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ABSTRACT
With the advent of multi-core technology, it is becoming
increasingly evident that an effective parallel algorithm de-
sign is central to realize performance that is commensurate
with this advancement. Additionally, along with effective
parallelization strategies, algorithm designers must not only
worry about memory access latencies but also memory band-
width since technology constraints are likely to limit off-chip
bandwidth to memory as one scales up the number of cores
per chip.

As a step in this direction, from the perspective of data
mining algorithm designs, in this article we consider the
challenging problem of designing an efficient parallel algo-
rithm for frequent tree mining. Our strawman solution (not
a naive one) relies on a well known bijection between a la-
beled rooted tree and a sequence and leverages the prop-
erties of this bijection to realize an algorithm that is inher-
ently array-based as opposed to tree-based that significantly
improves the locality of said approach. We subsequently
improve on this strawman by avoiding the maintenance of
any state information during the mining process, and by
employing a series of inter-linked pruning and computation
chunking steps. We performed a detailed characterization of
the employed optimizations on real data that demonstrated
that our algorithm keeps a small working set, improves the
memory locality, and alleviates the bandwidth pressure on
the front side bus. For effective parallelization we rely on
an adaptive load balancing strategy that leverages a com-
bination of coarse-grained and fine-grained task and data
partitioning. An empirical evaluation of our algorithm on
modern day shared memory systems (SMPs) showed that
our algorithm achieves a near linear speedup (up to 13 times
on 16 processors) and reduces the memory footprint by up
to 366 times without sacrificing on the run time.

1. INTRODUCTION
In recent years, spurred by the needs and demands of end

applications, there has been a growing interest in the devel-
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opment of novel and efficient techniques for the mining and
management of complex, structured and semi-structured data
sets. For a large number of applications such data is often
best represented or expressed in the form of labeled trees.
Examples abound ranging from analysis and management
of XML repositories [11, 19] to phylogenetic analysis [21],
from Web mining [21] to analyzing movie documents [20],
and from analyzing linguistic data expressed in terms of syn-
tactic trees [10] to examining parse trees [2]. For such ap-
plications the essential problem may be abstracted to one
of discovering frequent labeled subtrees from a database of
rooted labeled trees [21]. This problem, often referred to as
frequent subtree mining has been the subject of much recent
research [1, 4, 9, 12, 13, 15, 16, 18, 21].

In this article we explore the design of an efficient algo-
rithm for frequent subtree mining in the context of emerging
architectures. The rationale for why we believe this to be an
important problem to consider is as follows. First, mining
frequent subtrees is often very time consuming. Optimiza-
tions that improve the efficiency of such algorithms are al-
ways desirable particularly when targeting problems of scale
given that the knowledge discovery is inherently interactive
and fast response times are thus desirable. Second, with
the advent of multi-core processors it becomes imperative
to identify scalable and efficient parallel algorithms to de-
liver performance commensurate with the number of cores.
A fundamental challenge here is to ensure load balance in the
presence of data skew. Third, a limiting constraint to effi-
cient performance of data intensive applications on emerging
architectures are the problems of memory latency and off-
chip memory bandwidth (particularly for a large number of
cores). Algorithms that are conscious of these performance
limiting aspects are thus desirable.

To address these challenges in this work we propose a
novel frequent subtree mining algorithm that improves the
memory locality, shrinks the working set used, and reduces
the off-chip traffic. We start with the algorithms TRIPS
and TIDES, proposed as part of our previous research [15],
which maintain embedding lists to trade off memory for
speed – a viable option for current generation architectures.
We improve on these algorithms by developing strategies
which avoid the maintenance of such lists by dynamically
constructing the relevant state, whenever needed. A series
of linked optimizations, are then applied to reduce the com-
putation and memory overhead. A careful characterization
of the optimizations show that two of them, tree pruning
and computation chunking, are particularly effective in im-
proving the locality of the approach and to alleviate the



bandwidth pressure – an important consideration for emerg-
ing multi-core architectures that are expected to be off-chip
bandwidth bound if estimates by AMD and Intel are re-
alized. Finally, we then present an intelligent, dynamic,
and data-aware load-balancing strategy which enables one
to adaptively modulate the type and granularity of the work
being shared among processors enabling excellent speedups
on up to 16 processing elements for real workloads.

We empirically show that our algorithm reduces the main
memory usage of TRIPS by up to 366 times and improves
the run time by up to 4 times. Through a detailed character-
ization study, we show that our optimizations systematically
improves individual steps of the algorithm. Furthermore, we
show that, on two real data sets, our algorithm keeps small
working set sizes of approximately 8-16 KB. Evaluation of
our load balancing strategies show up to 13-fold speedup on
16 processors.

Specifically, we make the following contributions in this
article: First, we propose a new algorithm that dynamically
constructs the embedding list by intelligently operating on
the sequence representations. Second, we propose a novel
tree mining algorithm that completely eliminates the need
for the embedding lists by leveraging a series of inter-linked
optimizations. Third, we empirically show that our algo-
rithm is suitable for emerging chip multi-processor systems
by performing a detailed characterization study of our algo-
rithms. Finally, we propose different parallel algorithms by
designing various coarse-grained and fine-grained task and
data partitioning strategies.

2. BACKGROUND AND RELATED WORK
We assume that the reader has an understanding of the

basic concepts in graph theory [6]. An induced subtree of a
tree preserves the parent-child relationships and an embed-
ded subtree preserves the ancestor-descendant relationships.
Unless otherwise stated, a tree refers to a rooted, ordered,
labeled tree and a subtree or a pattern refers to an embedded
subtree.
Problem Definition: Given a database of trees D and a
user-defined minimum support threshold minsup, the goal
of frequent subtree mining is to enumerate all the subtrees,
which occur as the embedded subtrees in more than minsup
trees in the database.

