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Abstract

A growing number of applications have become reliant
or can benefit from monitoring data streams. Data streams
are potentially unbounded in size, hence, Data Stream Man-
agement Systems generally maintain a “sliding window”
containing theN mostrecentelements. In an environment
where the number of stream sources can vary, the amount
of storage available to hold the sliding window can reduce
dramatically. However, it has already been noted that as
data becomes older their relevance tends to diminish un-
til they are ultimately discarded from the sliding window.
Based on this assumption, we propose to “wound” older
data elements by relaxing their storage requirements as an
effort constantly free enough space to keep pace with accu-
rate representation of incoming elements in a process that
we call aging. We propose two incremental quantization
techniques that enable aging in an efficient manner. We will
show that, by relaxing storage utilization of the summary
created by our quantizers, the older data elements are not
rendered useless. In fact, we will show that their accuracy
is only lessened by a sustainable amount.

1 Introduction

Data Stream Management Systems (DSMS) have gained
significant interest in the database community due to a
growing number of applications that deal with continuous
data, e.g., environmental monitoring and network intrusion
detection. The general challenge that comes coupled with
the data stream model is storage management. Once an ele-
ment from a data stream has been processed it is discarded
or archived - it cannot be retrieved easily unless it is explic-
itly stored in memory, which typically is small relative to
the size of the data streams [1]. Because data streams are
potentially unbounded in size, storing the complete sum-
mary in memory is prohibitive. To overcome this issue,
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DSMS’s generally maintain a constant size “sliding win-
dow” containing theN most recentdata stream elements.
By restricting the stream application to finite bounds, it be-
comes feasible to store and access the most recent elements
of streaming data efficiently, assuming that real-time appli-
cations mostly find recent data more relevant.

Consider multi-streaming models whereM streams feed
into a central DSMS server, which must maintain a sliding
window over these streams. WhenM becomes large, sys-
tem resources (e.g., CPU and storage) are consumed at a
much more vigorous rate, becoming increasingly difficult
to maintain Quality of Service constraints such as timeli-
ness and accuracy. In order to alleviate CPU load under
these strenuous conditions, recent development in DSMS
design employs techniques such as accuracy adjustment
and load shedding [3, 4, 15, 16]. The burden on storage
has also received attention. Recall that the sliding win-
dow must be constant size in order to fit in memory for
efficient processing. Summarization techniques including
histograms [6, 7, 10], sketching [8] and sampling [2] pave
the way to data reduction.

We propose an approach to mitigate the stress on storage
in multi-stream systems by adding the element ofageto the
sliding window. Aging data streams is not a novel concept
as Jagadish et al. [10] first proposed to take into account the
age of the elements. Their approach aims to provide fast ap-
proximate point queries by updating a histogram summary.
Ours differ in the way that we offer an online compression
technique to hold the actual values (not just statistics) of
the sliding window with minimal loss of accuracy, thus en-
abling a wide array of data mining tasks including cluster-
ing and such asK-Nearest Neighors queries. The intuition
is established on the observation that stream applications
carry natural tendencies to favor recent elements over older
elements [13]. As data grows older, its relevance diminishes
until it is ultimately discarded from the sliding window. Our
technique “wounds” older data elements by relaxing their
storage requirements. This regained space is then further
utilized to capture higher accuracy for incoming elements.

We make several contributions in this paper. First,
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we propose 2 novel online quantization techniques,In-
cremental V-Optimal Quantization(IV Q), and Distor-
tion Based Quantization(DBQ) that achieve efficient on-
demand compression. Correspondingly, we will also show
that not only doIV Q and DBQ find near-optimal solu-
tions, i.e., minimal loss in quantized data representation,
they are also polynomially faster than current approaches
to the optimal solution. Finally, we discuss theLadder Ap-
proachfor sensible storage distribution as a means to apply
age to data elements.

The rest of this paper is organized as follows. In Section
2, we describe the role of quantization with regards to sup-
porting aging on streams. We then proposeIV Q andDBQ
respectively in Sections 3 and 4. Next, Section 5 discusses
the Ladder Approach towards aging data stream elements,
followed by a performance analysis of our approach in Sec-
tion 6. Finally, we conclude and discuss future directions in
Section 7.

