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ABSTRACT

Interaction graphs are ubiquitous in many fields such as
bioinformatics, sociology and physical sciences. There have
been many studies in the literature targeted at studying and
mining these graphs. However, almost all of them have stud-
ied these graphs from a static point of view. The study of
the evolution of these graphs over time can provide tremen-
dous insight on the behavior of entities, communities and the
flow of information among them. In this work, we present
an event-based characterization of critical behavioral pat-
terns for temporally varying interaction graphs. We use
non-overlapping snapshots of interaction graphs and develop
a framework for capturing and identifying interesting events
from them. We use these events to characterize complex be-
havioral patterns of individuals and communities over time.
We demonstrate the application of behavioral patterns for
the purposes of modeling evolution, link prediction and in-
fluence maximization. Finally, we present a diffusion model
for evolving networks, based on our framework.

1. INTRODUCTION

Many social and biological systems can be represented as
complex interaction networks where nodes represent entities
(i.e. individuals, proteins) and edges mimic the interactions
among them. These interaction networks arise from a wide
variety of scientific domains like computer science, physics,
biology and sociology. Online communities such as Flickr,
MySpace and Orkut, e-mail networks, co-authorship net-
works and WWW networks are examples of interesting in-
teraction networks. The study of these complex interaction
networks can provide insight into their structure, properties
and behavior.

Early research in this area [13, 24, 4, 5] has primarily
focused on the static properties of these networks, neglect-
ing the fact that most real-world interaction networks are
dynamic in nature. In reality, many of these networks con-
stantly evolve over time, with the addition and deletion of
edges and nodes representing changes in the interactions

among the modeled entities. Recently, there has been some
interest in studying dynamic graphs [19, 3, 6, 10]. Identi-
fying the portions of the network that are changing, char-
acterizing the type of change, predicting future events (e.g.
link prediction), and developing generic models for evolving
networks are challenges that need to be addressed. For in-
stance, the rapid growth of online communities has dictated
the need for analyzing large amounts of temporal data to
reveal community structure, dynamics and evolution.

Interaction networks are often modular in nature. The
interactions existing between nodes can be used to group
them into clusters or communities. For instance, in a social
network, these clusters represent people with similar contact
patterns or interests. The problem of identifying these clus-
ters or communities from static graphs has been extensively
studied [13, 7, 25, 11] over the past decade. However, in the
case of evolving graphs, the clusters are typically not static.
Instead they constantly change over time, as the network
evolves. We believe that studying the evolution of these
clusters, in particular their formation, transitions and disso-
lution, can be extremely useful for effectively characterizing
the corresponding changes to the network over time.

Another important aspect is the behavior of the nodes of
the network. Nodes of an evolving interaction network rep-
resent entities whose interaction patterns change over time.
The movement of nodes, their behavior and influence over
other nodes, can help make inferences regarding future in-
teractions as well as predicting changes to communities in
the network. For instance, in a social network, if a person is
very sociable, the chances of him/her interacting with new
people and joining new groups is very high. In the case of
a collaboration network, if a person is known to collaborate
frequently with different people, then the chance of a new
collaboration involving this person is high. The influence
exerted by a node can be studied in terms of its effect on
other nodes. If several other people join a community when
a particular individual does, it indicates a high degree of
positive influence for that person.

The study of diffusion or flow of information in an evolv-
ing network is important for social science research, viral
marketing applications and epidemiology. For instance, pan-
demic viruses pose a severe threat to society due to their po-
tential to spread rapidly and cause tremendous widespread
illnesses and deaths. In viral marketing, the goal is to prop-
agate an idea or innovation through an interaction network.
Analysis of the evolution of interactions in a social network
and the identification of influential nodes can be used to
devise effective containment policies for pandemic disease



spread in the case of epidemiological studies, as well as
?word-of-mouth” advertising in marketing.

In this paper, we provide an event-based framework for
characterizing the evolution of interaction networks. We
begin by converting an evolving graph into static snapshot
graphs at different time points. We obtain clusters at each
of these snapshots independently. Next, we characterize the
transformations of these clusters by defining and identifying
certain critical events. We define efficient incremental algo-
rithms involving bit-matrix computations for this purpose.
We use these critical events to compute and reason about
novel behavior-oriented measures, which offer new and inter-
esting insights for the characterization of dynamic behavior
of interaction graphs. We illustrate our framework on two
different evolving networks - the DBLP co-authorship net-
work and a clinical trials patient network. In each case, the
behavioral patterns that we discover using our framework
help us make useful inferences about cluster evolution and
link prediction. For the DBLP dataset, we use the patterns
for predicting future trends (link prediction) with good suc-
cess. In the case of the clinical trials network, we show how
the behavioral patterns we discover can help detect signs
of hepatoxic side-effects for a particular drug. Finally, we
use the behavioral measures to detail a diffusion model for
evolving networks and demonstrate their application for the
task of influence maximization.

In short, the key contributions of this work are

e The identification of key critical events that occur in
evolving interaction networks.

Efficient incremental algorithms for the discovery of
these critical events

Novel behavioral measures for stability, sociability, in-
fluence and popularity that can be computed incre-
mentally over time

e A diffusion model for evolving networks based on our
framework

e Application of the events and behavioral measures on
two real datasets for modeling evolution, predicting
behavior and trends (link prediction) and influence
maximization.

2. RELATED WORK

There has been enormous interest in mining interaction
graphs for interesting patterns in various domains. How-
ever, the majority of these studies [13, 24, 4, 5, 7, 25, 11]
have focused on mining static graphs to identify commu-
nity structures, patterns and novel information. Recently,
the dynamic behavior of clusters and communities have at-
tracted the interest of several groups. Leskovec et al [19]
studied the evolution of graphs based on various topological
properties, such as the degree distribution and small-world
properties of large networks. They proposed a graph gen-
eration model, called Forest Fire model, to explain their
findings about evolutionary behaviors of graphs. Backstrom
et al [3] studied formation of groups and the ways they grow
and evolve over time. To estimate probability of an indi-
vidual joining a community, they proposed using features of
communities and individuals, applying decision-tree tech-
niques. To identify communities that are likely to grow,

they also used community features on a decision-tree based
analysis.

