in [26]. The authors argued that their approach
can provide Quality of Service (QoS) guarantee. However,
these works did not consider load-balancing between APs.

Recent work [2, 14] has explored the idea of association
control to balance the network load and provided max-min
fairness among users. The authors in [2] proved that balanc-
ing the network load is equivalent to achieving the max-min
fairness, and presented algorithms that achieve a constant-
factor approximation to max-min fair bandwidth allocation.
In [14], analytical model was formulated for the AP selec-
tion as an optimization problem to maximize different util-
ity functions. The authors provided the optimal association
results for some simple cases. However, these works pri-
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marily focused on unicast traffic.
For broadcast service in wireless Mesh networks, the op-

timal association algorithm was studied in [16], where min-
imum cost based greedy selection of an access point can de-
crease the size of the broadcast tree. The authors proposed
the concept of multi-association, where the AP for unicast
traffic and the AP for broadcast traffic are independently
chosen by exploiting multiple coverages that are typical in
mesh networks.

3 Preliminaries

In this section, we present the network model and outline
the problems that are addressed in this paper.

3.1 Network Model

We consider a WLAN with a set of users U and a set
of access points A. In the 802.11 standard the data rate of
the link is chosen dynamically based on the signal quality
to keep the BER (bit error rate) below a fixed threshold. For
example 802.11 g/a supports discrete levels of data rates
ranging from 6 Mbps to 54 Mbps. The maximum possi-
ble data rate on a link from an AP a to a user u is denoted
by ra,u. If an AP multicasts packets to the users associ-
ated with it, the AP will use the lowest rate among these
users’ maximum possible data rates on the links to this AP,
which makes sure that every user can receive the packets.
We assume that MAC layer multicast/broadcast can sup-
port multi-rate transmission3 although in the 802.11 stan-
dard MAC layer broadcast packets are always transmitted
at the basic data rate. However, if the basic data rate is al-
ways used for multicast/broadcast, MNU, BLA and MLA
problems are still NP-hard because our NP-hardness proofs
for these problems do not require multi-rate transmission,
and our algorithms still get better performance than the
strongest signal approach.

Each user node and each AP has a single radio. We as-
sume that the radio channels of the neighboring APs are
configured such that they do not interfere. Although IEEE
802.11b/g only has 3 non-overlapping channels, the newer
IEEE 802.11a standard operates in the 5 GHz spectrum that
supports 12 non-overlapping channels in US/Canada. Al-
though interference modeling is difficult to obtain in a real
network (See discussions in Section 8), our solutions im-
plicitly optimize interference as discussed in the next sub-
section (Section 3.B). The APs are connected using a wired
LAN to one or more gateways that provide connectivity to
the Internet. We assume that users are quasi-static, which
means that they often tend to stay at one place for a rela-
tively long time period before changing their location. This

3Recent research [7] has implemented the multi-rate broad-
cast/multicast.

assumption is supported by recent studies of user mobility
patterns in deployed WLANs [1, 13]. Each user may re-
quest one multicast stream from the WLAN. This is simi-
lar to our TV services where a user typically watches only
one TV channel at any time. Another such example is the
video watching tool at CNN.COM which normally allows
only one video streaming session per client at any time. A
user requesting a multicast stream is referred to as a multi-
cast user, and a user requesting unicast service is referred to
as a unicast user. If a user can only be a unicast user or a
multicast user, we do not need to do any other modification
to the 802.11 standard except for that the association algo-
rithm of 802.11 is replaced by our association algorithm for
multicast users. If a user can be both a unicast as well as
a multicast user, the network framework discribed in [16]
can be applied, where the APs are synchronized through a
time-synchronization protocol and each user independently
selects one AP for unicast and another one for multicast ser-
vices.

3.2 Problem Statement

This paper focuses on algorithms for selecting the opti-
mal AP for receiving multicast flows. We study three dif-
ferent objective functions and propose approximation algo-
rithms for solving them. The suitability of the objectives
will depend on the users demands, users distribution, and
the network providers revenue function. We first define the
term multicast load that is used by some of the objective
functions.

Definition 1 Multicast Load: the multicast load of an AP
is the fraction of time that the AP is busy in transmitting
multicast flows; the total multicast load of a network is the
sum of all APs’ multicast load in the network.

Maximize Number of Users (MNU): When there is a
heavy demand for multicast flows, all the user’s requests
can not be met. For such scenarios, we define the goal to be
maximization of the number of users that get multicast ser-
vice from the network. Although the network revenue can
be a function of both unicast and multicast flows, under typ-
ical network revenue models, the number of satisfied users
will result in higher revenue.

An example revenue model is when the unicast ser-
vices have a monthly charge, but the multicast services are
charged based on the time for which multicast streams are
served to users. This is like the Pay-per-view service of-
fered by most cable and satellite TV services today. Under
such a model, increasing the number of satisfied multicast
users will increase the total revenue for the service provider.

Balance Load among APs (BLA): In order to reduce
the impact of multicast services on unicast flows, it is crit-
ical to reduce the size of the multicast period. This can be
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achieved by balancing the multicast load of the APs. More
precisely, the objective here is to minimize the maximum
multicast load among all APs.

Consider a revenue model where one multicast flow is
included in the basic monthly charges. Assume that the rev-
enue function for unicast flows is convex, i.e., marginally
decreasing with increasing bandwidth. Convex revenue
functions are well known for achieving fairness among
flows. Then balancing the multicast load will typically lead
to fairness among the unicast flows and a higher total rev-
enue, assuming uniform distribution of unicast users across
the APs.