2 Background

Because quantization lies deep in our aging procedure,
we first present a brief review of this technique. The goal
of quantization is to constrain a given vectorF of contin-
uous values intoB discrete intervals (withB − 1 bound-
aries). Each discrete interval can be uniquely identified by
a label consisting ofdlog2(B)e bits. Thus, the actual val-
ues inF are replaced with adlog2(B)e bit sequence which
indicates the the interval with its closest representation. Al-
beit a loss in accuracy of the actual elements, this technique
has been proven useful in many disciplines including image
processing and signal encodings. Moreover, as the number
of intervals increases the information lost due to the quanti-
zation is reduced. We illustrate this procedure with a simple
example.

F = 0 2 3 6 7 15 16 20
Interval 0 0 0 0 0 1 1 1

Using b = 1 bit for quantization, the domain,D =
[0 . . . 20], of the 8 given numbers is divided intoB = 2
intervals,I0 andI1, separated byB − 1 = 1 boundary. For
sake of simplicity, we let the boundaryψ = 10. Then all
given valuesf ∈ F that are less than or equal to10 are
assigned toI0 and the rest are assigned toI1. Notice that
only a single bit is needed for mapping all values inF to
the closest interval.

Statistics can also be applied per interval to increase the
information denoted by the bit representation. Typically, the
mean or median of all values within each interval is used
for this purpose. In order to maintain an accurately quan-
tized synopsis, now the goal is to minimize the sum of the
square of the differences (SSE) between all values within
an interval and the statistic of the interval to which they are

assigned. In this example,3.6 and17 are the means ofI0

andI1 respectively, andSSE0 = 33.2 andSSE1 = 14.
The problem becomes finding the interval boundaries such
that they minimizeSSEtotal =

∑
SSEk.

Although our boundary was trivially assigned to10 in
this example, effective boundary identification is a non-
trivial task on real number domains. For instance, if the
boundary had been selected asψ = 5, then the points6
and 7 would have fallen intoI1. Because0, 2, and3 are
very close to each other, this would expectedly decrease
SSE0 to 4.67. However, it increasesSSE1 to 178.2, and
SSEtotal = 182.78. With regards to storage, assuming that
it takes4 bytes to represent integers and floating point num-
bers, without quantization the given values inF would allot
32 bytes. On the other hand, quantization observes the fol-
lowing attributes on storage:

• 4B bytes to store theB interval statistics.

• bM bits for theM b-bit representations used for inter-
val mapping.

QuantizingF generates only8 bytes+8 bits = 9 bytes to
hold the lossy representation of the given values. Consider-
ing the fact that we must sustain some loss in data accuracy,
recall that the main goal of quantization is to use minimal
space to maintain a maximally accurate summary. It should
now be clear that optimally minimizingSSEtotal translates
to this solution.

2.1 Enabling Aging

In our system aging refers to the process of wounding
older data elements by relaxing their storage and then using
this storage to capture the details of the synopsis belonging
to the younger incoming elements. Hence, the design of the
quantizer should be made appropriate not only to support
such an operation, but to support it efficiently. We summa-
rize the requirements that should be met by the quantizer as
follows: (1) Efficient Aging — the final quantization func-
tion should be built from an incremental manner in such a
way that wounding a bit from the synopsis takes minimal
time. (2) Preserving High Accuracy — boundaries should
be selected in such a way thatSSEtotal is minimized.