Chakrabarti et al [6] proposed evolutionary settings for
two widely-used clustering algorithms (k-means and agglom-
erative hierarchical clustering). They define evolutionary
clustering as the task of incrementally obtaining high-quality
clusters for a set of objects while also maintaining similarity
with clusters identified in previous timestamps. To obtain
the clusters for a particular snapshot, they also use history
information to obtain a clustering consistent with earlier
snapshots. Falkowski et al [10] analyze the evolution of com-
munities that are stable or fluctuating based on subgroups.
Although they analyze interaction graphs, their focus is dif-
ferent from ours. They examine overlapping snapshots of
interaction graphs and apply standard statistical measures
to identify persistent subgroups. Our focus is on identifying
key events and behavioral patterns that can characterize,
model and predict future behavioral trends. In this regard,
we specifically target nodes of the network and analyze their
evolutionary behavior.

The seminal paper by Samtaney et al [28] described an
approach for extracting coherent regions from 2-dimensional
and 3-dimensional scalar and vector fields for tracking pur-
poses. To study the evolution of these regions over time,
they present certain evolutionary events for objects. Event-
based methods have also been applied on spatial data [33]
and clustered stream data [29]. Although they use events,
they do not deal with evolving graphs.

The use of Semantic similarity based on ontologies has
been studied many times in the past [21, 12]. It has been
successfully applied on various taxonomies such as Word-
Net [27] and the Gene Ontology [8]. Resnik [26] suggested
a novel way to evaluate semantic similarity in an ontology
based on notion of information content. In our work, seman-
tic similarity concepts are used to quantify the similarity
between authors and clusters.

3. PROBLEM DEFINITION

Before describing our event-based framework in detail, we
introduce the basic notations used throughout the paper.
As we mentioned earlier, our focus in this work is to study
the evolution of graphs, in particular to understand behav-
ioral patterns for communities and individuals over time. In
order to fully understand the temporal evolution of graphs,
it becomes necessary to study and characterize the transfor-
mations undergone by the graph at different time instants
along the way. In this regard, we make use of temporal snap-
shots to examine static versions of the evolving network at
different time points.

Definition: An interaction graph G is said to be evolving
if its interactions vary over time. Let G = (V, E) denote
a temporally varying interaction graph where V' represents
the total unique entities and F the total interactions that
exist among the entities. We define a temporal snapshot
Si = (Vi, E;) of G to be a graph representing only entities
and interactions active in a particular time interval [Ts,, Te,],
called the snapshot interval.

As the graph evolves, new nodes and edges can appear.
Similarly, nodes and edges can also cease to exist. This dy-
namic behavior of a graph over time can thus be represented
as a set of S equal, non-overlapping temporal snapshots.
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Figure 1: Temporal Snapshots a) at Time t=1 b) at
Time t=2 ¢) Cumulative snapshot at Time t=2

Note that, different snapshots are mutually exclusive. They
do not contain any information in common. This is in
contrast to the representation provided in some earlier re-
search [6, 22] which define a snapshot considering the en-
tire set of interactions upto the current time interval. Fig-
ure 1(a-b) illustrates an example evolving graph over two
time intervals. We find that in the first time interval, in-
teractions exist between A and C, and between A and D.
In the second time interval, these interactions do not con-
tinue to exist. Figure 1(c) depicts a cumulative snapshot
of the second time interval. We find that the information
regarding the loss of interactions AC' and AD is lost. Also,
the community structure depicted in Figure 1(c) does not
reflect the actual structure. To prevent this loss of informa-
tion, we choose short time intervals and generate snapshots
representing only the information of that specific interval.
The collection of all T' temporal snapshots is represented by
S = {51, 852,...,57}.

To study the evolution of the graph, we need a represen-
tation of its structure at different snapshots. For this pur-
pose, we generate clusters for each snapshot graph. Each
S; is partitioned into k; communities or clusters denoted by
C; = {C},C?,...,CF}. The j™ cluster of Si, CY is also a
graph denoted by (V/, E/) where V; are nodes in S7 and
Ef denotes the edges between nodes in Vij . Finally, for each
S; = (Vi, By), VAUVAU...UuVM =V,

To choose a clustering algorithm for this work, we exam-
ined the performance of various graph clustering algorithms
on several interaction graphs in terms of modularity of clus-
ters. We found that the MCL algorithm [31], a fast and scal-
able unsupervised clustering algorithm, consistently yielded
clusters of high modularity. Hence, we use MCL to obtain
the clusters at different timestamps '. The MCL algorithm
does not require a parameter specifying the number of clus-
ters. Instead it uses a granularity parameter and the cluster
structure prevalent in the graph to determine the number
of partitions. Accordingly, for each snapshot, the number
of clusters may vary depending on the interactions in that
time interval. We used a granularity parameter of 1.2 for
our experiments, since the graphs were fairly sparse.

Algorithm 1 shows the outline of the framework we pro-
pose. We design an incremental strategy to mine the clusters
over time to identify significant changes that occur among
snapshots, referred to as critical events. These events are
then used to study more complex behavioral patterns. In
Section 5, we will describe the critical events and how we
find them. In Section 6, we mine these events further to find
complex behavioral patterns for analysis.

4. DATASETS

We employ two different datasets in this work.

INote that, the event-based framework we propose is rela-
tively independent of the clustering algorithm used to obtain
the snapshot clusters.

Algorithm 1 Mine-Events(G,T’)

Input: Interaction graph G = (V, E) and T, the
number of intervals
Convert graph G = (V, E) into T temporal
snapshots S = {S1, S2,...,S71}.
for i =1to T do
Cluster S;
Ci ={ct,c,....c;
end for
fori=1toT —1do
Events = Find_events(S;,5;+1) [Section 5]
Mine Ewvents for complex patterns [Section 6]
end for

‘}

DBLP co-authorship network: The DBLP bibliogra-
phy maintains information on more than 800000 computer
science publications. We used the DBLP data to generate
a co-authorship network representing authors publishing in
several important conferences in the field of databases, data
mining and AI. We chose all papers over a 10 year period
(1997-2006) that appeared in 28 key conferences spanning
mainly these three areas. We converted this data into a
co-authorship graph, where each author is represented as
a node and an edge between two authors corresponds to a
joint publication by these two authors. The graph spanning
10 years contained 23136 nodes and 54989 edges. We chose
the snapshot interval to be a year, resulting in 10 consecu-
tive snapshot graphs. These graphs are then clustered and
analyzed to identify critical events and patterns. We believe
that studying the evolution of the DBLP dataset can af-
ford information about the nature of collaborations and the
factors that influence future collaborations between authors.