Minimize Load of APs (MLA): In order to free up the
maximum amount of total time for unicast services, the to-
tal multicast load needs to be minimized. Although this can
lead to uneven distribution of multicast load, for some rev-
enue models this may be of interest.

Consider a revenue model where one multicast flow is
included in the basic monthly charges. However, the uni-
cast services are charged per byte. In scenarios where there
is a high demand for unicast traffic, maximizing the total
amount of unicast traffic will maximize the revenue while
satisfying the multicast users.

Note that solutions to the BLA and MLA problems will
implicitly optimize maximum interference from an AP and
total interference from all the APs, resulting due to multi-
cast transmissions.

An Example: We use the example scenario shown in
Figure 1 to describe these three problems. The WLAN con-
sists of two APs, a1, a2, and, 5 users, u1, u2, . . . , u5. Sup-
pose that the maximum load that APs a1 and a2 can support
for multicast traffic is 1 unit. The maximum data rates to
the five users u1, u2, u3, u4 and u5 from a1 are 3, 6, 4, 4,
and 4 respectively. AP a2 can communicate only with users
u3, u4, and u5 and the maximum data rates are 5, 5, and
3 Mbps, respectively. Suppose that users u1 and u3 request
multicast sessions s1, and users u2, u4, and u5 request for
multicast session s2.

If the multicast data rates of s1 and s2 are both 3 Mbps,
this WLAN can not support all the users for multicast be-
cause u1 and u2 can only be associated with a1, and a1 can
not provide multicast service to u1 and u2 simultaneously.
If both u1 and u2 are supported by a1 then the total load on
a1 will be 3

3 + 3
6 > 1, which is infeasible. In such scenarios,

the objective of maximization of number of users (MNU) is
relevant. One of the optimal solutions is that u2, u4, and u5

are associated with a1 and u3 is associated with a2. This
results in a load of 3

4 at AP a1 and a load of 3
5 at AP a2.

Suppose the data rate of s1 and s2 are both 1 Mbps and
the objective is to balance the multicast load among APs
(BLA) by minimizing the maximum multicast load among
the APs. In the optimal solution u1, u2, and u3 are asso-
ciated with a1, and u4 and u5 are associated with a2. The

load of a1 will thus be 1
3 + 1

6 = 1
2 and the load of a2 will

be 1
3 .
Suppose the data rate of s1 and s2 is 1 Mbps and the ob-

jective is to minimize the total load of all APs for multicast
streams (MLA). In the optimal solution all users are associ-
ated with a1, which results in a total AP load of 1

3 + 1
4 = 7

12 .
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Figure 1. An Example Network Scenario:
Users u1 and u3 request for multicast session
s1, and users u2, u4, u5 request for multicast
session s2.

4 Maximize Number of Users (MNU)

In this section, we show that MNU is an NP-hard prob-
lem and present centralized and distributed algorithms. Due
to resource limitation for multicasting at the APs, the net-
work may not be able to support the request from all users.
Therefore, the network should try to maximize the number
of users that it supports.

We show that MNU is an NP-hard problem, by show-
ing a reduction from the Subset Sum problem, which is de-
scribed in the Appendix. Because the Subset Sum problem
is NP-hard, MNU problem is also NP-hard. Note that MNU
is trivially in P , if there is only one multicast session in a
WLAN. For a single session, all APs can choose to trans-
mit at the lowest rate that does not violate the maximum
multicast period.

4.1 Centralized MNU

In order to solve this problem, we present a reduction
from the MNU problem to the Maximum Coverage with
Group Budgets (MCG)[5] problem. Here, we give the defi-
nition of the cost version.

Definition 2 Maximum Coverage with Group Budgets
(MCG) - cost version: There are m subsets S1, S2, . . . , Sm

of a ground set X . There are l sets G1, G2, . . . , Gl, each
Gi being a subset of {S1, . . . , Sm}. Each Gi is a group and
the groups are disjoint from each other4. A cost c(Sj) is as-
sociated with each set Sj . Further, each group Gi is given

4If they are not disjoint from each other, we can make them disjoint by
making copies of sets in S1, . . . , Sm.
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a budget Bi and the overall budget is B. The objective is to
find a subset H of {S1, . . . , Sm} to maximize the size of the
union of sets in H under the limitation that the total cost of
the sets in H is at most B, and for any group Gi, the total
cost of the sets in H

⋂
Gi is at most Bi.

Theorem 1 MNU can be reduced to MCG problem.

Proof: The set of all users becomes the set X in the
instance of MCG. Corresponding to each AP, we create
m×|S| subsets of X in MCG, where m is the number of
discrete transmission rates that the WLAN supports and S
is the set of multicast sessions. Thus, each subset corre-
sponds to an AP, a single transmission rate, and a multicast
session. The cost of a subset is the ratio of the correspond-
ing multicast session’s data rate and the transmission rate.
All such subsets that are related to AP ai form the group Gi.
The budget Bi for the group Gi is the fraction of the time
AP ai spends on multicast transmissions. For our problem,
there is no overall budget limitation for the whole network,
i.e., B = ∞, as we assume that the capacity of the wired
network is not the bottleneck. 2

Example – MNU: If the data rate of s1 and s2 is 3 Mbps
in the WLAN shown in Figure 1, we can reduce the MNU
problem for the WLAN to the MCG problem shown in Fig-
ure 2. One of the optimal solutions for this MCG problem
is H = {S4, S5}.