While the first requirement will be discussed in the next
section, the second requirement refers to solving the V-
Optimal Histogram Problem, which states, given a vector
of M numbers and the number of desired intervals,B, find
the B − 1 boundaries such thatSSEtotal is minimized.
While optimal solutions to this problem are polynomial in
nature [9, 10, 6], there exists a notion that, whenM is large,
approximate solutions become more practical [10, 7, 12].
Unfortunately, none of these solutions fit our first require-
ment of an incremental quantizer construction. We show
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the need for an incremental design through an example with
quantizing multi-stream data.
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Figure 1. Challenge of the 1st Criterion

In Figure 1, assume that our system handlesM = 10
streams, and we let each point denote a single element ar-
riving from a data stream. Suppose that these elements are
currently represented in our sliding window with ab = 2
bit quantization, as depicted in Figure 1b. After some time,
our system recommends that these data are now “older” and
should be compressed to make space for more incoming el-
ements. In order to relax a bit from the 2-bit representation,
our system must store a corresponding 1-bit representation
as shown in Figure 1a. Without a directly accessible 1-bit
representation, it would become necessary to again quantize
the 2-bit data using one less bit — an undesirable and seem-
ingly redundant process. Furthermore, we would also ex-
pect too much error to be introduced by the re-quantization
of already quantized (lossy) data. Another approach is to
save both representations independently. Although it would
guarantee a statically accessible representations, the algo-
rithm would have to be runb times to obtain each. More-
over, its increased storage requirements for each set of data
makes this option even more so unlikely for data stream sys-
tems. It is clear that a quantization algorithm is needed such
that the boundaries of the quantization forb bits are pre-
served during the quantization forb + 1 bits. That is, ab
bit quantization should be constructed iteratively such that
new boundaries are added on top of existing boundaries. We
note that the current solutions to the V-Optimal Histogram
Problem are not incremental, and therefore unable to apply
aging efficiently.

Incremental quantization techniques do, however, exist.
Most notably, equal-length and equal-depth quantization
are heuristics that naturally observe incremental behavior
[10]. Their interval boundary selection criteria are resident
in their names: equal-length iteratively partitions an inter-
val into 2 equal halves while equal-depth divides intervals
into halves containing an equal number of elements. While
both techniques are mechanically efficient and incremen-
tal, the trivial boundary selection criteria may produce poor
data accuracy on practical distributions. In light of this is-

sue we propose a novel V-Optimal Histogram heuristic that
identifies near optimalincrementalintervals while achiev-
ing the same linear time complexity as equal-length and
equal-depth.

3 Iterative V-Optimal Quantization

The proposed method, Iterative V-Optimal Quantization
(IV Q), exploits a special case in the solution for V-Optimal
Histogram. The major issue with directly employing the
exact optimal solution [6] is its polynomial time complex-
ity O(M2). However, we prove that for the special case
of B = 2, finding an optimal boundary,ψ, for 2 intervals
can be done inO(M)-time on a sorted set ofM numbers.
The premise ofIV Q starts with a0-bit summary, then itera-
tively using thisO(M)-time subroutine, we add 1 bit to our
summary at a time until the number of total bits is satisfied.
The incremental construction of the quantized summary al-
lows us the structure to remove bits efficiently. But first, we
prove that whenB = 2, the optimal solution can be found
in O(M)-time.

We call this special case ofB = 2 the V-OptimalB2
Problem. Given a sorted vectorF of length M , we can
state this problem as follows: findi such that

i∑
k=1

(F [k]−Avg(F [1...k]))2+

n∑
k=i+1

(F [k]−avg(F [i+1...n]))2 (1)

is minimized andψ = F [i]+F [i+1]
2 . We can rewrite equa-

tion 1 to obtain
n∑

k=1

(F [k])2− (i∗avg(F [1...i])2 +(n− i)∗avg(F [i+1...n])2). (2)

Now we see that minimizing equation 2 is equivalent to
maximizing

i ∗ avg(F [1...i])2 + (n− i) ∗ avg(F [i + 1...n])2. (3)

Note that if we define an arrayP , as in [10], of lengthM
with P [j] =

∑
1≤k≤j F [k] then we can rewrite equation 3

as
P [i]2

i
+

(P [M ]− P [i])2

M − i
. (4)

After reformulation, we can see that finding thei that max-
imizes this equation is anO(M)-time routine.