The first tree mining algorithm, TreeMiner, was proposed
by Zaki [21]. A limitation of this method is that it uses
pointer-based dynamic data structures and uses a lot of
memory as we demonstrate in [15]. Chi et al [5] present an
excellent overview of tree mining. Wang et al proposed two
algorithms, Chopper and XSpanner [18] where the former
recasts subtree mining into sequence mining and the latter
generates frequent patterns without explicit candidate gen-
eration. A potential problem with this approach is that the
recursive projection may again lead to a lot of pointer chas-
ing and poor cache behavior [15]. There exists several other
algorithms which slightly differ in the type of trees which
are mined such as free, unordered, closed, maximal subtrees
[1, 4, 9, 12, 16] or in the type of support definition that
they use such as transaction-based support [13]. As part
of previous research, we have developed the adaptive task
partitioning strategies for frequent subgraph mining [3]. We
have done a characterization study of the frequent itemset
mining algorithms and pointed out that most of the algo-
rithms grossly under-utilize a modern processor [7]. In this

work, we focus on developing new memory-aware algorithms
for frequent subtree mining and we show their applicability
for emerging architectures.

2.1 TRIPS and TIDES
We have proposed two algorithms, TRIPS and TIDES for

mining frequent subtrees [15]. They transform the data set
trees into sequences and operate on them. A number of
tree sequencing methods have been proposed and used in
the context of tree mining [18, 21] and tree indexing [11, 19,
15]. We deal with two types of sequences, prüfer sequences
and depth-first sequences.

Representation: We represent each tree with a Con-
solidated Prüfer Sequence (CPS) that consists of two other
sequences, NPS – Numbered Prüfer Sequence and LS – La-
bel Sequence. For simplicity, we refer to CPS as the prüfer
sequence. They are based on the post-order traversal (PO)
of the tree. While constructing NPS, at each step, the leaf
with smallest PO number is removed and the PO number of
its parent is appended to the partially constructed NPS. The
LS is constructed using the labels of the leaf nodes, which
were deleted at each step [15]. Example trees along with
their prufer sequences are shown in the figure 1. Against
each node, the label and the PO number is shown. Depth
first sequences are constructed in a similar way to CPS ex-
cept that they are based on depth-first traversal of the tree
as opposed to the post-order traversal. Both prüfer and
depth-first sequences provide a bijection between rooted or-
dered trees with n nodes and the sequences of length n.

TRIPS relies on Prüfer sequence encoding whereas TIDES
is based on depth-first sequences. These algorithms are
generic in the type of subtrees which are mined – induced,
embedded, labeled, unlabeled, ordered, unordered, or edge-
labeled. They employ a pattern growth approach for system-
atically generating the candidate patterns. This approach
starts with a seed pattern and the pattern is recursively
grown edge by edge in order to generate new candidate pat-
terns. The seed patterns along with the subtrees grown from
it often referred to as equivalence classes. By transforming
the operations on the trees to operations on the sequences,
these algorithms are made to work on simple array-based
structures rather than pointer-based tree structures. For
example, a simple sequence extension mimics the operation
of growing a tree with an edge. Such a candidate genera-
tion process produces every possible candidate subtree (i.e.,
complete) and produces and operates on each candidate only
once (i.e., non-redundant). This efficient candidate genera-
tion process makes the support counting step to be a trivial
task of count accumulation.

We outline the essence of TRIPS and TIDES in the al-
gorithm 1. A set of frequent labels F1 is first constructed
while reading the data set. For each frequent label f ∈ F1,
mineTrees is invoked to recursively enumerate the frequent
subtrees in f ’s equivalence class.

The procedure mineTrees is invoked with a pattern pat,
an extension point e, and a list of trees in which pat occurs
as a subtree. An extension point that is defined with respect
to a pattern P , denoted as a pair (lab,pos), represents a sub-
tree that is obtained by attaching a vertex with label lab to
a vertex in P whose post-order number is pos. mineTrees
first constructs a list of trees newtidlist in which newpat
has at least one subtree isomorphism and an embedding list
EMList that stores the exact location of each isomorphism



Algorithm 1 TRIPS and TIDES

Input: D = {T1, T2, . . . , TN}, minsup
F1 = readTrees (D)
for each f in F1

mineTrees (NULL, (f , −1), D)

mineTrees (pat, extension e, tidlist)

1: newpat = extend (pat, e)
2: output newpat
3: (newtidlist,EMList) = findMatches(newpat, tidlist)
4: H = NULL
5: for each T in newtidlist
6: for each node v in T
7: for each match m in EMList[T ]
8: if v passes connectivity check against m then
9: add the resulting extension to H

10: for each ext in H
11: if ext is frequent then
12: mineTrees (newpat, ext, newtidlist)

(line 3). For efficiency reasons, EMList is carried across
the recursive calls and appended with new entries, which
are removed when the call returns [15]. Each node v in
T is processed against each of the newpat’s matches m to
generate the extensions (lines 5-9). A connectivity check is
performed to see if v is a valid extension to newpat against
m. This check passes if v or any of its ancestors is attached
to a node that is on the left most path of m. Note that
while mining induced subtrees, the check is not evaluated
for ancestors but only for the parent. Resulting extension
points along with their supports are stored in a hash struc-
ture H (line 9). Finally, each frequent extension in H that
represents a new frequent subtree is processed recursively
by invoking mineTrees (lines 10-12).

Throughout this paper, we evaluate all the proposed algo-
rithms only against TRIPS. Note that this strawman is not
a naive one and in fact it is shown to outperform TreeM-
iner, XSpanner, and Chopper [15] and therefore we do not
make any comparisons against these algorithms. In [15], we
showed that the performance of TIDES is similar to TRIPS
and the algorithms and optimizations proposed for TRIPS
can also be applied to TIDES.

Limitation: Though embedding lists usually reduce the
overall mining time, they can potentially grow arbitrarily in
size and can end up degrading the performance. Consider
a tree that is a path of length n where every node of the
path has the same label, say A. If the pattern of interest
has a single node, there will be exactly
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entries. Recall that the list is carried across the recursive
calls and appended with entries. Similarly if the pattern is
the full path of n nodes, the number of entries in the list
would be
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= 2n − 1, even though there is only a
single match for that pattern. Therefore the embedding list
can potentially grow exponentially in size.