X = {u1, u2, u3, u4, u5}
S1= {u3} c(S1) = 3/4
S2= {u1, u3} c(S2) = 3/3 = 1
S3= {u2} c(S3) = 3/6 = 1/2
S4= {u2, u4, u5} c(S4) = 3/4
G1= {S1, S2, S3, S4} B1 = 1
S5= {u3} c(S5) = 3/5
S6= {u4} c(S6) = 3/5
S7= {u4, u5} c(S7) = 3/3 = 1
G2= {S5, S6, S7} B2 = 1

S1 S2
S3 S4 S5 S6 S7

G2

Budget = 1
G1

Budget = 1

4

3

3

3

6

3

4

3

5

3

5

3

3

3

Sets

Set in optimal solution

Set

u1 u2 u3 u4 u5 Elements

Figure 2. The reduction from MNU problem
for the WLAN in Figure 1 to MCG problem.
The data rate of s1 and s2 is 3 Mbps. One of
the optimal solutions for this MCG problem is
H = {S4, S5}.

We use the above reduction to reduce any arbitrary in-
stance of MNU to an instance of the MCG problem. In [5],

the authors presented a greedy algorithm for MCG as it is an
NP-hard problem. Because there is no overall budget lim-
itation for our problem, we adapt the algorithm in [5] and
present the modified algorithm below. The boundary of the
algorithm is also different from the one in [5].

Algorithm Centralized MNU

1. H ← φ, X′ ← X.
2. repeat
3. flag ← 0
4. for i = 1, 2, . . . , n do
5. if c(H

⋂
Gi) < Bi then

6. k ← argmaxj
|Sj

⋂
X′|

c(Sj)
(Sj ∈ Gi)

7. Ai ← Sk

8. flag ← 1
9. else Ai ← φ
10. endfor
11. if flag = 0 then Break
12. r ← argmaxi

|Ai
⋂

X′|
c(Ai)

13. H ← H
⋃

Ar, X′ ← X′ −Ar

14. if X′ = φ then break
15.endrepeat
16.output H

Figure 3. Centralized Solution for MNU

The algorithm greedily picks up subsets with minimum
cost for every additional element until either all elements
have been covered or until each group’s budget has been
violated by the last selected subset for the group. In the
pseudo-code presented in Figure 3, H represents the set of
selected subsets at any step. The set X ′ denotes the ele-
ments of X which have not yet been cover by the subsets
in H . The statements from line 3 to line 14 are repeatedly
executed until all the group budgets are exceeded or all el-
ements of X get covered. The variable flag is used for this
purpose in line 11. In the for loop, Centralized MNU finds
a set Sj in every group Gi whose budget has not been ex-
ceeded, and Sj is the set which is the most cost-effective set
in the group Gi, i.e., |Sj

⋂
X′|

c(Sj)
= maxD∈Gi

|D ⋂
X′|

c(D) . Then
in line 12, Centralized MNU finds the most cost-effective
set in the sets selected in the for loop. This set is added into
H and the elements in this set is removed from X ′ in line
13. Eventually, we get the output H .

Obviously, H does not obey the group budget require-
ments. We assume the cost of any single set Sj in any group
Gi is not more than the budget of Gi. We partition H into
two subsets H1 and H2. H2 contains those sets Sj which
when added to H caused the budget of some group Gi to
be violated. H1 = H − H2. Observe that H1 and H2 by
themselves do not violate the budget constraints and one of
these two sets must be covering at least 1/2 the number of
elements covered by H . Out of H1 and H2, we select the
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one which covers the most number of elements. The final
solution directly maps to the solution to the MNU problem.
Then, we have the following theorem.

Theorem 2 The algorithm Centralized MNU is an 8-
approximation algorithm for MNU problem with no total
budget limitation.

Proof: Define X(H) as the number of the elements covered
by the subsets of X in H . Let OPT be some fixed optimal
solution to the given problem instance. In [5], it was proved
that X(H) ≥ 1

4X(OPT ). As either H1 or H2 must contain
at least half the elements covered by H , Centralized MNU
is an 8-approximation algorithm for MNU problem. 2

Example – Centralized MNU: We run Centralized
MNU algorithm on the MCG problem shown in Figure 2.
S4 is selected in the first round because it has the maximum
value of |S4

⋂
X′|

c(S4)
= 3

3/4 = 4 among all Si (1 ≤ i ≤ 7).
After that, H = {S4}, X ′ = {u1, u3}. In the second
round, S2 is selected because it has the maximum value of
|S2

⋂
X′|

c(S2)
= 2

1 = 2 and c(H
⋂

G1) = c(S4) = 3/4 < B1 =
1. After that, we get output H = {S2, S4} because X ′ = φ.
Now, c(H

⋂
G1) = c(S2) + c(S − 4) = 7/4 > B1 = 1.

We divide H into H1 = {S4} and H2 = {S2}. Even-
tually, we get output H1 because H1 cover more elements
than H2. Therefore, u2, u4, u5 are associated with a1 and
3 users get multicast streams. If we use strongest signal
based approach, u1, u2, u5 can only be associated with a1

and u3, u4 can only be associated with a2. If u1, u3 are
associated with APs first, u2, u4, u5 can not be associated
with APs because of the load limitation of APs. So, only 2
users get multicast service.

4.2 Distributed MNU

We provide a simple distributed algorithm to maximize
the number of users. Intuitively, because the total resource
of the network (APs) for multicast is fixed, every user
should increase the total load minimally in order to attempt
increasing the total number of users. Due to lack of global
view, the distributed approach has to take decisions based
only on local information obtained from the APs.