The IV Q algorithm, shown in 1, is summarized as fol-
lows. First, we divide the quantization process intob incre-
mental steps, whereb again denotes the desired number of
bits used in our final representation. Assume that for each
step, we use only1 bit per data element for a given set of
numbers. Recall that using1 bit results inB = 2 intervals.
This implies that at each stepj, we need only to solve the
V-OptimalB2 Problem to find the boundary,ψj . For the
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Algorithm 1 TheIV Q Algorithm
1 b // number of bits to be used in final quantization
2 psi[1 . . . B] // boundaries
3 F [1 . . . M ] // input vector
4 list[] ← sort(F )
5
6 IVQ(list[], start, end, j, psiindex)
7 if j <= b then
8 {
9 //call solution for v-optimal-b2 to get boundary
10 psi[psiindex]← v-optimal-b2(list, start, end)
11
12 //call recursively on both sides of lists
13
14 //first half
15 IVQ(list, start, psi[psiindex], j+1, 2*psi index)
16
17 //second half
18 IVQ(list, psi[psi index] + 1, end, j+1, 2*psiindex+1)
19 }

numbers inF on the left of the boundary, i.e.,< ψ, the
corresponding bit is assigned 0 and the rest 1.

To illustrate, whenj = 1, we add the first bit to the syn-
opsis. In do this, we first employ the above solution for
V-Optimal B2 Problem and findψ1 and the statistics of the
two intervals. Then whenj = 2, we add the second bit
by apply our algorithm recursively to findψ for each half.
This process is continued until we reachj = b whereby
all 2b−1 ψ’s (andB = 2b interval statistics) are computed.
The complexity ofIV Q is straightforward. For a list of size
M , we run theO(M)-time subroutine forV-OptimalB2,
then the list is split into2 halves, and the algorithm is ap-
plied recursively on both halves. The number of splits is
directly dependent onb. Therefore, cost of this algorithm is
O(bM), while keeping in mind thatb is typically constant.
The procedure is illustrated forb = 3 in Figure 2.

Recall that the original need for an incremental quan-
tizer involved Requirement (1): efficient aging. Returning
to Figure 2, when adding bits to the quantization summary,
notice that the boundaries of the intervals from the previous
iteration are preserved and reused. To visualize the process
of aging, assume that we have a3-bit representation of the
data elements belonging to a particular time unit and we
want to remove one bit from this representation. Because
our summary was built in an incremental manner, we can
simply remove the least significant bit from each stream in
order to obtain the exact representation for the2-bit sum-
mary. The removal of this bit only costsO(1)-time. To sup-
port this low cost, we must maintain all statisticsAvg1,1,
Avg1,2, Avg2,1, . . ., Avg3,8, to map to the intervals. This
implies saving

∑k
i=1 2i means for somek-bit representa-

tion. The cost of this storage is amortized for a massive
amount of streams (i.e., whenM is large), but it should be
noted that while deleting thekth bit, we also can delete all
averages belonging to the quantizer of that bit:Avgk,1, . . .,
Avgk,2k , thus regaining that space.
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Figure 2. Example Run of IV Q for b = 3

As for achieving Requirement (2): accuracy, we address
IV Q’s efficacy in data representation as compared to the
optimal solution in Section 6.

4 Distortion Based Quantization

Shen and Hasgawa previously proposed a distortion
based quantization method, an adaptive incremental LBG,
which is a K-Means clustering based method [14]. This al-
gorithm increases the number of quantization cells one af-
ter another. At each iteration, it finds the quantization cell
that introduces the maximum error, and sets a random data
point within the cell as the representative of the new quan-
tization cell. After this, the LBG clustering algorithm is
executed in order to find the new clusters and the new repre-
sentives. As the boundaries can be altered in the clustering
step, this technique does not guarantee the preservation of
the old boundaries.

In this section we will introduce our second incremen-
tal quantization technique, Distortion Based Quantization
(DBQ), which was inspired by this approach. This tech-
nique is akin toIV Q in that we still exploit theO(M)-time
solution for theV-Optimal B2 Problem. The only differ-
ence lies inwhere this subroutine is applied.IV Q applies
directly on both halves of the list, thereby giving all ex-
isting intervals a fair share of details. In contrast, at each
iteration,DBQ applies to the interval observing the max-
imum SSE. This allows for the formation of finer-grained
sub-intervals when variance between the points within an
interval is high, leading to more accurate quantization for
highly skewed data sets. This feature is not without cost,
asDBQ is O(M2) in the worst case, and can only offer
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O(M)-time bit removal, both polynomially larger than its
IV Q counterpart. The algorithm is shown below in Algo-
rithm 2.