Such cases often arise in real world data sets. For exam-
ple, the number of matches of a particular 3-node pattern in
Cslogs data set (see Section 3.7), when grown with an edge,
was increased from 141, 574 to 2, 337, 127 amounting to an
increase in the embedding list size from 1.2 MB to 19.02

Figure 1: Example Tree, Pattern, and R-Matrix

MB. Such huge embedding lists increase the memory foot-
print and can potentially result in a number of cache misses
and page faults. Furthermore, embedding lists complicates
the design of parallel algorithms as sharing them among dif-
ferent processors is not trivial. These issues motivated us to
explore the use of mining algorithms which do not make use
of static, recursively-grown embedding lists.

3. SEQUENTIAL OPTIMIZATIONS
In this section, we describe a series of optimizations by

which the strawman algorithm 1 can be improved. We then
present a detailed characterization study that shows that our
algorithm systematically reduces the overhead incurred at
various phases of the mining process and exhibits excellent
cache performance. Furthermore, we empirically show that
our algorithm keeps small working sets and reduces the off-
chip traffic making them a viable option for systems with
small caches such as modern day CMP architectures.

3.1 Tree Pruning and Recoding (PRUNE)
Tree pruning and encoding draws inspiration from the

field of itemset mining. Many itemset mining algorithms
often prune the transactions involving infrequent items and
recodes them [7, 8]. This is an idea that has not been well ex-
ploited in the context of tree mining and we leverage it here.
We expect that such an approach will decrease the amount
of resident memory and also improves the performance by
partially reducing potential page faults and cache misses.
Unlike the traditional set-like transactions, trees have an in-
herent structure that makes tree pruning a non-trivial task.
We apply the algorithm 2 in order to prune and recode the
database trees.

The intuition behind this algorithm is that every infre-
quent node, except the root node, in the tree is removed
and its child nodes are attached to its nearest ancestor that
is not pruned away. The pruning step alters the number
of nodes and the recoding step alters the labels. There-
fore, this strategy changes both the label sequence and the
numbered prüfer sequence of T . The number of nodes in
the recoded tree is found in lines 4-6. The recoding pro-
cess is carried out from root to leaves. Therefore, the prüfer
sequence is scanned from right to left (line 8). An array
mapping is maintained to keep track of the new post-order
traversal numbers. The root node is added to the pruned
tree Trecoded with its recoded label. If v is a frequent node
other than the root then, in lines 11-13, it is added with its
recoded label and the new post-order number of its parent.
Note that if that parent in T is pruned away, the post-order
number would refer to the nearest ancestor the deleted par-
ent that is frequent. In the worst case, a leaf node can
become a child of the root node if all the nodes in between
are infrequent.
Evaluation: The effectiveness of this optimization evalu-
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Figure 2: Treebank: Performance comparison with TRIPS as the baseline (a) Mining time (b) Memory

Algorithm 2 Tree pruning and recoding algorithm

Input: Database of trees, D
Input: Recoded labels of frequent nodes, newlabels
1: for each tree T in D
2: n ← size of T
3: Trecoded ← null
4: for each node v ∈ T
5: if v is the root or v is frequent then
6: increment count
7: ind ← count − 1
8: for i from n to 1
9: v ← ith node in the prüfer sequence of T

10: if v is root then
11: add v to newlabels, if not present
12: add v to Trecoded with recoded label
13: mapping[n] ← count
14: else if v is frequent then
15: u ← (newlabels(v.label), mapping[v.parent])
16: add u to Trecoded

17: mapping[i] ← ind
18: decrement ind
19: else
20: mapping[i] ← mapping[v.parent]

ated on Treebank data set (TB) 1 is shown in the figure 2 as
“TRIPS-Opt”. This data set, derived from computational
linguistics domain, has a total of 52, 851 trees with more
than 1.3 million distinct labels [15]. In figure 2a, we show the
speedup achieved by other algorithms considering TRIPS as
the baseline and the reduction in memory footprint is shown
in the figure 2b. We approximate the memory footprint size
of an algorithm to be its resident set size (RSS). Note that
the Y-axis in figure 2b is in reverse direction to indicate the
reduction.

Though “TRIPS-Opt” exhibited a better run time perfor-
mance over TRIPS, its memory footprint did not improve
as much. With lower support levels, the memory usage is so
high (e.g. 1.5 GB at 30K 2) that the relatively small bene-
fits from pruning are overshadowed. At even low supports,
this increased memory usage can potentially slow down the
mining process. For the TB − 40K experiment (TB is the
data set and 40K is minsup), tree pruning and recoding has
reduced the size of the data set representation from 27 MB
to 11.5 MB. It improved the mining time of TRIPS from

1
http://www.cs.washington.edu/research/xmldatasets/

Experiments are conducted on a 900 MHz Intel Itanium 2 dual pro-
cessor system with 12 GB of main memory.
2
We chose high supports for TB as the data set is highly associative.

273 seconds to 230 seconds while reducing the memory foot-
print from 222 MB to 138 MB. Though this improvement is
marginal, as we show later this optimization buys us a lot
when used in conjunction with other optimizations.

3.2 On-the-fly Embedding Lists
In this section, we propose an algorithm that dynamically

constructs the embedding list, uses it, and then destroys it.
Such a dynamic approach enables the use of optimizations
like computation chunking (see Section 3.7) and limits the
memory usage of the algorithm. Specifically, the problem
of on-the-fly embedding list construction is to find the set
of all subtree isomorphisms or matches for a given pattern
P in a given tree T (line 3 in Algorithm 1). Without loss
of generality, assume that both P and T are represented as
prüfer sequences (see Section 2.1) and the number of nodes
in P and T are m and n, respectively.