A user periodically sends a query message to each of its
neighboring APs. Then, each AP responds with a message
containing information about the current multicast sessions
being transmitted and the data rate of such transmissions.
The user also knows the maximum data rate for the link be-
tween itself and its neighboring APs. If a user is currently
associated with some AP a, this user also needs to know the
load of a if it leaves AP a. According to the information
from the neighboring APs, the user calculates the total load
of its neighboring APs if it can associate with it without vi-
olating the maximum multicast load for that AP. The user

then associates with the neighboring AP that results in min-
imum increase in total load. If there are several APs that
result in the same minimum increase in total load, the user
can associate with the one with the strongest signal.

Example – Distributed MNU: Consider that the data
rate of s1 and s2 is 3 Mbps in the WLAN in Figure
1, and users use the distributed algorithm in the order
u1, u2, u3, u4, u5. First u1 associates with a1. Then, u2

can not associate with a1 because of the load limitation of
a1. After that, u3 associates with a1, which results in the
minimum total load 1 of u3’s neighboring APs a1, a2. Sim-
ilarly, u4, u5 are associated with a2. Eventually, 4 out of the
5 users receive their multicast service.

Lemma 1 The algorithm Distributed MNU converges
when the network becomes static if the users in an AP’s
transmission range make their local decisions one by one.

Proof: Because the users in an AP’s transmission range
make decision one by one, each user always operates on the
most up-to-date information about the multicast sessions.
First, we consider the scenario where there are no new users
joining the network. If a user has been associated with an
AP and wants to change its association, it should reduce the
total load of all of its neighboring APs, which also means
the total load of the whole network will be reduced. As
the number of discrete levels of data rates, number of APs,
and number of users are limited, the total load of the whole
network should be eventually reduced to a final value in fi-
nite steps. If a new user joins the network, the total load of
the whole network also should reach a final value in limited
steps. The network is static, and the total number of users is
finite. The number of new users joining the network is also
finite. Therefore, the distributed algorithm converges for a
static network if the users make decision one by one. 2

However, if the users in an AP’s transmission range
make their local decisions simultaneously, the algorithm
Distributed MNU may not converge. The example scenario
is shown in Figure 4. AP a1 can communicate with u1, u2

and u3 with the rates 5, 4 and 4 Mbps, respectively; AP a2

can communicate with u2, u3 and u5 with the rates 4, 4 and
5 Mbps, respectively. Users u1 and u2 are associated with
a1, and u3 and u4 are associated with a2. All users request
the same multicast session s1 with the rate 1 Mbps. So,
the current total load of a1 and a2 is 1

4 + 1
4 = 1

2 . Now, u2

and u3 make the local decision simultaneously. If only u2

changes its association and it associates with a2, the total
load of a1 and a2 is reduced to 1

5 + 1
4 = 9

20 . If only u3

changes its association and it associates with a1, the total
load of a1 and a2 is reduced to 1

4 + 1
5 = 9

20 . Therefore,
both u2 and u3 will change their associations, which actu-
ally does not change the total load. Next, if u2 and u3 make
local decisions simultaneously again, u2 and u3 will be as-
sociated with a1 and a2 respectively, again. Therefore, the

6



algorithm does not converge.
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Figure 4. Negative Example of Converge for
Simultaneous Local Decisions: All users re-
quest the same multicast session. Users u1

and u2 are associated with a1, and u3 and
u4 are associated with a2. u2 and u3 always
make their local decisions simultaneously.

5 Balance Load among APs (BLA)

In this section, we prove the NP-hardness of the BLA
problem and present centralized and distributed algorithms.
The objective is to minimize the maximum load among the
APs.

We present a reduction from Minimum Makespan
Scheduling problem [25] to the BLA problem, which is de-
scribed in the Appendix, to prove the NP-hardness of BLA.
Based on the reduction, BLA is NP-hard because the mini-
mum makespan scheduling problem is NP-hard. Note that
BLA is a P problem if there is only one multicast session.
As there are constant number of discrete transmission rates,
each of these transmission rates can be checked in sequence
for feasiblity of being the maximum transmission rate. For
a given value of the transmission rate, all APs are assigned
the same rate (as the optimization function only concerns
the maximum). Among all the transmission rates the high-
est rate (when assigned to all APs) that provides service to
all users, is the solution.

5.1 Centralized BLA

In order to solve the BLA problem, we present a reduc-
tion to the Set Cover with Group Budgets (SCG) [5] prob-
lem. We first give the definition of the cost version of SCG.

Definition 3 Set Cover with Group Budgets (SCG): There
is a set S = {S1, S2, . . . , Sm} of subsets of a ground set X .
The set S is partitioned into groups G1, G2, . . . , Gl. A cost
c(Sj) is associated with each set Sj . The objective is to find
a subset H of S such that all elements of X are covered by
sets in H and maxl

i=1c(H
⋂

Gi) is minimized.

Theorem 3 The problem of balancing load among APs
(BLA) can be reduced to SCG problem.

Proof: The reduction from BLA to SCG is similar to the re-
duction from MNU to MCG in section 4. We denote the set
of all users as X . For each AP, we create multiple subsets,
each corresponding to a particular combination of session
number and transmission rate. The cost of each subset is
obtained by dividing the rate of the corresponding session
by the transmission rate associated with that subset. All of
the subsets that are related to AP ai form the group Gi. 2

Example – BLA: If the data rate of s1 and s2 is 1 Mbps
in the WLAN in Figure 1, we can reduce the BLA problem
for the WLAN to the SCG problem shown in Figure 5. The
optimal solution of this SCG problem is H = {S2, S3, S7}.