Algorithm 2 TheDBQ Algorithm
1 b // number of bits to be used in final quantization
2 psi[1 . . . B] // boundaries
3 F [1 . . . M ] // input vector
4 list[] ← sort(F )
5
6 DBQ(list[])
7 psi[1]← min(list)
8 psi[2]← max(list)
9 j = 1;
10 used = 2;
11 whilej <= b
12 {
11 whileused <= 2j + 1
12 {
13 //find the Interval with the maximum SSE
14 max← IntervalWithMaximumSSE(list, psi, used)
15
16 //shift the boundaries right to insert the new boundary
17 psi[max + 2 : used + 1]← psi[max + 1 : used]
18
19 //call solution for v-optimal-b2 to get boundary
20 psi[max + 1]← v-optimal-b2(list,psi[max], psi[max + 2])
21 used = used+1
22 }
23
24 if j =1,
25 OLD Boundaries = psi[1:used]
26 else,
27 CURRENTBoundaries = psi[1:used]
28 MAP(OLD Boundaries, CURRENTBoundaries)
29 OLD Boundaries = CURRENTBoundaries
30 j = j+1
31 }

We now show that this algorithm also satisfies both of
our criteria. To satisfy Requirement (1), the enabling of
efficient aging, we digress to an example run of this tech-
nique, as illustrated in Figure 3. The first bit is added so
thatψ1 divides the entire dataset into two halves. The sec-
ond bit allows us to add two additional boundariesψ2 and
ψ3. After determining that the righ half contains the most
distortion, we placeψ2 in this interval. The same procedure
applies to placingψ3, giving us a total of 4 intervals.

Aging on this synopsis is not as efficient asIV Q. It is
easy to see that simply removing the least significant bit
from the synopsis is no longer sufficient. In our exam-
ple, the elements within the “01”, “10”, and “11” intervals
should be replaced with “1” after removal of a bit. No sim-
ple bit removal rule exists for this case. Consequently, an
additional mapping is required to point “01”, “10”, and “11”
to “1”. Because this mapping can be saved for each inter-
val, so there is not an additional storage cost for each data
element in this technique. Unfortunately, deleting a bit now
takesO(M)-time because each data element needs to be
observed and remapped. This is the tradeoff for properly
handling highly skewed data sets.

For Requirement (2), the accuracy of the quantization
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Figure 3. Example Run of DBQ for b = 2

relative to the optimal solution is shown through experimen-
tal results are provided in Section 6.

5 Overall Approach for Aging Data Streams

The concept of usingaging on data streams to address
the storage issue is born from the observation that newer
streaming data is typically more relevant than the older [13].
This naturally corresponds to the idea of capturing more de-
tail on the younger elements by sacrificing some detail from
older elements. Our overall approach of supporting this is
through storage manipulation: to utilize more storage for
the data belonging to newer time units and less storage for
older data, and devise a technique where more storage trans-
lates to higher accuracy.

We illustrate with an example. Assuming that the length
of the sliding window is5 time units, and additionally, the
available memory for each stream is15 units of storage. A
simple way of distributing storage units would be to simply
assign them uniformly across the sliding window: 3 bits per
time unit. However, the interest of the queries is not quite
as uniform. If most queries involve the first few time units,
then we could sustain some depreciation of older elements.
The storage can alternatively be assigned to the time units
based on their order of the query interest. For instance, the
youngest time unit obtains5 units of storage, the second
youngest gets4 units, and so on.