Theorem 3.1. If a pattern P is a subtree of a tree T , then
the label sequence of the pattern (LSP ) is a subsequence of
the label sequence of the tree (LST ).

Proof. The intuition is that if P is a subtree of T , then
the order among the sibling nodes of P is preserved from T .
Therefore, while constructing the prüfer sequence for P , the
order in which nodes in P are deleted would be the same as
the order in which corresponding nodes in T are deleted.

Property 3.1. The label sequence of the pattern LSP is
a subsequence of the label sequence of the tree LST if and
only if LSP is the longest common subsequence of LSP and
LST .

Algorithm 3 outlines the procedure in which on-the-fly
embedding lists are constructed. This algorithm is inspired
by some of the recent results we obtained in the context
of XML indexing [14]. It recasts the subtree isomorphism
problem into the subsequence matching problem. From the-
orem 3.1 and the property 3.1, we derive that if P is a sub-
tree of T , then the longest common subsequence (LCS) of
their label sequences should be LSP . Once it is known that
P is indeed a subtree, its matches are found by enumer-
ating all subsequence matches of LSP in LST . Note that
most of the classic LCS algorithms find only the length of
LCS. Since Theorem 3.1 gives only the necessary condition,
a post-processing step is employed to filter out the false pos-
itive matches.
Step 1 - Computation of LCS length: In this step, we check
whether LSP is a subsequence of LST , by computing the
length of their LCS. We do so by constructing the R-matrix
using the equation 1 [17]. If R[m,n], the LCS length, is
different from m, we can conclude that P is not a subtree



of T (from Property 3.1). Example pattern, tree, and the
corresponding R-Matrix is shown in the figure 1.

R[i, j] =

8

<

:

0, if i = 0, j = 0
R[i− 1, j − 1] + 1, if LSP [i] = LST [j]
max(R[i− 1, j], R[i, j − 1]), if LSP [i] 6= LST [j]

(1)
Step 2 - Subsequence Matching: Given that LSP is a subse-
quence of LST (from previous step), we now find the set of
all subsequence matches of LSP . The subsequence match
is constructed by backtracking on the R-Matrix starting
from the bottom-right entry (lines 4-12 of the algorithm 3).
Therefore, the match is constructed from right-to-left, in the
reverse order of LSP . Note that when the labels in P and
T match in line 4, the match location is noted in subiso
(line 5) and the subsequence match length L is incremented
(line 6). Define SM to be the resulting subsequence match
that is constructed from entries of NPST and LST whose
positions are given by subiso. Specifically,

SM = ((i1, NPST [i1], LST [i1])...(im, NPST [im], LST [im]))

where ij is a PO number in T and ij = subiso[j]. In the
figure 1, there are 4 subsequence matches, each of which is
shown as SMs.

Algorithm 3 On-the-fly embedding list construction

Input: P = (LSP , NPSP ), T = (LST , NPST )
R ← computeLcsMatrix(LSP , LST );
say m ← |LSP |, n ← |LST |
if R[m][n] != m then

return
processRMatrix (m, n, 0)

processRMatrix (pi, tj, L)

1: if L = m then
2: if subiso[..] corresponds to a subtree then
3: update EMList[T ] with subiso
4: if LSP [pi] = LST [tj] then
5: subiso[m− L] ← tj
6: processRMatrix (pi− 1, tj − 1, L + 1)
7: processRMatrix (pi− 1, tj, L) // Not required
8: processRMatrix (pi, tj − 1, L)
9: else if R[pi− 1, tj] > R[pi, tj − 1] then

10: processRMatrix (pi− 1, tj, L)
11: else
12: processRMatrix (pi, tj − 1, L)

Step 3 - Structure Matching:
We prune the false positive matches resulting from the

previous step by matching the structure formed by the sub-
sequence match SM with the structure of P . To establish
such a match, our algorithm needs to make only a single
pass over SM .

Similar to the subsequence matching step, we establish the
structure match from right-to-left i.e., from root to leaves.
This reverse order ensures that a node in SM is mapped
to a node in T only after all of its ancestor nodes including
its parent are mapped. We perform a structure agreement
check to match each node in the subsequence match. How-
ever, the root nodes i.e., the right most entries are matched
without checking. This check translates the parent-child re-
lation in P into an ancestor-descendant relation in SM i.e.,

in T . More formally, SM and P are said to agree on struc-
ture at position k iff LSP [k]=LST [ik] and NPSP [k] in P
is mapped to an ancestor of NPST [ik] in T 3. Note that
NPSP [k] is mapped before the node at position k because
the structure match is established from root to leaf. Once
the structure match is established, the embedding list is up-
dated with the locations of the match as given by subiso
(line 3). Please refer to [14] for a formal description of the
structure matching algorithm.

For the example in the figure 1, there are only 2 struc-
ture matches, SM2 and SM3. For SM1, the root in P is
mapped to node 6 in T . At position k=2 (ik=2), the par-
ent node NPSP [2]=3, whose mapped node is 6. However,
NPST [i2]=3 is not an ancestor of 6 resulting in a struc-
tural mismatch. Similarly, SM4 fails the structure agree-
ment check at position 1.
Evaluation: Performance comparison between the algo-
rithm 3, TRIPS, and its optimized version is shown in the
figure 2. On-the-fly embedding lists, labeled as “NoEm-
Basic”, clearly trades off the computation for memory usage.
Expensive embedded subtree isomorphism checks in find-
Matches slow down the mining process. However, dynamic
embedding lists result in a significant improvement in terms
of memory usage. For the running example of TB − 40K
experiment, this algorithm shown a 3.6-time slow down in
mining time and a 2.7-fold improvement in memory foot-
print size from 138 MB to 51 MB. Though the amount of
reduction in memory usage is encouraging, the slowdown in
running time is unsatisfactory.