Clinical Trials Data: In clinical trials, pharmaceutical
companies test a new drug for efficacy and toxicity - efficacy
to evaluate its effectiveness in curing or controlling the dis-
ease in question and toxicity to determine if the drug is safe
for consumption and with minimal side effects. Releasing a
drug that turns out to be toxic can cost companies billions
of dollars and more importantly lead to loss in life. In this
paper we use a dataset obtained from a major pharmaceu-
tical company, consisting of both healthy people as well as
patients suffering from certain diseases(diabetes and hepatic
impairment). As part of the study, they were given either a
placebo (a formulation that includes only the inactive ingre-
dients) or the drug under study. Liver toxicity information
can be obtained from eight serum analytes (often referred
to in the literature as the liver panel) This dataset consisted
of patients on the placebo and the drug in the ratio 40:60.
The initial snapshot of this data is composed of the measure-
ments of the analytes obtained before patients were treated
with the drug or the placebo. The subsequent snapshots cor-
respond to measurements taken every week. The data thus
consisted of 7 snapshots spanning a 6 week period since the
beginning of the treatment. We transformed the data for
each snapshot into a graph, based on the correlations that
exist between the analyte values of patients. If there ex-
ists a high correlation (greater than a threshold Tiorr) in
the analyte values between two patients, the two patients
have an edge between them in the snapshot graph 2. Note
that, if we consider each patient separately, we are limited
to only intrinsic information, whereas by modeling patients

2We examined the distribution of correlations and picked a
Teorr value of 0.7 for our experiments
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Figure 2: Temporal Snapshots at time t=1 to 6

as a graph, we are able to utilize intrinsic as well as extrinsic
properties.

S. CRITICAL EVENTS

In this section, we introduce and afford a formal definition
to certain critical events that occur in evolving graphs. Some
of the critical events described in this section are inspired
by a similar notion described by Samtaney et al [28]. in
the context of tracking and visualizing features. They have
also been used since, for tracking spatial objects [33] and
clustered text streams [29].

The events that we define are primarily between two con-
secutive timestamps but it is possible to coalesce events from
contiguous timestamps by analyzing the meta-data collected
from the event mining framework. We proceed to use these
events in the later sections to define more complex behav-
ior. We distribute the critical events which graphs can un-
dergo into two categories - events involving communities and
events involving individuals.

Figure 2 displays a set of snapshots of the network which
will be used as a running example in this section. At time
t =1, 2 clusters are discovered (shown in different colors).

Events involving communities: We define 5 basic events
which clusters can undergo between any two consecutive
time intervals or steps. Let S; and S;+1 be snapshots of S
at two consecutive time intervals with C; and C;11 denoting
the set of clusters respectively. The five proposed events are:

1) Continue: A cluster CfH is marked as continuation

of CF if sz+1 is the same as V¥, We do not impose the
constraint that the edge sets should be the same.

Continue(Cf,Cl,,) = 1iff V¥ = V7,

The main motivation behind this is that if certain nodes
are always part of the same cluster, any information supplied
to one node will eventually reach the others. Therefore, as
long as the vertex set remains same, the information flow
is not hindered. The addition and deletion of edges merely
indicates the strength between the nodes. An example of a
continue event is shown at t=2 in Figure 2. Note that an
extra interaction appears between the nodes in Cluster C3
but the clusters do not change.

2) xk-Merge: Two different clusters CF and C! are marked
as merged if there exists a cluster in the next timestamp
that contains at least k% of the nodes belonging to these
two clusters. The essential condition for a merge is :

Merge(CF,C k) = 1 iff HCgH such that

|(‘/ik U Vil) N VZJ+1|
Maz(|VFE UV, VL)

> k% (1)

k j ICF| ! j e . .
and |V;" NV/ | > 5= and [V; N V| > =~. This condi-
tion will only hold if there exist edges between V¥ and V}
in timestamp ¢ + 1. Intuitively, it implies that new inter-
actions have been created between nodes which previously
were part of different clusters. This caused k% 2 of nodes in
the two original clusters to join the new cluster. Note that,
in an ideal or complete merge, with x = 100, all nodes in
the two original clusters are found in the same cluster in the
next timestamp. The two original clusters are completely
lost in this scenario. Figure 2 shows an example of a com-
plete merge event at t=3. The dotted lines represent the
newly created edges. All the nodes now belong to a single
cluster (C3).

3) k-Split: A single cluster C’g is marked as split if kK% of

nodes from this cluster are present in 2 different clusters in

the next timestamp. The essential condition is that:
Split(C?, k) = 1 iff ICF_|, CL,, such that

(VL UV )N VY|
Maz (V5 UV V)

> k% (2)

k !
k J [Cial i J 1Cital
and [V/, N V7] > Sl vl nvy) > Bl

Intuitively, a split signifies that the interactions between
certain nodes are broken and not carried over to the current
timestamp, causing the nodes to part ways and join different
clusters. Also note that a broken edge, by itself, does not
necessarily indicate a split event, as there may be other in-
teractions existing between vertices in the cluster (similar to
the notion of k-connectivity). Time t=4 in Figure 2 shows
a split event when a cluster gets completely split into three
smaller clusters.

4) Form:A new cluster Cf;rl is said to have been formed if
none of the nodes in the cluster were grouped together at
the previous time interval i.e. no 2 nodes in Viil existed in
the same cluster at time period 7. )
Form(CF.,) =1iff 3no C/ such that V%, NV > 1

Intuitively, a form indicates the creation of a new commu-
nity or new collaboration. Figure 2 at time t=5 shows a
form event when two new nodes appear and a new cluster
is formed.

5) Dissolve: A single cluster CF is said to have dissolved
if none of the vertices in the cluster are in the same cluster
in the next timestamp i.e. no two entities in the original
cluster have an interaction between them in the current time
interval. _ _
Dissolve(Cf) = 1 iff 3no C7,; such that V¥ N V7, > 1
Intuitively, a dissolve indicates the lack of contact or inter-
actions between a group of nodes in a particular time period.
This might signify the breakup of a community or a work-
group. Figure 2 at time t=6 shows a dissolve event when
there are no longer interactions between the three nodes in
Cluster Cs resulting in a breakup of the cluster into 3 clus-

3We used a x value of 50 in our experiments.



ters - Ca, C2 and C§.

Events involving individuals: We wish to analyze not
only the evolution of communities but the influence of the
behavior of individuals on communities. In this regard, we
introduce four basic transformations involving individuals
over snapshots.