X = {u1, u2, u3, u4, u5}
S1= {u3} c(S1) = 1/4
S2= {u1, u3} c(S2) = 1/3
S3= {u2} c(S3) = 1/6
S4= {u2, u4, u5} c(S4) = 1/4
G1= {S1, S2, S3, S4}
S5= {u3} c(S5) = 1/5
S6= {u4} c(S6) = 1/5
S7= {u4, u5} c(S7) = 1/3
G2= {S5, S6, S7}

S1 S2
S3 S4 S5 S6 S7

G2
G1

4

1

3

1

6

1

4

1

5

1

5

1

3

1

Sets

Set in optimal solution

Set

u1 u2 u3 u4 u5 Elements

Figure 5. The reduction from BLA problem for
the WLAN in Figure 1 to SCG problem. The
data rates of s1 and s2 are both 1 Mbps. The
optimal solution of this SCG problem is H =
{S2, S3, S7}.

SCG problem is also NP-hard. In [5], the authors gave
an algorithm for the cardinality version of SCG based on the
greedy algorithm for MCG. Our algorithm is similar. The
algorithm is shown in Figure 6. Assume the number of the
elements in the ground set X is n.

Theorem 4 The algorithm Centralized BLA is an
(log8/7n + 1)-approximation algorithm for BLA problem.

Proof: In each iteration of running Centralized MNU, the
total cost of the sets added from any group Gi is bounded
by B∗. Because we iterate Centralized MNU log8/7n + 1
times in algorithm Centralized BLA, the total cost of the sets

7



Algorithm Centralized BLA
1. Guess the optimal value B∗ and assume there is an optimal

cover H∗ such that maxl
i=1c(H∗⋂

Gi) ≤ B∗

2. Create an instance of MCG by having a budget of B∗ on each
group Gi. Run Centralized MNU, which covers at least 1

8
th

the elements in X . Remove the covered elements from X and
all subsets of X , and run Centralized MNU again. Iterating
Centralized MNU log8/7n + 1 times results in a solution that
covers all elements. Let H = {all sets Si added when
repeating Centralized MNU}.

3. Output H .

Figure 6. Algorithm Centralized BLA

added from any group Gi is bounded by (log8/7n + 1)B∗

when all elements in X are covered. Therefore, Centralized
BLA is an (log8/7n+1)-approximation algorithm for BLA.
2

To implement the algorithm Centralized BLA, there is an
issue of how to guess B∗. Let the maximum cost among all
subsets of X in all groups be cmax. B∗ also should be less
than 1. Therefore, we can try several (a constant number)
values of B∗ between cmax and 1 to get the best result.

Example – Centralized BLA: We run Centralized BLA
algorithm on the SCG problem shown in Figure 5. Let
B∗ = 1/2 and create an instance of MCG problem. Then
run CentralizedMNU, and get the output {S4}. After that,
remove u2, u4, u5 from every Si (1 ≤ i ≤ 7) and create
a new instance of MCG problem. Run CentralizedMNU
again, and get output {S2}. Therefore, all users are associ-
ated with a1.

5.2 Distributed BLA

As the objective is to balance the load among APs, a
user should attempt to minimize the maximum load of the
neighboring APs. The following is the distributed algorithm
for BLA.

A user periodically sends a query message to each of its
neighboring APs. Then, each AP responds with a message
containing information about the multicast sessions that this
AP supports and the rates for the supported multicast ses-
sions. The user also knows the maximum data rate for the
link between itself and its neighboring APs. If a user is
currently associated with some AP a, this user also needs
to know the load of a if it leaves AP a. According to the
information from the neighboring APs, the user calculates
the new load of a neighboring AP if it is associated with
this AP. For each AP it computes the new vector of loads of
neighboring APs if it decides to join that AP. Each load vec-
tor is sorted in non-increasing order of the loads of APs in
that vector. The user then determines to receive the desired
flow from the AP that locally minimizes the sorted new load

vector.5

Example – Distributed BLA: Assume that the data
rates of s1 and s2 are both 1 Mbps in the WLAN in Fig-
ure 1, and users run the distributed algorithm in the order
u1, u2, u3, u4, u5. First u1, u2 is associated with a1. Af-
ter that, u3 makes the decision. If u3 is associated with a1,
it’s neighboring APs’ load vector in non-increasing order
is (1/2, 0); if u3 is associated with a2, the load vector is
(1/2, 1/5). Therefore, u3 is associated with a1. Next, if u4

is associated with a1, its neighboring APs’ load vector with
non-increasing order is (7/12, 0); if u4 is associated with
a2, the load vector is (1/2, 1/5). Hence, u4 is associated
with a2. Similarly, u5 is associated with a2. Eventually, the
load of a1 is 1/2 and the load of a2 is 1/3, which is also the
optimal solution.

Lemma 2 The distributed algorithm for BLA converges
when the network is static if the users in an AP’s transmis-
sion range make decision one by one.