We call this storage distribution method theLadder Ap-
proach. At time t + 1, an element from each stream arrives
at our system. Focusing on a single stream, under the ladder
model, being these youngest elements should receive5 units
of storage. The question now is where to obtain the needed
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space. We salvage1 unit of storage from the element be-
longing to timet − 4 because it is now discarded from the
sliding window. The data belonging at timet is no longer
the youngest element in the synopsis, so it “steps down” the
ladder and relaxes1 bit of storage. The same holds for ele-
ments oft− 1, t− 2, andt− 3. The outcome of this aging
operation are that there remains5 units of available storage
for the new element at timet + 1.

In general, the length of the sliding window,N , is
much longer than the one given in our example. Assume
that the total amount of storage available per stream is
d(ω + 1)/2e ∗ N units, whereω units of storage is pre-
sumably enough to capture nearly all details of the data be-
longing to a time unit after quantization. Then the synopsis
can be maintained in such a way that the ladder containsω
steps. Based on the above assumptions, the time units can
be assigned to the steps of the ladder uniformly. So, in the
case ofN is a dividend ofω, the number of time units using
someu units of storage is equal to that usingu + 1 units
of storage. Otherwise, theN can be selected as the closest
smaller multiplicand ofω. The starting time unit of the step
s, for elements of which we are usings units of storage, can
be calculated by(t−N +1)+(s−1)∗N/ω. As time passes
from t to t+1, the oldest time units in each step of the ladder
are shed one unit of storage, which corresponds to deleting
the synopsis itself for the oldest element. The ladder is then
shifted towards the future by the aging operation discussed
above. This is summarized in Figure 4.

����� ��������

��

	
��


�
��
�
��
��
�
��
��
�
�
�
��
���
�
�

�

�

���

���

�

����

�������

�������

	������������������ ���������

���������������������!�����

"� ����������������������������

������������������������!�����#

���������

��
���$���

��

��%$���

��

Figure 4. The Ladder Approach for Storage
Distribution

It should now be clear as to why an incremental quan-
tization technique such as those presented in the previous
sections are suitable underlying structures for enabling our
aging approach. We have described howIV Q is purposely
built in such a way that its incremental data structure sup-
ports a constant time routine to age the entire sliding win-
dow, whereasDBQ is suitable for highly skewed data at a
higher cost.

Focusing on ourM stream system, our sliding window
can be implemented by using nested linked lists. The outer

list is a sizeN list where each node contains the summary
of a specific time unit. This includes the boundary statis-
tics and the bit mappings. The mappings itself is another
list where each node containsM bits at somejth position.
Aging onIV Q simply involves traversing each outer node
and removing its first inner node (the most significant bit).
DBQ aging, as we mentioned before, is not as straightfor-
ward. After removal of the most significant bit, we must
reassign its value to the saved mapping as discussed in Sec-
tion 4.

6 Experimental Results

In this section, we will compare the performance of all
previously discussed quantization techniques with the op-
timal solution for 8 datasets of10000 data points. The
first 7 datasets follow the chi-square, exponential, laplace,
loglogistic, gaussian, triangular, and uniform distributions
respectively. The last dataset is the union of the equal-
sized samples, without replacement, driven from the pre-
vious7 distributions. These8 datasets are created by using
the Minitab Toolkit [5] and their respective histograms are
shown in Figure 5.

In Figure 6, the x-axis denotes the number of used bits,
and the y-axis denotes the Mean Squared Error (MSE),
which is simply the ratioSSEtotal/M . The values closer
to 0 signifies better quantization in terms of data accuracy.
We compared the exact solution [10] for the V-Optimal
Histogram Problem with the incremental techniques equal-
depth, equal-length,IV Q, andDBQ. As can be seen in all
graphs shown in Figure 6,IV Q andDBQ lead to smaller
error ratios than equal-depth and equal-length. While the
plots belonging toIV Q andDBQ ostensibly overlay that
of the optimal solution in all8 distributions, marginal er-
rors do exist between these two techniques and the optimal.
To present this with finer detail, we extracted the exact nu-
merical results from thechi-squaredataset, and it is shown
in Table 1. We see that only a minute amount of variance
between V-Optimal andIV Q, and between V-Optimal and
DBQ can be observed regardless of the number of bits used
for that step in the quantization. The major difference is
that IV Q andDBQ are incremental, and fit our purpose
for supporting aging, while V-Optimal does not (it would
be too inefficient in that the wounding process cannot be
done efficiently). Although Table 1 only displays thechi-
squaredataset, it should be noted that all other distributions
follow similar numerical results.