1) Appear: A node is said to appear when it occurs in Cg
but was not present in any cluster in the earlier timestamp.
Appear(v,i) =1iff v ¢ Vi_y and v € V;

This simple event indicates the introduction of a person (new
or returning) to a network. In Figure 2, at time ¢t = 5 two
new nodes appear in the network.

2) Disappear: A node is said to disappear when it was
found in a cluster C}_; but is not present in any cluster in
the timestamp 7.

Disappear(v,i) =1 iff v € Vi1 and v ¢ V;

This indicates the departure of a person from a network. In
Figure 2, at time ¢t = 6 two nodes of cluster C3 disappear
from the network.

3) Join: A node is said to join cluster C7 if it exists in the
cluster at timestamp 4. This may be due to an Appear event
or due to a leave event from a different cluster. Note that in
case, the cluster C{ must be sufficiently similar to a cluster

Join(v, CZ) =1iff HCg and C¥_; such that C¥ ;N Cf >

ck , j
%andv%‘/fil and v € V/

The cluster similarity condition ensures that C? is not a
newly formed cluster. This condition differentiates a Join
event from a Form event. Nodes forming a new cluster
will not be considered to be Join events since there will be
no cluster C¥_; in the previous timestamp with similarity

ck .
> ‘1—2’1‘ with the newly formed cluster.

4) Leave: A node is said to leave cluster CF_, if it no
longer is present in a cluster with most of the nodes in V;* ;.
A node that leaves a cluster may leave the network as a
Disappear event or may join a different cluster. In a col-
laboration network, a Leave event might correspond to a
student graduating and leaving a group. _

Leave(v,C}) = 1 iff 3C7 and CF_; such that CF_, NnC? >
|

k .
C"%l‘andvevilil and v ¢ V/

The similarity constraint between the two clusters is used
to maintain cluster correspondence. Note that if the original
cluster dissolves, the nodes in the cluster are not said to

participate in a Leave event. This is due to the fact that

. . C ck
there will no longer be a cluster with similarity > %

with the dissolved cluster CF_,.

5.0.1 Algorithms for Event Extraction:

We leverage the use of efficient bit matrix operations to
compute the events between snapshots. First, for each tem-
poral snapshot, we construct a binary k; x n matrix T; where
k; is the number of clusters at timestamp i and n is the num-
ber of nodes. We then compare the matrices of successive
snapshots to find events between them *. Let Ti(z,:) and

4If the number of nodes changes between the timestamps,

Number of nodes || Time (secs)
1000 0.006507
10000 0.0721
100000 0.714485
1000000 7.987603
2000000 10.435108
4000000 20.8885

Table 1: Timing Results

T;(:,y) correspond to the zt" row and y*" column vector of
matrix 7T; respectively. To compute all the events between
two snapshots, we perform a set of binary operations (AND
and OR) on the corresponding matrices. The linear opera-
tions performed to identify each event are presented below.
Let |x|; represent the L'-norm of a binary vector .

|
ol = > 3)
i=1
We can compute the events as :

Dissolve(T;,Ti+1) = {z]1 < z < ki, argmaxi<y<i
) Tiga(y, ) < 1}

Form(Ti ,Ti+1) = Dissolve(Tprl 7Ti)

i1 (|JAND(T;(z, :

Merge(T;,Ti+1,8) = {< z,y,2 > |1 <z < ks,
1<y<kiz#y 1<z kipr,
|[AND(OR(Ti(z,:), Ti(y,:)): Ti+1(2, 1)1 2 K,
|AND(T;(x,:), Tig1(z, )| > &l

(

T; (y,:
|AND(Ti(y, ), T (z,:)|h > Tty
Split(T;,Ti41,k)= Merge(Ti+1,T5,K)

Continue(T;,Ti41)={< z,y > |1 < < k;,1 <y < kiy1,
OR(T;(x,:), Tit1(y,:)) == AND(T(,:), Tiy1(y,:))}

Appear(T;,Tit+1) = {v|]l <v < |V],
|T7;(:7'U)|1 ==0, |Ti+1(:,v)\1 ==1

Disappear(T;,Ti+1) = {v|1 < v < |V],
|Ti (G, v)|1 == 1, |Tig1(;,v)|1 == 0}

Join(T;,Ti11) = {< y,v > [1 <y < kiy1,1 < v < V], Tig1(y,v) ==
1,

32,1 <2 < ky sit. |[AND(Ti(x, ), Ty (y,1))]1 > Ll
Ti(z,v) == 0}

Leave(T;,Tit1)= {<z,v > |1 <z <k;,1 <v<|V|,Ti(z,v) == 1,
3y, 1 <y < ki st [AND(Ti(x,2), Tiga (y,)n > LelgdlL,
Tiy1(y,v) == 0}

T;(z,y) represents the value in the zt* row and y** column
of T;. The construction of the matrices and the operations
to find the events are all linear in time complexity(O(n)),
assuming that k; << n and k;+1 << n. The timing results
for event detection for various values of n are shown in Ta-
ble 1. The number of clusters, k; and k;+1 are 50 in each
case. The advantage of using the bit matrix operations is
that they enable us to leverage GPU [14] and multi-core [17]
architectures quite efficiently. Note that, since we are com-
puting events for two timestamps at a time, the whole event
detection process can be trivially parallelized.

6. BEHAVIORAL ANALYSIS

we will increase the length of the matrices to reflect the
largest of the two



Next, we use the critical events to study important be-
havioral patterns in evolving graphs. Most of the research
on evolving networks [3, 10] have focused solely on analyz-
ing community behavior. In this section, we begin by pre-
senting some interesting results on community behavior and
then move on to study the behavior of nodes in the network
and their influence on others. Finally, we incorporate some
simple semantic information and study the information flow
among nodes and communities.

6.1 Community Behavioral Analysis

The analysis of interaction graphs over time enables us to
infer the evolution of group behavior over time. By analyz-
ing the community-based events obtained, we observed sev-
eral interesting merge and split events in the DBLP dataset,
that afforded insight into interesting relationships between
group collaborations as well as the evolution of topics.

6.1.1 Group Merge:

In the DBLP dataset, a group merge corresponds to a
collaboration between members of two or more groups from
the previous time period. This suggests that the resultant
merger represents a confluence of ideas or topics. Note that,
more than two clusters can merge together, but our algo-
rithm will discover this event as a set of two-way merge
events. For instance, let us consider a cluster merge event
that occurred in the 2005-2006 time interval. Our algo-
rithm identified two groups (one from Germany and one
from Italy) who independently published articles in differ-
ent conferences in 2005.