Proof: The proof is similar to the proof of Lemma 1. If a
user has been associated with an AP and wants to change its
association, it should reduce the vector of neighboring APs’
loads, which also means the global vector of all APs’ loads
in the network is reduced. Because the number of different
data rates, the number of APs, and the number of users are
all finite, the vector of all APs’ loads in the network will
eventually settle down to a final value in limited number of
steps. If there is a new user who joins the network, the se-
quence of all APs’ loads in the network also should reach a
final value in limited steps. Therefore, the distributed algo-
rithm converges when the network is static if the users in an
AP’s transmission range make decision one by one. 2

However, if the users in an AP’s transmission range
make their local decisions simultaneously, the distributed
algorithm for BLA may not converge. The example sce-
nario is same as the scenario for the distributed algorithm
for MNU shown in Figure 4.

6 Minimize the Load of APs (MLA)

In this section, we prove the NP-hardness of MLA and
describe our centralized and distributed algorithms. The ob-
jective of MLA is to reduce the total network load.

We show that MLA is an NP-hard problem, by showing
a reduction from the Set Cover problem, which is described
in the Appendix. MLA is NP-hard as set cover problem is
NP-hard [9].

5We define two sequences with non-increasing order to be equal if each
pair of values at the same position of these two sequences are equal. If two
sequences are not equal, we compare the first pair of unequal elements at
the same position and the sequence with the smaller element is smaller
than the other sequence.
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6.1 Centralized MLA

In order to solve the MLA problem, we reduce it to the
Set Cover problem.

Theorem 5 The problem of minimizing the load of APs
(MLA) can be reduced to set cover problem.

Proof: We regard the set of all of the users as the ground
set X . The construction is same as the construction in the
proof of Theorem 3 except that there are no groups since
we are only concerned the total multicast load of a network,
not each AP’s load for MLA problem.”

2

Example – MLA: If the data rate of s1 and s2 are
1 Mbps in the WLAN in Figure 1, we can reduce the MLA
problem for the WLAN to the set cover problem shown in
Figure 7. The optimal solution of this set cover problem is
H = {S2, S4}.

X = {u1, u2, u3, u4, u5}
S1= {u3} c(S1) = 1/4
S2= {u1, u3} c(S2) = 1/3
S3= {u2} c(S3) = 1/6
S4= {u2, u4, u5} c(S4) = 1/4
S5= {u3} c(S5) = 1/5
S6= {u4} c(S6) = 1/5
S7= {u4, u5} c(S7) = 1/3

S1 S3S2 S4 S5 S6 S7 Sets

4

1

3

1

6

1

4

1

5

1

5

1

3

1

Set in optimal solution

Set

u1 u2 u3 u4 u5 Elements

Figure 7. The reduction from MLA problem for
the WLAN in Figure 1 to the set cover prob-
lem. The data rate of s1 and s2 is 1 Mbps. The
optimal solution of this set cover problem is
H = {S2, S4}.

We use the greedy solution [25] to the set cover problem
in our simulations. However, it should be mentioned that
the layer algorithm, which is bounded by a constant, can
also be used if for any user the number of APs that it can
associate with is bounded by a constant [25].

The greedy algorithm for set cover is well known. The
cost version of greedy set cover algorithm is shown in Fig-
ure 8, which can be directly used to solve MLA problem
after reducing it to an instance of the set cover problem.

Example – Centralized MLA: We run CostSC algo-
rithm on the set cover problem corresponding to Figure 7.

Algorithm CostSC

1. H ← φ, X′ ← X.
2. while X′ 6= φ do

3. A ← Si s.t. |Si
⋂

X′|
c(Si)

= maxD∈S
|D ⋂

X′|
c(D)

4. H ← H
⋃

A, X′ ← X′ −A
5. endwhile
6. output H

Figure 8. Algorithm CostSC [25]

S4 is selected in the first round because it has the maxi-
mum value of |S4

⋂
X′|

c(S4)
= 3

1/4 = 12 among all Si (1 ≤
i ≤ 7). After that, H = {S4}, X ′ = {u1, u3}. In the
second round, S2 is selected because it has the maximum
value of |S2

⋂
X′|

c(S2)
= 2

1/3 = 6. After that, we get output
H = {S2, S4} because X ′ = φ. Therefore, all users are
associated with AP a1, which is also the optimal solution.

The following theorem’s proof is given in [25].

Theorem 6 The algorithm CostSC is an (lnn + 1)-
approximation algorithm for set cover problem.

6.2 Distributed MLA

Because the objective of MLA is to minimize the total
load of the APs in the network, intuitively, a user should be
associated with the AP which increases the total load mini-
mally. Therefore, we use the same distributed algorithm for
MLA as the one for MNU.

Example – Distributed MLA: Consider that the data
rate of s1 and s2 is 1 Mbps in the WLAN in Figure
1, and users use the distributed algorithm in the order
u1, u2, u3, u4, u5. First u1, u2 is associated with a1. Af-
ter that, u3 is associated with a1 because the total load of
u3’s neighboring APs a1 and a2 is 1

3 + 1
6 = 1

2 if u3 is as-
sociated with a1 and the total load is 1

3 + 1
6 + 1

5 = 7
10 if u3

is associated with a2. Similarly, u4, u5 are associated with
a1. Eventually, all users are associated with AP a1, which
is also the optimal solution.