3.3 Label Filtering (LF)
Poor performance of the algorithm 3 is partly due to a

high number of recursive calls to processRMatrix. Con-
sider the fact that a total of 10 billion calls are made, while
mining TB − 40K, to find only 413 million subsequence
matches. Consider the matrix entries R[∗, k], where LST [k]
/∈ LSP . These entries simply carry forward the LCS values
from R[∗, k − 1] to R[∗, k + 1]. The recursive calls made on
R[∗, k] (lines 9-12 in algorithm 3) do not add to the sub-
sequence match and hence can safely be removed. Before
constructing the R-matrix, LF prunes the label sequence
of T from the labels which are not present in P . In the
figure 1, the third column corresponding to C can thus be
removed. It not only decreases the number of recursions but
also shrinks the R-matrix making it fit in few cache lines.

LF reduced the number of recursions in TB − 40K ex-
periment by 4.5 times to 2.2 billion thereby improving the
mining time.

3.4 Dominant Match Processing (DOM)
The effectiveness of label filtering completely depends on

the distribution of labels in P over the nodes of T . If every
label in T is in P , then LF has no effect on the performance.
In this optimization, we further reduce the number of recur-
sions by limiting the recursion to only a selected few cells in
the R-matrix.

Say that R[i, j] and R[k, l] are two cells at which the LCS
length is incremented. Assume also that @(x,y) such that
i < x < k, j < y < l, and LSP [x] = LST [y]. All the cells be-
tween R[i, j] and R[k, l] carry the LCS length from R[i, j] to
R[k, l] and do not contribute to the subsequence match. We

3
For induced subtrees, NPSP [k] should be mapped to the parent

node of NPST [ik ].



refer to the cells like R[i, j] and R[k, l] as dominant matches.
Backtracking from R[k, l] can directly jump to R[i, j] with-
out going through all the intermediate cells. In the figure 1,
dominant matches are encircled. For example, R[1, 4] and
R[2, 6] are dominant and all the other shaded cells simply
carry the LCS length from R[1, 4] to R[2, 6]. This signifi-
cantly reduces the total number of recursions made on the
R-matrix.

Both LF and DOM jointly reduced the number of recur-
sions in the TB−40K experiment to 554 million, compared
to 10 billion by the algorithm 3, that is closer to the number
of subsequence matches, 413 million.

3.5 Simultaneous Subsequence and
Subtree Matching (SIMUL)

Both LF and DOM target the subsequence matching step
in Algorithm 3 and they do not address the issue of false pos-
itive subsequence matches, which are fed into the structure
matching phase. While mining for TB−40K, approximately
7 out 10 subsequence matches were false positives, in fact,
124 million out of 413 million.

We now design an algorithm that completely eliminates
the false positives. This algorithm detects them in the early
stages of subsequence matching, instead of waiting until the
complete match is found, saving the futile time spent in pro-
cessing these matches. It establishes the structure match-
ing, by performing structure agreement checks, as the sub-
sequence match is constructed. Such a unified approach can
be realized using our sequence-based algorithms because of
the two fundamental reasons. first, both the subsequence
and the structure matching steps process the nodes in P in
the same direction, right-to-left. second, a structure agree-
ment check at a node needs only its ancestors, for which the
structure match is already established. Complete details of
the unified algorithm can be found in [14].
Evaluation: Trend line “NoEm-Stage1” shows the perfor-
mance of the algorithm 3 optimized with all the strategies
presented so far including tree pruning and recoding. When
compared to the basic algorithm “NoEm-Basic”, it gave up
to an average speedup of 3 times with a marginal improve-
ment in memory usage. In particular for the TB − 40K
experiment, the unified algorithm with all the other opti-
mizations gave a 4-fold run time improvement over the basic
algorithm. More importantly, it showed only 23% slowdown
when compared to optimized TRIPS (see Section 3.1) while
reducing the memory footprint by 3.8 times.

3.6 Loop Inversion (LOOP)
Recall that the extensions are found by processing the

nodes in tree T with respect to all the matches of P (lines 6-7
of the algorithm 1). Such repeated scans over the entire large
embedding list may hinder the performance. If we invert the
loops in lines 6-7, we hope that the tree would sit in the cache
while we process the nodes against every match. However,
this strategy exhibited a degraded performance with both
the algorithms 1 and 3. Note that the number of scans
made on T with the loop inversion is equal to the number
of matches of P in T . If T is large enough that a single scan
on T incur few cache misses, then the repeated scans on
the tree would result in a poor cache performance. Though
loop inversion did not give any performance improvement it
worked as a stepping stone in our way to design the next
optimization.

3.7 Computation Chunking (CHUNK)

Algorithm 4 Fully optimized tree mining algorithm

mineTrees (pat, extension e, tidlist)
for each T in tidlist

construct R-Matrix for T and newpat
processRMatrix (m, n, m)

for each ext in H
mine (newpat, ext) recursively

processRMatrix (pi, tj, L)

1: if L = 0 then
2: add SM to EMList and add T to newtidlist
3: if |EMList| % 10 = 0 then
4: for each match m in EMList
5: for each node v in T
6: if v passes connectivity check against m then
7: add th4e resulting extension to H
8: EMList ← null
9: return

10: for k = tj to 1
11: if R[pi][k] is dominant & R[pi][k]=L then
12: SM [k] ← (LST [tj],NPST [tj])
13: if agreeOnStructure (P , SM , k) then
14: processRMatrix (pi− 1, tj − 1, L − 1)

The patterns with a very large number of matches (see
Section 3.7) result in huge dynamic lists, defeating the pur-
pose of creating them. We now design an optimization,
computation chunking, that eliminates the embedding lists
entirely. Recall that with the loops in lines 6-7 of the algo-
rithm 1 inverted, the tree T is scanned for each match m
to find the extensions. We note that this can be performed
at the time when m is discovered in findMatches. In other
words, as soon as a match is generated, a scan on the tree
can be made eliminating the need for it to be stored. But as
we learned in the section 3.6, a match-by-match processing
is not very effective. We therefore group a set of matches
as one chunk and we process the nodes in T once for each
chunk.