Cluster 1 in 2005
AAAI 2005: Niels Landwehr, Kristian Kersting, Luc
De Raedt: nFOIL: Integrating Nave Bayes and FOIL
AAAT 2005: Luc De Raedt, Kristian Kersting, Sunna
Torge: Towards Learning Stochastic Logic Programs from
Proof-Banks.

Cluster 2 in 2005
ICML 2005 : Sauro Menchetti, Fabrizio Costa, Paolo
Frasconi: Weighted Decomposition Kernels.

IJCAI 2005 : Andrea Passerini and Paolo Frasconi:
P. Kernels on Prolog Ground Terms.

Merged Cluster in 2006
ILP 2006 : Niels Landwehr, Andrea Passerini, Luc
De Raedt, Paolo Frasconi: kFOIL: Learning Simple Re-
lational Kernels

From the merge event, we can hypothesize that Niels
Landwehr and Luc De Raedt, who were working on Induc-
tive Logic in 2005 are collaborating on Passerini and Fras-
coni who worked separately on kernels and the resultant
paper is a combination of these ideas.

Indeed, in the abstract of the 2006 paper, the authors de-
scribe the paper as ”A novel and simple combination of in-
ductive logic programming with kernel methods is presented.
The kFOIL algorithm integrates the well-known inductive
logic programming system FOIL with kernel methods.”

One relatively simple conclusion we could make from our
observations is that the propensity of a merger between clus-
ters seems to be dependent on two main factors - the proz-
imiaty or sociability of the authors and the similarity of the
topics of the papers involved. We discuss more on these two
factors in the next two subsections.

6.1.2 Group Split:

Next, let us consider a split event that occurred in the
same time period. Our algorithm found a cluster consisting
of papers on structure extraction from HTML and unstruc-
tured documents.

Cluster in 1998:

FODO 1998: Seung Jin Lim, Yiu-Kai Ng: Construct-
ing Hierarchical Information Structures of Sub-Page Level
HTML Documents

ER 1998: David W. Embley, Douglas M. Campbell,
Y. S. Jiang, Stephen W. Liddle, Yiu-Kai Ng, Dallan
Quass, Randy D. Smith: A Conceptual-Modeling Ap-
proach to Eztracting Data from the Web.

IDEAS 1998: Aparna Seetharaman, Yiu-Kai Ng: A
Model-Forest Based Horizontal Fragmentation Approach for
Disjunctive Deductive Databases

CIKM 1998: David W. Embley, Douglas M. Camp-
bell, Randy D. Smith, Stephen W. Liddle: Ontology-
Based Extraction and Structuring of Information from Data-
Rich Unstructured Documents

In the next year (1999), this cluster splits into two differ-
ent clusters. While Seung Jin Lim, Yiu-Kai Ng and David
W. Embley continue working on extracting information from
Web Documents, Stephen W. Liddle, Douglas M. Campbell,
Chad Crawford specialized on Business Reports.

Cluster 1 in 1999
CIKM 1999: Seung Jin Lim, Yiu-Kai Ng: An Auto-
mated Approach for Retrieving Hierarchical Data from HTML
Tables.

DASFAA 1999: Seung Jin Lim, Yiu-Kai Ng: WebView:
A Tool for Retrieving Internal Structures and Extracting In-
formation from HTML Documents

SIGMOD 1999: David W. Embley, Y. S. Jiang, Yiu-
Kai Ng: Record-Boundary Discovery in Web Documents.
Cluster 2 in 1999

CIKM 1999: Stephen W. Liddle, Douglas M. Camp-
bell, Chad Crawford: Automatically Extracting Struc-
ture and Data from Business Reports.

An important reason for split events is the divergence of
topics, as we can observe in the above example.

We find that, by examining the merge and split events, we
can gain insight into interesting relationships between group
collaborations as well as the evolution of topics, which we
will examine in more detail in the last subsection.

6.2 Movement-based Analysis

Movement for individuals is defined using the basic events
- Join and Leave. We use these basic events to identify more
complex behavior. In particular, we are interested in captur-
ing the behavioral tendencies of individuals that contribute
to the evolution of the graph. We wish to use these behav-
ioral patterns to perform reasoning and predict future trends
of the graph. We define four behavioral measures that can
be incrementally computed at each time interval using the
events discovered in the current interval.

6.2.1 Stability Index

The Stability index measures the tendency of a node to
have interactions with the same nodes over a period of time.
A node is highly stable if it belongs to a very stable clus-
ter, one that does not change much over time. Let cl;(x)
represent the cluster that node 2 belongs to in the i*" time
interval. The Stability Index (SI) for node = over T' times-



Disease Treat- Age | Sex
ment

diabetes +/- renal impairment Drug 62 M
diabetes +/- renal impairment Drug 59 M
hepatic impairment Drug 56 M
diabetic neuropathy Drug 66 F
diabetes +/- renal impairment Drug 60 M
diabetes +/- renal impairment Drug 62 F
diabetes +/- renal impairment Drug 70 F
diabetes +/- renal impairment Drug 66 M
diabetes +/- renal impairment Drug 55 M
diabetes +/- renal impairment Drug 50 M
diabetes +/- renal impairment Drug 49 M
hepatic impairment Drug 50 M
diabetic neuropathy Drug 69 M
diabetes mellitus (type 2 niddm) Drug 52 M
hepatic impairment Drug 48 M
hepatic impairment Drug 48 M
diabetes +/- renal impairment Drug 49 M
hepatic impairment Drug 49 M
diabetes mellitus (type 2 niddm) | Placebo 56 M

Table 2: Low Stability Index - Clinical Trials Data

tamps is measured incrementally as:
T

SI@,T) =Y — k@)l
=1 221 (Leave(j, cli(x)) + Join(j, cli(x)))
(4)

Stability for the Clinical Trials Dataset: In the case
of the clinical trials data, nodes in a cluster correspond to
individuals having similar observations. When a node has a
low Stability index score, it indicates that the observations
of that particular patient fluctuate appreciably. This causes
the node to jump from one cluster to another repeatedly.
This behavior represents an anomaly and can indicate pos-
sible side-effects of the drug being administered. Note that
the dataset contains two groups of people, one group on the
placebo and the other group on the drug with a distribution
of 40:60. If the people with very low Stability index (outliers
in this case) happen to be people on the drug, there is a rea-
sonable indication that there may be a hepatoxic effect from
the drug intake, whereas if it is uniform over both sets of
people, it would indicate there are no noticeable side-effects.