7 Performance Evaluation

In this section we report on performance studies of the
proposed association algorithms for multicast using simu-
lations in the Network Simulator ns2 [18]. The simulation
source code can be downloaded from http://www.cse.ohio-
state.edu/∼chenai/ICDCS07/. The simulation results show
the average performance of our algorithms, while our anal-
ysis in the previous sections only shows the performance
of our algorithms in the worst cases. We compare the per-
formance of the three algorithms, MLA, BLA, and MNU,
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with the signal strength based association algorithm (SSA),
which always lets a user associate with the AP providing the
strongest signal among all the neighbor APs of this user.
We have simulated the proposed algorithms over 1.2km2

area with upto 200 APs and 400 users randomly located in
the area. The radio propagation range of both AP and user
is 200m. The transmission rates and their distance thresh-
olds are shown in Table 1. The users collect information of
neighbor APs using active scanning [19]. Every user joins
one multicast session. The APs operate in IEEE 802.11a
infrastructure mode. We use 0.9 as the load limitation of
multicast for every AP. Unless otherwise specified, we use
5 multicast sessions. Each user selects one of the multicast
sessions at random. These simulation settings are used for
all algorithms unless mentioned otherwise. We depict the
average, min and max values for 40 random scenarios in
the figures.

Rate (Mbps) 6 12 18 24 36 48 54
Distance Threshold (m) 200 145 105 85 60 40 35

Table 1. Transmission Rate vs. Distance
Threshold [17]

Minimize Load of APs: Figure 9 shows the total load
(the summation of all AP’s multicast loads) with respect to
the number of users, APs, and sessions, respectively. Fig-
ures 9(a) and 9(c) show that the total AP load increases, as
the number of users and the number of sessions increase
because of increased multicast demand. The total AP load,
however, has an inverse relationship to the number of APs
as shown Figure 9(b). The reason is that the resulting in-
creased density of APs allows for higher transmission rate
between APs and users.

We can observe that the centralized and distributed MLA
algorithms perform better than SSA through simulations in
Figure 9. The total multicast load of the centralized MLA
and the distributed MLA perform 31.1% and 30.1% better
than that of SSA at 400 users, respectively in Figure 9(a).
The distributed algorithm performs only slightly worse (up
to 5%) than the centralized algorithm.

Balance Load among APs: Figure 10 shows the maxi-
mum load among APs with respect to the number of users,
APs, and sessions, respectively. The centralized and dis-
tributed BLA algorithms have upto 52.9% and 50.5% lower
maximum load than SSA at 400 users, respectively (Fig-
ure 10 (a)). Moreover, unlike the SSA algorithm, for the
distributed and centralized BLA algorithms, the maximum
load increases slowly with the number of users or sessions
(Figures 10 (a) and 10 (c)). Figure 10 (b) shows that the
maximum load decreases as the number of APs increases,
since the multicast load can be shared by more APs. We
observe that the centralized and distributed BLA algorithms

have similar performance.
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Figure 11. The number of satisfied user with
respect to multicast load limit (budget) with
400 users, 100 APs, and 18 multicast ses-
sions.

Maximize Number of Users: Figure 11 shows the num-
ber of satisfied users with respect to the multicast load lim-
itation. We define the multicast load in Definition 1. As the
multicast load limitation increases, the number of satisfied
user increases as well. The satisfied number of users of the
centralized and distributed MNU algorithms are 36.9% and
20.2% higher than that of SSA at the load limitation 0.04.

Optimal Solutions: In Figure 12, we evaluate the opti-
mality of MLA, BLA, and MNU algorithms. Because there
has been no other research work considering the problems
mentioned in this paper, we have implemented ILPs for
MLA, BLA, and MNU problems based on the ILP of set
cover problem to compute the optimal solutions. Note that
MLA, BLA, and MNU are NP-hard problems. As ILP takes
exponential time to arrive at solutions, we limit our evalua-
tion to small networks. The total AP loads of the centralized
and distributed MLA algorithms are 25% and 22.2% higher
than the one of the optimal solution at 30 users in Figure 12
(a). The maximum loads among APs of the centralized and
distributed BLA algorithms are 12% and 22.6% higher than
the one of the optimal solution at 40 users in Figure 12 (b).
Although on average the MNU algorithm performs much
closer to the optimal algorithm than the SSA algorithm, the
maximum number of unsatisfied users for the centralized
and distributed MNU algorithms are 5 and 8 respectively
(Figure 12(c), 50 users6) but for the optimal solution it is
1. If networks are small, it is possible in some scenarios
for the distributed algorithms to perform even better than
the centralized algorithms (Figure 12(a)). The reason is that
in small networks, the distributed algorithms have relatively
more global information than in case of large networks.

6These details are not visible in the graph due to overlapping error bars
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Figure 9. Total AP load for multicast sessions. Figure (a) varies the number of users for 200 APs,
Figure (b) changes the number of APs with 100 users, and Figure (c) changes the number of session
with 200 APs and 200 users.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  50  100  150  200  250  300  350  400  450

M
ax

im
um

 A
P 

lo
ad

Number of users

SSA
CentBLA
DistBLA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 40  60  80  100  120  140  160  180  200  220

M
ax

im
um

 A
P 

lo
ad

Number of APs

SSA
CentBLA
DistBLA

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 20 18 16 14 12 10 8 6 4 2 0

M
ax

im
um

 A
P 

lo
ad

Number of multicast sessions

SSA
CentBLA
DistBLA

(a) (b) (c)

Figure 10. Maximum load among APs for multicast sessions. Figure (a) varies the number of users
for 200 APs, Figure (b) changes the number of APs with 100 users, and Figure (c) changes the
number of session with 200 APs and 200 users.

8 Discussions and Future Work

In this section we outline some open issues that we are
current investigating.