Though the underlying principle behind chunking is sim-
ilar to tiling, they are quite different. First, tiling groups a
set of data items and performs a computation on that set
whereas chunking groups a set of computations and applies
that set on to a single data item (here, T ). We thus refer to
these chunks as computation chunks. Second, tiling improves
the cache performance by grouping the nodes of T into parts
such that each individual part fits in the cache. In contrast,
computation chunking reduces the number of cache misses
by reducing the number of scans on T (without dividing T ).
Therefore, the algorithm 3 with computation chunking, un-
like tiling, does not depend on any hardware parameters such
as cache size or line size making it a cache oblivious algo-
rithm as opposed to a cache-conscious algorithm. For our
studies, we set the chunk size to have 10 matches as we did
not observe a significant improvement with larger chunks.
Please note that the computation chunking can not be ap-
plied to TRIPS or “TRIPS-Opt” due to embedding lists.

Complete details of the chunked version is shown in Al-
gorithm 4. The matches are grouped into chunks in line 2
and the tree is scanned for each chunk to generate the ex-
tensions in lines 3-7. Lines 10-14 recurse on the R-Matrix to
construct the subsequence match SM . This algorithm does
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Figure 3: Performance comparison on Cslogs with TRIPS as the baseline (a) Mining time (b) Memory

no additional recursive invocations unlike lines 9-12 in Algo-
rithm 3. Such chunk-level processing result in an extremely
good cache performance (see Section 3.8).
Evaluation: The performance of our fully optimized al-
gorithm, labeled “NoEm-Final”, is shown in the figure 2.
When compared to TRIPS and its optimized variant, our
algorithm gave up to a 45-fold reduction in the memory foot-
print size, from 1.5 GB to 34 MB for TB−30K. As a result,
the mining time has reduced from TRIPS’ 3, 660 seconds to
2, 900 seconds. Notably, it is also faster than the optimized
TRIPS. Specifically for TB−40K, “NoEm-Final” exhibited
a 7-fold speedup over “NoEm-Basic” and when compared
to TRIPS and its optimized version, it reduced the memory
usage by 6.5 and 4 times, respectively.
Results on Cslogs: Figure 3 compares the effectiveness of
all the algorithms on Cslogs data set (CS) 4. This data set
contains 59, 691 trees with 13, 361 distinct labels. The ba-
sic algorithm 3 again exhibits the trade-off between the run
time and the memory usage. Subtree matching optimiza-
tions (LF, DOM, SIMUL) along with pruning and recoding
bump up the run time performance with a marginal reduc-
tion in memory usage (trend “NoEm-Stage1”). Similar to
the results on Treebank, the algorithm 4 demonstrates a
better run time performance and memory usage when com-
pared to “TRIPS” and even “TRIPS-Opt”. Specifically at
minsup=600, it reduced the resident memory size by 366-
times from 3.8 GB to 10.7 MB with a 3.7-fold speedup in
run time. The two orders of magnitude reduction is due to a
6-node pattern that has approximately 474 million matches.

3.8 Characterization study for CMP architec-
tures

In this section, we study how the optimizations we have
presented affect cache performance at different levels (L1,
L2 and L3), to what degree one is able to limit the working
set size, and how they affect the bandwidth pressure on the
front side bus. Through this detailed characterization study
we hope to show that our algorithms are viable choices for
emerging chip multi-processor (CMP) systems. We used the
PAPI library for performance instrumentation5.

3.8.1 Analysis of cache performance
In Figure 4a, we considered the number of cache misses

of the basic algorithm 3 as the baseline and measured the
reduction in misses as we add each optimization. We used
Treebank data set with minsup=45K for this experiment 6.

4
http://www.cs.rpi.edu/~zaki/software/ – derived from the domain

of web usage mining
5
http://icl.cs.utk.edu/papi/index.html

6
Performed on a SGI Altix system with 16 1.4 GHz Itanium 2 pro-

We observed the similar results on Cslogs data set. Each
trend line is labeled as C − P , where C denotes the cache
(L1,L2, or L3) and P represents the number of processors
(1 or 2) on which the algorithm is run. We parallelized the
algorithm 4 using various coarse-grained and fine-grained
data and task partitioning strategies (see Section 4).

SIMUL reduces the number of accesses to the database
trees by eliminating the false positive subsequence matches
and PRUNE shrinks the trees by pruning infrequent nodes.
The computation is thus localized to caches thereby reduc-
ing the total amount of off-chip traffic. Both SIMUL and
PRUNE are thus targeted at L2 and L3 misses. The benefits
seen at L1 by these optimizations are only marginal.

All optimizations effectively reduce the total amount of
work done and hence they all show an improvement in L1
misses. Label filtering shrinks the R-matrix, by deleting
uninformative columns, so that the matrix can, most of the
times, fit in few cache lines of L1. DOM reduces the number
of data accesses by avoiding unnecessary recursions on the
R-matrix. Both LF and DOM jointly improved L1 cache
misses by 19 times over the basic algorithm. On top of
these, computation chunking completely localizes the pro-
cess of finding extensions to higher level caches by intel-
ligently grouping the set of computations. On the whole,
our fully optimized algorithm improved the L1 cache perfor-
mance of the basic algorithm by 1, 442 times. Since chunk-
ing eliminates the need for large embedding lists, L3 misses
and hence the off-chip traffic are also reduced. With mul-
tiple processors, we observe similar trends except that the
improvement in L2 and L3 miss rates were slightly higher
compared to a single node execution. The amount of re-
duction in cache misses at different levels of the memory
hierarchy translates into overall improvement in run time
as shown in the figure 4b. Overall, tree pruning and recod-
ing, computation chunking and also to a degree simultaneous
subtree matching provide the major benefits in realizing an
efficient and memory-conserving frequent subtree mining al-
gorithm.