Accordingly, we computed the Stability index for all the
nodes in the clinical trial data. On examination, we found
19 nodes having very low Stability index scores (below a
threshold). This indicates that these nodes move between
clusters in almost every time interval that they are active.
This suggests a significantly unstable behavior exhibited by
these nodes. The 19 patients are shown in Table 2.

In this particular application unstable nodes (patients)
are a cause for concern since that may be an indication of
toxicity. Drilling down on the nineteen most unstable nodes
we find that only one of them is on the placebo. In fact
drilling down even further it is observed that out of the top
200 most unstable patients, eighty percent were on the drug.
This indeed was very suspicious given the original distribu-
tion (40:60) and points to potential toxicity. As it turns
out, according to domain experts, this drug was dis-
continued for toxicity two years after this study was
conducted. We should also note that when we applied the
same procedure on a clinical study where the drug in ques-
tion was considered ”safe” and met with FDA approval we
did not find such a pattern of behavior.

6.2.2 Sociability Index

For the DBLP data, we define a related measure, called
the Sociability Index. The Sociability Index is a measure of

the number of different interactions that a node participates
in. This behavior can be captured by the number of Join
and Leave events that this node is involved in. Let cl;(x)
be the cluster that node x belongs to at time 7. Then, the
Sociability Index is defined as:

S (Join(z, cliy1(x)) + Leave(x, cli(x)))
|Activity (x)|

Sol(x) = (5)

where Activity(z) = >.._,(z € V;) indicates the number
of intervals that node z is active. Similar to the stability
index, this is computed incrementally. The measure gives
high scores to nodes that are involved in interactions with
different groups.

Note that this measure does not represent the degree,
which is a factor of the number of interactions a node is
involved in. A case in point was a node that had a degree
of 80, but a sociability of close to 0. When we examined
the clusters the node belonged to, we found that the node
interacted with the same nodes over several timestamps.

Application of Sociability for Link Prediction:

Problem Definition: The goal in link prediction [20] is to
use past interaction information to predict future links be-
tween nodes. Since, in this paper we are analyzing the evo-
lution of clusters, our goal is to predict future co-occurrences
of nodes in clusters.

In the case of the DBLP collaboration network, two nodes
are clustered together if they work on related papers or be-
long to the same work-group, as we have seen. We use the
behavioral patterns we have discovered to predict the likeli-
hood of authors being clustered together in the future.

For prediction, we employ the Sociability index which, as
we described before, gives the likelihood of an author be-
ing involved in different collaborations. If an author has a
high Sociability Index score, the chances of him/her joining
a new cluster in the future is very high. We compute the
Sociability Index scores for authors using Equation 5. We
use a degree threshold to prune these authors. ® We find
all authors who have high Sociability index scores (> 0.75)
and degree higher than the threshold and who have not been
clustered together in the past. We then predict future clus-
ter co-occurrences between them.

The seminal paper on link prediction [20] provided an em-
pirical analysis of several techniques for link prediction. We
adopt the same scenario and split our DBLP snapshots into
two parts. We use the clusterings for the first 5 years (1997-
2001) to predict new cluster co-occurrences for the next 5
years. Note that we are only considering new links between
authors. Hence we consider only authors that have not been
clustered together previously.

Similar to the evaluation performed by Liben-Nowell and
Kleinberg [20], we use as our baseline a random predictor
that randomly predicts pairs of authors who have not been
clustered together before, and report the accuracy of all
the methods methods relative to the random predictor. To
perform comparisons, we implement three other approaches
that were shown to perform well by the authors above:

Common Neighbor-based: This approach [23, 20] gives
high similarity scores to nodes that have a large number of

>The threshold value we used was 50 papers



Predictor Accuracy
Random Predictor Probability 0.14%
Sociability Index 275
Common Neighbors 25
Adamic-Adar 46
Jaccard Coefficient 23

Table 3: Cluster Link Prediction Accuracy. Accuracy
score specifies the factor improvement over the random
predictor. This method of evaluation is consistent with
the one performed by Liben-Nowell and Kleinberg [20].

neighbors in common. This measure is based on the notion
that if two authors have a large number of common neigh-
bors and have not yet collaborated, there is a good chance
that they will, in the future. It is given by:

Score(a,b) = |v(a) N (b)] (6)

where 7(a) represents the neighbors of node a.

Adamic-Adar: This measure, originally proposed by Adamic

and Adar [18] in relation to similarity between web pages,
weights a common neighbor based on its importance. It is

defined as:
1
SCO'I‘S(CL, b) = z m (7)
ce(r(mmry) I
Nodes that have fewer neighbors are deemed more impor-
tant than nodes with high degrees.

Jaccard coefficient: This measure, a popularly used simi-
larity metric, computes the probability of two nodes having
a common neighbor.

Score(a,b) = (@) na(B)] (8)
Iy(a) U~ (b)]

We used all the algorithms to predict cluster links for the
last 5 years (2002-2006). We only considered pairs of au-
thors who have not been clustered together in any of the
5 earlier snapshot graphs. The accuracy was computed as
a factor of the random predictor [20], which was found to
give a correct result with probability 0.14%. The results
are shown in Table 3. We find that the Sociability Index-
based method performs the best overall, outperforming other
approaches appreciably with a large ratio of correct predic-
tions (275). This result suggests that behavioral patterns of
evolving graphs can be used to predict future behavior.

6.2.3 Popularity Index

The Popularity index is a measure defined for a cluster
or community at a particular time interval. The Popularity
Index of a cluster at time interval [i,7 + 1] is a measure of
the number of nodes that are attracted to it during that
interval. It is defined as:

Vi Vi
PI(CY) = (D Join(z,CY)) — (> Leave(x,CY))  (9)

z=1

This measure is based on the transformation a cluster un-
dergoes over the course of a time interval. If a cluster does
not dissolve in [i,7+ 1] and a large number of nodes join the
cluster and few leave it, then the cluster will have a high
Popularity Index score. Note, that the Popularity index is
an influence measure defined for a cluster. Also note, that
this measure does not simply reflect the size of a cluster. If a
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Figure 3: Illustration of certain authors belonging to a
very popular cluster (1999-2000 time period). Original
cluster (3 authors) shown in small box. In the large
graph, we show the connections among 25 authors from
the new cluster who published XML-related papers in
that time-frame.

cluster is very large, it does not indicate that it is attracting
new nodes to it.