Distributed Convergence: We have shown that in some
cases, simultaneous association decisions by multiple nodes
may not necessarily result in global optimization of the ob-
jective functions. We are currently working on local coordi-
nation mechanisms to guarantee optimization of the global
objectives at each step. An idea that we are currently explor-
ing uses explicit locks from neighboring APs before com-
mitting to a change in association. We are exploring issues
such as deadlocks, communication overhead and delayed
association for such approaches.

Adaptive Power Control: Adaptive power control pro-
vides an additional degree of flexibility that has not not been
explored in this work. We are currently working on approx-
imation algorithms based on a generalized network model
that allows nodes to choose from a finite set of discrete
power levels.

Explicit Interference Modeling: The approximation al-
gorithms need to be modified to explicitly account for in-

terference from neighboring users and APs7. In addition,
along with such explicit interference models, it is necessary
for the nodes to dynamically maintain a list of interfering
nodes. To keep track of interfering sources, naive solutions
proposed in the literature use explicit beaconing at high
power levels, which adds extra overhead. We are currently
investigating extensions to our work that use explict inter-
ference modeling along with practical ways to keep track of
interfering sources”

9 Conclusion

Multicast services must be deployed with minimal im-
pact to existing unicast services in WLANs. The problem of
enabling multicast based streaming services in large-scale
WLANs has not received attention in the past. Motivated
by recent reports of dense deployments of APs in WLANs,
we study techniques for exploiting overlapping coverage
from neighboring APs to optimize performance. Three ob-
jective functions motivated by different revenue functions

7Our solutions to MLA and BLA implicitly optimize interference
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Figure 12. The optimal solution of MLA, BLA, and MNU problems with respect to the number of user
with 30 APs: (a) total AP load, (b) maximum AP load among all APs, and (c) the number of unsatisfied
user with multicast budget 0.042. 30 APs and 50 users are randomly located in 600m2 area.

and network scenarios are studied: maximizing the num-
ber of users (MNU), balancing the load among APs (BLA)
and minimizing the load of APs (MLA). We show that these
problems are NP-hard. We present centralized approxima-
tion algorithms and distributed algorithms for these prob-
lems. Using simulations we evaluate the performance of
these protocols and find that compared with multicasting
from associated APs chosen based on strongest signal, the
number of users can be increased by up to 36.9%, and the
maximum AP load and the total load can be reduced by up
to 52.9% and 31.1%, respectively. We conclude that the im-
pact of multicast services on unicast services in WLANs can
be effectively reduced by association control mechanisms.
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Appendix

A. Reduce the Subset Sum Problem to the
MNU Problem

The Subset Sum problem is defined as follows.

Definition 4 Subset Sum Problem: Given a set of nat-
ural numbers G = {g1, g2, . . . , gk} and a target num-
ber T , decide if a set S ⊆ {1, 2, . . . , k} exists, such that∑

i∈S gi = T .

Theorem 7 The Subset Sum problem can be reduced to the
MNU problem.

Proof: We present a reduction from an arbitrary instance
of the subset sum problem. We construct a WLAN with a
single AP. The maximum load this AP can support for mul-
ticast traffic is T . The WLAN supports k multicast sessions
s1, s2, . . . , sk, where session si creates a load of gi when
transmitted at unit data rate. Corresponding to each session
we add gi users requesting session si. Each user has a link
of unit data rate to the AP. If the maximum number of users
this WLAN can support for multicast traffic is T , the Sub-
set Sum problem has a positive answer; otherwise, it has a
negative answer. Note that the maximum value of the load
of an AP is 1 according to Definition 1 while T can be any
natural number. However, we can make them less than 1
by dividing the maximum load T of AP and the load gi of
every multicast session si by a large enough number. 2

B. Reduce the Minimum Makespan
Scheduling Problem to the BLA Prob-
lem

Definition 5 Minimum Makespan Scheduling: Given
processing times for n jobs, p1, p2, . . . , pn, and an integer
m, find an assignment of the jobs to m identical machines
so that the completion time, also called the makespan, is
minimized.

Theorem 8 The Miminum Makespan Scheduling problem
can be reduced to the BLA problem.

Proof: We construct a WLAN with m APs. Every AP
only provides one transmission rate to users. The multicast
sessions supported by this WLAN are s1, s2, . . . , sn. All
APs can provide service to all users. The load requirement
for a multicast session si is pi (1 ≤ i ≤ n). The objective is
to minimize the maximum value of an AP’s load among all
APs under the limitation that all users get multicast service.
2

C. Reduce the Set Cover Problem to the
MLA Problem

We first define the Set Cover problem, and then present
a reduction from the set cover problem to MLA problem to
show that MLA is an NP-hard problem.

Definition 6 Set Cover: There are m subsets
S1, S2, . . . , Sm of a ground set X = {u1, u2, . . . , un}. A
cost c(Sj) is associate with each set Sj . The objective is
to find a subset H of S = {S1, . . . , Sm} which covers all
elements of X and has the minimum total cost. If the cost
of every subset Sj is a same value c, the set cover problem
is a cardinality version.

Theorem 9 The cardinality version of set cover problem is
reducible to MLA.

Proof: We construct a WLAN with m APs, a1, a2, . . . , am,
and n users, u1, u2, . . . , un. In this WLAN, all users re-
quest for the same multicast stream session with load re-
quirement c. AP aj can provide service to users in subset
Sj (1 ≤ j ≤ m). The link between the AP and the user has
a unit data rate. The objective is to minimize the total load
of all APs under the limitation that all users receive multi-
cast service. 2
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