As can be seen from the graphs in Figure 6, for 5 bits,
theMSE for the IV Q and theDBQ techniques are very
close to0 for all datasets. The conclusion we can derive
from these graphs is that a5-bit quantization scheme seems
to be enough to represent a given vector of sizeM = 10000
with these techniques with minimal noise.
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Figure 5. Distributions of the datasets
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Figure 6. Comparison of different quantization techniques with respect to SSEtotal/M

1-Bit 2-Bit 3-Bit 4-Bit 5-Bit
V-Optimal 7.191 2.299 .653 .171 .043

IV Q 7.191 2.327 .684 .185 .046
DBQ 7.191 2.326 .685 .186 .047

Equal-Length 11.83 3.813 1.238 .331 .085
Equal-Depth 7.936 3.386 1.489 .6565 .291

Table 1. Exact values of the MSE ratio
SSEtotal/M for chi-square Distribution with
10000 Elements

In light of the above claim, we examined the effect of
increasing the number of elements in these8 datasets on
the performance of theIV Q technique. Due to space re-
strictions, the remaining experimental results are shown
only for IV Q because it is more efficient for aging and

its performance is as good asDBQ. From each distribu-
tion we obtain a sample of 4 different sizes,{5000, 10000,
50000, and 100000}. Table 2 shows the maximum ratio be-
tweenSSEtotal/M ∗ V ariance(Data) for these datasets
by using≤ 6 bits for quantization. We use this normal-
ization, SSEtotal/M ∗ V ariance(Data), in aim of com-
paring quantization techniques such that they can be qual-
ified independently apart the actual data set. The con-
cept is thatSSEtotal for 0-bit representation is equal to
M times the variance of the data. By measuring the ratio
SSEtotal/M ∗ V ariance(Data), we can now claim that
the values closer to0 signifies better quantization in terms
of data accuracy, and those closer to1 corresponds to nois-
ier representation. As shown in Table 2, the maximum of
this ratio increases only slightly when we increase the size
of the datasets. This supports our claim that a5-bit quan-
tizer is adequate such thatSSEtotal is minimized.
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Size of
Datasets 1-Bit 2-Bit 3-Bit 4-Bit 5-Bit 6-Bit

5000 .4970 .1754 .0568 .0169 .0039 .0009
10000 .4922 .1689 .0503 .0142 .0034 .0009
50000 .4970 .1750 .0550 .0163 .0045 .0012
100000 .5002 .1766 .0545 .0160 .0044 .0011

Table 2. Max ratio between SSEtotal/M ∗
V ariance(Data) for datasets from 7 distribu-
tions

6.1 An Optimization for Improving Quan-
tization

Up to now, it should be clear that the data being consid-
ered for quantization are the elements from allM streams
that arrived during some timet. That is, the given data at
time t is the vectorFt = {f1,t, f2,t, . . . , fM,t} wherefi,t

denotes the data element corresponding to theith stream
at time t. At first, it seems natural to quantizeFt di-
rectly, (which is similar to Vector Approximation (VA-
file) [17, 11] employed by multidimensional indexing tech-
niques). But since data elements across allM streams need
not to be correlated, the errors introduced by quantization
may become large. We use a simple example to expose this
problem. Observe the stream manager in Figure 7. Here
we see that while stream data is generally correlated across
time, no correlation can be expected from the independent
stream sources. The result is that the elements inFt can
be quite devious from each other, causing us to have little
control over the growth ofSSEtotal if M is large. This is
due solely to the fact that the independent sources cause an
unboundedrange ofFt.
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Figure 7. Data range before optimization