In the DBLP dataset, the popularity index can be used
to find topics of interest for a particular year. For instance,
if a large number of nodes join a cluster at a particular time
point and a high percentage of them are working on a specific
topic, it indicates a buzz around that topic for that year. On
the other hand, if a large number of authors leave a cluster,
and there are not many new nodes joining it, it indicates a
loss of interest in a particular topic.

To find hot topics, we computed the popularity index
scores for each cluster, and identified the most popular clus-
ters, at each timestamp. We then examined the clusters
that had high popularity scores to see if a large percentage
of the authors in them were working on a particular topic.

We will now present an interesting result we obtained for
the time span 1999-2000. In 1999, three authors Stefano
Ceri, Piero Fraternali and Stefano Paraboschi formed a clus-
ter. They were involved in a few papers on XML and web
applications. In the next year (2000), these three authors
were involved in a large number of collaborations, result-
ing in around 50 joins to their cluster. When we examined
the topics of the papers that resulted, we found that 30 of
these authors published papers related to XML. Since there
were no papers on XML before 1999, this was a new and
hot topic at that point. Since then there have been large
number of papers on XML. Figure 3 shows the original 3
person cluster as well as the authors from the new cluster
who were involved in XML related work in that particular
time interval.

6.2.4 Influence Index

The influence index of a node is a measure of the influence
this node has on others. Note that the influence that we are
considering, in this case, is with regard to cluster evolution.
We would like to find nodes that influence other nodes into
participating in critical events. This behavior is measured



Author Influence
Index
H. V. Jagadish 290.125
Hongjun Lu 268.5
Jiawei Han 266.625
Philip S. Yu 251.66
Rajeev Rastogi 246.85
Beng Chin Ooi 237
Tok Wang Ling 220.428
Heikki Mannila 206.5
‘Wenfei Fan 200.142
Qiang Yang 199
Johannes Gehrke 179.85
Christos Faloutsos 167.85
Rakesh Agrawal 157.875
Edward Y. Chang 153
Guy M. Lohman 131.375
Dennis Shasha 129.29
Jennifer Widom 128.375
Hamid Pirahesh 127.625
Michael J. Franklin 121.5
Hector Garcia-Molina 118.625

Table 4: Top 20 Influence Index Values - DBLP Data

for a node z, over all timestamps, by considering all other
nodes that leave or join a cluster when = does. If a large
number of nodes leave or join a cluster with high frequency
when a certain node z does, it suggests that node x has a
certain positive influence on the movement of the others.
Let Companions(x) represent all nodes over all timestamps
that join or leave clusters with node x. The Influence for
node z is given by:
_ |Companions(x)|

Inf(@) = —Noves()] (10)
Here Moves(z) represents the number of Join and Leave
events x participates in. © Note that, this definition by it-
self, does not measure influence, since nodes that interact
and move along with highly influential nodes will have high
Influence score values as well. Hence, to eliminate these fol-
lower nodes, additional pruning constraints are needed.
Let Maz_Int(x) denote the node with which node z has the
maximum number of interactions. Let Deg(z) denote the
number of neighbors of node x.
Influence Index(x) = Inf(x) unless any of the following
hold :

o Inf(Mazx_Int(z)) > Inf(x)
o Deg(Max_Int(x)) > Deg(x)

If any of the two conditions hold, Influence Index(x) = 0.
The additional constraints are imposed in order to ensure
that we find the most influential nodes in the datasets.

We computed the Influence Index scores for nodes in the
DBLP dataset. The top 20 authors are shown in Table 4.
We further illustrate the use of the Influence index in the
next section.

6.3 Incorporating semantic content

To quantify the relevance of author pairs in the DBLP
dataset, we make use of semantic information from their
papers. To construct a knowledge base, we identify a set
of unique keywords composed of frequently used technical
terms in the papers from the conferences in our corpus. We
then group related keywords together to form keyword-sets,

5To compute the Influence index efficiently, we incremen-
tally update Companions() and Deg() for all nodes. The
number of Join and Leave events (Moves()) are used in the
Sociability case also and are stored incrementally as well.
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Figure 4: A sample subgraph of the keyword DAG
hierarchy

k = {w1,...,wn}, where each w; is a keyword. Each paper is
thus labeled with a set of related keywords. An example of
keyword-set is { WWW'/ Web', Internet’}. Similarly each
author is associated with a paper-set, P, consisting of the
union of the keyword-sets from all the papers that she/he
co-authored in a particular time period. P = {k1,...,kp}
where each k; is a keyword-set. Thus every node (i.e. au-
thor) in our co-authorship graph is associated with keyword-
sets based on the corresponding papers she/he has authored.
However, the relationship between two authors cannot be in-
ferred by merely comparing their paper-sets since different
keywords are associated with different semantic meanings.

To capture this, we construct an ontology in the form of a
hierarchy or a DAG where each node represents a keyword-
set. 7 Nodes at higher levels in the hierarchy represent
keyword-sets that are more general, while nodes closer to
the leaves represent more specific keywords. A node a has
a child b if b is a keyword-set that represents a more spe-
cific term related to a. An example hierarchy is shown in
Figure 4.

Using this hierarchy, we define the notion of semantic simi-
larity [21, 12] in this context. To begin with, the Information
Content (IC) of a keyword-set, using Resnik’s definition [26],
is given as:

[C(k) = —tn—L ) (11)

VETE (root)

where k; represents a keyword-set and F'(k;) is the frequency
of encountering that particular keyword-set over all the pa-
per titles in the corpus. Here, F(root) is the frequency of
the root term. Note that frequency count of a keyword-set
includes the frequency counts of all subsumed keyword-sets
in an is-a hierarchy. Accordingly, the root of our hierarchy
includes the frequency counts of every other keyword in the
ontology. Note that terms with smaller frequency counts will
therefore have higher information content values(i.e. more
informative).

Using the above definition, the Semantic Similarity (SS)
between two keyword-sets can be computed as follows:

SS(ki, kj) = IC(les(ki, ky)) (12)

where lcs(ki, kj) refers to the lowest common subsumer of
keyword-sets k; and k;.

The Semantic Similarity between two authors,A, and Ay,
is a function of the keyword-sets that they have in common.

"The keyword ontology was manually constructed by the
authors for this work.