3.8.2 Analysis of bandwidth pressure
In the next experiment (see Figures 4c & d), we perform

a coarse-grained analysis of how off-chip bandwidth varies
during the course of execution of the algorithms 3 and 4.
We divided the time into small slices with a duration of
one msec. We used the PAPI native events to instrument
the code for measuring the off-chip traffic during each time
slice. This is estimated to be the product of L3 line size and
the number of L3 cache misses in that time slice.

cessors with 32 GB memory. Each processor has L1-data (16KB),
L1-instruction (16KB), L2 (256KB), and L3 (3MB) on-chip caches.
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Figure 4: Characterization of optimizations

Though this is rather a coarse-grained analysis, through
this experiment, we want to bring out the differences in the
main memory accesses made by the strawman and optimized
algorithms. Please note that we conducted this experiment
with a single processing element and we use this to show
that our algorithm reduces the overall off-chip traffic (and
its variability) thereby making it suitable multi-core archi-
tectures.

Initialization activities like reading the data set result in
a large number of L3 misses (cold misses) explaining the
initial spikes in these figures. In the left figure, the clusters
of lines correspond to the amount of data transfered while
mining individual patterns. During the course of mining
a single pattern, the main memory accesses made by the
fully optimized algorithm is more uniform and small in size
when compared to the basic algorithm. This is due to the
uniform nature of the computation – build a chunk and pro-
cess it – in algorithm 4. On the other hand, in Algorithm 3,
entire embedding list is first constructed showing a spike
due to increased off-chip traffic. It then finds the extensions
match-by-match showing a sudden dip in the off-chip traf-
fic. After the initialization activities, all the accesses made
by the algorithm 4 are small (below 200KB per msec) when
compared to large spikes (around 500KB per msec) in the
basic algorithm 3. Specifically, while mining the patterns
with a huge number of matches, compare the small spikes
(similar to the one at 6000 msec) in the left figure with the
corresponding large spikes (similar to the one around 3∗104

msec) in the right figure.
Our coarse grained analysis reveals that the optimizations

we present seems to be quite effective in reducing the off-chip
traffic. An added benefit is that the computational chunking
also attempts to ensure uniform and small-sized requests on
the front side bus making the algorithm quite suitable for
emerging CMP systems.

3.8.3 Analysis of working set size
In our next experiment we empirically examined the work-

ing set size of the fully optimized algorithm. Cachegrind 7

is used to perform this study in order to run the algorithm
with different cache configurations. We fixed the L2 size and
its associativity and we analyzed how L1 miss rate changes
as we vary the L1 size from 2 KB to 256 KB. We ran this
experiment for different support levels on both the data sets
and found that the L1 miss rate falls steeply between 8 KB
and 16 KB and stays almost constant after 16 KB. This sug-
gests that the working set size is somewhere between 8 KB
and 16 KB which is quite small and therefore quite suitable
for emerging multi-core systems, which are expected to have

7
http://valgrind.org/info/tools.html

very small caches.

4. PARALLEL ALGORITHMS
The algorithms and optimizations described so far speed

up the mining process on a single processor. With low sup-
port levels and the fact that the subtrees are embedded,
even the optimized algorithm can be expensive motivating
the need for fast parallel algorithms. Consider the fact that
the fully optimized serial algorithm for TB−30K has taken
2, 900 seconds to mine the frequent subtrees. In this section,
we explore various coarse-grained and fine-grained task and
data partitioning techniques to parallelize the algorithm 4.
In a broader sense, these techniques are classified as task-
parallel and data-parallel approaches. We consider the work
that is done for finding the extensions of a single pattern
as a job or a task. Task-parallel approaches share one or
more patterns among multiple processors. In data-parallel
approaches, all the processors mine the same pattern in the
search space but by looking at a disjoint portion of the data
set. The former type of approaches exploits the inter-task
parallelism and the latter exploits the intra-task parallelism.

Our parallel algorithms target the systems with multi-
ple processors sharing the main memory. These systems
include classic shared memory systems (SMPs) and recent
multi-core systems. Our algorithms adaptively modulate
the type and granularity of the work being shared among
processors. Proposed parallel algorithms differ in the type
and the granularity of the work that is being shared. Each
processor shares a job by enqueuing it in the global job pool
from where other “idle” processors can steal the job. If a
processor finds the job pool to be empty, it will vote for
termination and waits until other processors cast their vote.
The waiting processor retracts its vote when it finds one or
more shared jobs. The amount of time spent in waiting is
denoted as idle time Ii. We refer to the standard deviation
of Ii’s as SDI and their average as AV GI . We use SDI as a
measure that provides a sense to the amount of load imbal-
ance. Unless otherwise stated, all the parallel experiments
are conducted on a SGI Altix 3000 shared memory system
with 32 1.3 GHz Intel Itanium 2 processors and 64 GB of
main memory.

4.1 Equivalence class -level partitioning
In algorithm 1, each frequent label f in F1 is a seed pat-

tern that is associated with an equivalence class. The sets of
subtrees grown from two different frequent labels are disjoint
and hence their equivalence classes can be mined indepen-
dent of each other. The seed patterns are first enqueued in
the job pool and all threads dequeue the jobs and mine them.
Note that this approach, as opposed to statically partition-



ing the seed patterns among threads, automatically achieves
some level of load balance. For TB−35K on 8 threads, this
strategy gave only 7% improvement over the serial algorithm
with a SDI of 233 seconds demonstrating a very high load
imbalance.

This strategy does not perform well in the presence of data
skew – most of the real data sets are skewed. For example,
almost 95% of the time in mining Treebank data set was
spent in two equivalence classes and approximately 98% of
the mining time was spent in one equivalence class of Cslogs
data set.