We must somehow normalize or compact the values in

Ft to a more manageable range. Our compaction method
involves mappingFt to F ′t by storing the mean,µi, for each
streamSi, and replacing eachfi,t with its difference from
its corresponding mean. That is,f ′i,t = (fi,t − µi). The
hope is that the means of each stream are constantly repre-
sentative of all data elements across the length of the sliding
window. Thus, by using these differences instead of the ac-
tual values, we can expect a much smaller range of values
in F ′t . This process is shown in Figure 8. Reconstructing
a quantized data element involves the extra step of adding
itself to the corresponding mean:̂fi,t = (f̂ ′i,t + µi), where

f̂i,t, andf̂ ′i,t are the reconstructed versions offi,t, andf ′i,t
respectively. f̂ ′i,t is the mean of the interval thatf ′i,t falls
into. Hence, its value changes when we wound a bit from
time unitt.
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Figure 8. Data range after optimization

Figures 9 and 10 illustrate the effects of applying this op-
timization to actual weather and stock datasets respectively.
The weather dataset is obtained from the National Climatic
Data Center and consists of the temperature measurements
for the year2000 (366 days), sent from5, 009 weather sta-
tions worldwide. The second one consists of daily stock
values of6, 470 companies for360 days. In both datasets,
the mean of each individual stream the first128 time units
are calculated and used for the remaining time units. The
figures depict the averageSSE per stream for each time
unit after applyingIV Q technique on the actual data and
the deviation from the mean separately. In each figure, the
top graph belongs to the actual data, whereas the bottom
graph is depicting the averageSSEtotal after getting the
difference. As one can see, theSSEtotal/M of the quanti-
zation is greatly affected whenb is smaller. This translates
to better data accuracy for elements belonging to the “older”
portions of our ladder.
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Figure 9. Comparison of average SSEtotal be-
tween the original and the difference from
mean for the Weather Data

7 Conclusion and Future Work

As an effort to address storage issues resident in data
stream applications, this paper added the element of age
to sliding window data. Our contributions include two in-
cremental quantization techniques,IV Q andDBQ. These
linear heuristics, while more desirable due to the real-time
constraints of most stream applications, have been shown
to suffer only minor losses in data representation accuracy
compared to the optimal solution. Finally, we described the
Ladder Approachto apply the correct ages to specific por-
tions of data, allowing our system to maintain a more robust
sliding window.

Admittedly, theLadder Approachmakes a general as-
sumption that user queries are mostly interested in the most
recent data elements. Possibilities of problems caused by
this assumption include:

1. The query interest may not be an increasing function.

2. The interest of the queries on a particular time point,
t −K wheret is the current time andK is the age of
the element, may change as time passes.

3. The number of steps in the ladder due to the distribu-
tion of the interest may be different fromω.

During the quantization phase, the actual data is accessed
once and then forgotten, since we only retain its error from
the mean of its stream. Therefore at any point of time, af-
ter shedding a portion of the synopsis we cannot regener-
ate that part again. Hence, any possible storage distribution
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Figure 10. Comparison of average SSEtotal

between the original and the difference from
mean for the Stock Data

scheme should obey the following rule: “the amount of stor-
age utilized for a time unit cannot exceed the one used for a
younger time unit.”

As a result, the first step in the storage distribution based
on the query interest function,I, should be convertingI to
an increasing function,IL. Then, the available storage can
be assigned to the time units proportional to the correspond-
ing values inIL. The input ofI is the age of the time unit
and its output is the number of queries interested in the data
elements having that age. This conversion toIL can easily
be accomplished as follows:IL[i] = max(I([i . . . N ])),
whereN is the size of the sliding window. SinceIL can
be dominated by a single value, a method thatsmoothsthe
givenI in a better manner is needed.

The methods discussed in this paper have also larged re-
lied on the assumption that data arrival rates are constant.
But as we well know, this situation is hardly typical, and
the problems they cause should not be overlooked. For in-
stance, a sharp increase in data arrival rates will saturate the
sliding window with all young elements, while older ele-
ments will already have been dropped from the synopsis.
Depending on the application, a sliding window that hypo-
thetically only contains elements arriving in the pastk mil-
liseconds is probably not all that useful. We believe that our
aging method can also be applied here for supporting real-
time based sliding windows under dynamic environments.
Future work on this topic will certainly be under this direc-
tion.
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