4.2 Pattern -level partitioning
To achieve a better load balance, one can employ a more

fine-grained approach where the work is shared at the level
of individual patterns. As soon as a thread generates a new
extension point (i.e., a new pattern) it is pushed into the job
pool. While this strategy does reduce the idle time to an ex-
tent it suffers from memory management and locality issues.
Few meta-structures (e.g., newtidlist) allocated while min-
ing a parent pattern are shared by all of its child patterns.
Since each extension is now put into the job pool, such meta-
information has to be replicated and attached with the ex-
tension. Alternatively, all child patterns can share the same
meta-structure, in which case the last child has to deallocate
the meta-structure. Both these methods incur some extra
processing overhead and complicates the memory manage-
ment. Mining child patterns at the processor that created
them often results in good locality as the needed data set
trees are likely to be in cache. Since this strategy can not
guarantee such properties, it may result in poor cache per-
formance.

We expect the idle times with this strategy to be very
small but the observed SDI and AV GI values, for a TB −
35K experiment on 8 nodes, were 24.2 and 36.3 seconds,
respectively resulting in a speedup of 4.3. This counter-
intuitive result is due to the skew among the individual tasks
(see Section 4.5). For these reasons, sharing of child patterns
should be avoided as much as possible, as we do in our next
strategy.

4.3 Adaptive task partitioning
The first strategy is too conservative in sharing the work

and on the other extreme, the pattern-level approach shares
every generated pattern even when all the other processors
are busy. It is therefore desirable to have a strategy that
operates somewhere in the middle-ground and shares the
jobs only when there are one or more “idle” processors to
steal them. Note that a processor idles only when the job
pool is empty. Therefore, we can decide whether to share a
job or not by looking at the number of jobs in the job pool.
Moreover, instead of waiting till the job pool is empty, we
share the jobs as and when the number of jobs in the pool
falls below a pre-defined threshold number. Adaptive task
partitioning exhibits a good cache performance as the child
patterns are usually mined by the processor that created
them. For TB − 35K, this strategy gave a 5.7-fold speedup
on 8 processors with SDI and AV GI of 17 and 37 seconds,
respectively. A non-linear speedup and high idle times are
again due to the skew among different tasks (see Section 4.5).

4.4 Data partitioning
First three approaches share the work in terms of one or

more patterns. They incur a high load imbalance if the indi-
vidual patterns are skewed in terms of the mining time i.e.,
few patterns take up more time compared to others. For
example, a particular 6-node pattern in Cslogs data set, has
taken approximately 86% of the total serial mining time be-
cause of its really large number of matches (see Section 3.7).
The resulting load imbalance can be reduced by partitioning
the work to be don in mining each individual pattern.

In this approach, all processors, at any time, work on a sin-
gle pattern by sharing the newtidlist. By sharing newtidlist,
each processor finds the extensions with respect to a subset
of trees. A reduction operation is performed at the end to
combine the set of all extensions found by each processor.
However, a static partitioning of the newtidlist can lead to
load imbalance as the time spent in processing the tree is not
same for each tree – it depends on the number of matches.
Therefore, we rely on a more dynamic approach where we
treat the set of trees in newtidlist as a tree pool (analogous
to the job pool) and each processor picks up a tree from
the pool and finds the extensions with respect to it. All
the processors thus share the job of mining a single pattern
by dynamically partitioning the associated tree pool. When
we applied this strategy for mining the Treebank data set,
the parallel efficiency is actually degraded due to increased
overhead from the synchronizing reduction operations.

4.5 Hybrid approach

Figure 5: Control flow in the hybrid approach

Our hybrid approach shares newtidlist only when there
are processors to steal the work. The figure 5 describes the
control flow of our parallel algorithm that adopts a hybrid
approach. The main thread reads the data set, sets up the
job pool, and then spawns the threads. Each thread itera-
tively look for jobs in the job pool and in the tree pool, if
the job pool is empty. If both are empty, it votes for termi-
nation and blocks itself until some other thread shares work
or until all the other threads vote for termination. Once all
threads vote for termination, they join back on to the main
thread.

To achieve a better load balance, we enforce a total order
on the tree pool before it is set out for sharing. Such a
total order hopefully sorts the trees according to the number
of matches that they hold. We expect that the number
of matches in T is proportional to its size. Therefore, we
sort the trees in newtidlist based on their size before it is
shared among processors. This heuristic is similar to the
one employed in classic job scheduling where the jobs are
sorted in decreasing order of their processing time.

The job pool can also be maintained at each processor
to reduce the contention to the global job pool. On both
CS and TB data sets, such a distributed job queue model
showed no improvement over the global job queue model.



However, please note that this behavior is data set depen-
dent.

The effect of different load balancing strategies and the
resulting speedups are shown in the figures 6 and 7. The
hybrid approach realizes a near linear speedup till 12 proces-
sors on Cslogs (till 10 on Treebank), after which the speedup
saturates due to the trees with huge number of matches. In
a CS − 600 experiment on 8 nodes, we found that a 6-node
pattern has approximately 33 million matches in a single
99-node tree whose mining took around 51 sec. At 14 pro-
cessors, the speedup saturates as the lower bound of 51 sec
is reached. Note that the saturation in case of Treebank is
not evident in the graph as the knee of its plateau is at 16
processors. To overcome this type of bottlenecks, one has to
design new algorithms, which can operate on a single tree
in parallel.
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Figure 6: Effectiveness of the hybrid approach

Figure 7: Effect of different load balancing strategies

5. CONCLUSIONS
In this paper, we proposed a new efficient parallel fre-

quent subtree mining algorithm that is suitable for emerg-
ing CMP architectures. We improved the state-of-the-art
algorithms, TRIPS and TIDES by intelligently avoiding the
maintenance of the embedding lists and by leveraging a se-
ries of optimizations. We showed that our algorithm outper-
forms TRIPS by reducing the memory footprint size (up to
366 times) and by improving the run time (up to 4 times).
Through a detailed characterization of the proposed opti-
mizations, we showed that our algorithm improves the lo-
cality (L1 misses by 1, 442 times), keeps small working sets
(around 16KB), and makes more uniform and small-sized
accesses to the main memory. We proposed various adap-
tive data and task partitioning strategies for reducing the
load imbalance in the presence of data skew. Our evalua-
tion showed that these load balancing strategies achieve near
linear speedups up to 13 times on 16 processors.
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