We define it as the weighted sum of the Information Con-
tent of the keyword-sets associated with both of them. It is
represented as follows:

Similarity(Aaq, Ap) = (IC(ki)) (13)
k;€Kqgandk; €Ky,

where K, and K, are the paper-sets that annotate authors
A, and Ay respectively. If two authors have identical paper-
sets consisting of very specific topics (high Information Con-
tent), then they will have the highest semantic similarity.

Next, we illustrate how semantic similarity can be used to
reason about community-based critical events, using exam-
ples from the DBLP dataset.

6.3.1 Group Merge:

The key intuition here is that the probability of a merge
event depends on the Semantic Similarity between two clus-
ters. For instance, if two clusters are comprised of papers
on highly related topics, it stands to reason that there is a
high likelihood of a merge between them.

Let us consider two clusters C¢ and C? consisting of k°
and k® paper-sets respectively. A simple way to compute
the semantic similarity between two clusters is based on the
information content of their keyword-set pairs, as shown be-
low:

St SS(myn)
ko x kb

To define the semantic similarity between two clusters, one
can also employ a mutual information measure [30]. Mutual
information is a measure of the amount of statistical infor-
mation shared between two distributions. We can compute
the mutual information between two clusters based on the
keyword-sets of all the authors belonging to those clusters.
This would be applicable when there is history data that can
be used to estimate the probabilities. Given probabilities of
keyword-sets m and n occurring in a cluster as p™ and p" re-
spectively, and their co-occurrence probability p™", we can
define the Semantic Mutual Information (SMI) between the
two clusters Cj' and Cf as:

Inter_SS(C{,CP) = (14)

k¢ KD mn
SMI(CY,CP) = Z Z SS(m,n) * p™" * 10gya ko o
m=1n=1

Note that each keyword-set pair is weighted by the infor-
mation content of their most informative common ancestor
in the keyword ontology (i.e. Lowest Common Subsumer).

The keyword information can be used to analyze the effect
of topics on community based events. If two clusters in
snapshot S; - C¢ and C?, are merging in time 7T} into cluster
C{y1, the inter-cluster similarity of Cf and C? and their
similarity to the new cluster formed, C7,; can be indicative
of the evolution of a topic by combining two similar sub-
topics.

We illustrate this with an example from the DBLP dataset.
In 1999, we found two clusters with high semantic similar-
ity scores (shown in the first two columns of Table 5), due
to the common keywords - ”constraint”, ”query”, ”aggre-
gate/aggregation”. We found that these two clusters merged
in the following year (2000) giving a single cluster with the
following papers. All three clusters are shown in Table 5.
This example illustrates the relationship between semantic

similarity between clusters and the Merge event. This ex-
ample illustrates the relationship between semantic similar-
ity between clusters and the Merge event.

6.3.2 Group Split:

As we saw earlier, an important factor causing a Split
event is topic divergence. The probability of topic diver-
gence is inversely proportional to the semantic similarity
between topics in a cluster. We define the intra-cluster se-
mantic similarity Intra_SS as the average of the semantic
similarity scores between the keyword-sets in the cluster.
The semantic similarity within a cluster is given by:

m=1 n=m
Pl SR S8 (m, )
kax(k2—1)
2

Intra_SS(C{) = (16)

where k“, as before, represents the total number of keyword-
sets in cluster Cj'. If the intra-cluster semantic similar-
ity is small, then it indicates that the cluster is likely to
split in the next few timestamps. For instance, in 2001
we found a cluster with relatively low intra-cluster semantic
similarity. This cluster contained very disparate keyword-
sets {{web,data extraction} and {spatio-temporal, informa-
tion system}}. The papers in this cluster are shown in the
first column of Table 6. In 2002, this cluster split into two
different clusters, shown in the columns 2 and 3 in Table 6.
Thus, the semantic similarity within clusters can be useful
to characterize and predict future Split events.

6.3.3  Group Continue:

A continue event is useful to study the evolution of a topic.
Since the authors belonging to the cluster do not change,
a continue event can provide information about how ideas
evolve. The clusters that correspond to a continue event will
tend to have a reasonably high semantic similarity score.
We present some examples of the papers corresponding to
continue events in Table 7. The first column in the table
represents a paper from the cluster at time stamp ¢ and
the second column denotes the most similar paper from the
continuing cluster at ¢ + 1.

7. DIFFUSION MODEL FOR
EVOLVING NETWORKS

We use the behavioral patterns discussed in the previous
section to define a diffusion model for evolving networks.
Diffusion models have been studied for complex networks [1,
9] and specifically in the context of influence maximiza-
tion [15, 16] where the task is to identify key start nodes that
can be used to effectively propagate information through the
network. The information can be either an idea or an inno-
vation that propagates through the network over time. In
this regard, Kempe et al [15, 16] discuss two models for the
spread of influence through social networks. We examine
this scenario from an evolving perspective, where the nodes
and edges of the network are transient.

Let us consider an idea or innovation that arrives into the
network at timestamp a. We define four states for nodes
in the evolving network - active, inactive, contagious and
isolated. These states are not mutually exclusive, as we
will see later. At the beginning of the diffusion process, at
time a, all nodes in the network are inactive. The diffu-
sion model begins with a set of nodes that are activated
(provided the information) at the first timestamp. These



2) On the Orthographic Dimension of
Constraint Databases
3) A Performance Evaluation of
Spatial Join Processing Strategies

Cluster 1 Cluster 2 Merged Cluster
1) Querying Aggregate Data Exact and Approximate Aggregation | 1) On the Content of Materialized
in Constraint Query Aggregate Views.

2) Automatic Aggregation
Using Explicit Metadata
3) Reachability and Connectivity
Queries in Constraint Databases

Table 5: Group Merge Event - Column 1 and 2 show the papers from the original clusters. Column 3 shows

the papers from the merged cluster.

2) RoadRunner: Towards Automatic
Data Extraction from Large Web Sites.
3) SIT-IN: a Real-Life Spatio-Temporal

Information System.

Cluster Split Cluster 1 Split Cluster 2
1) Web Site Evaluation: Spatio-temporal Information Systems RoadRunner: automatic data
Methodology and Case Study in a Statistical Context. extraction from data-intensive web sites.

Table 6: Group Split Event - Column 1 shows the papers from the original cluster. Columns 2 and 3 show

the papers from the split clusters.

active nodes will be contagious briefly, in that, in the next
timestamp they can activate other nodes they interact with,
passing on the information they received. Subsequently, the
newly contagious nodes proceed to attempt to activate their
inactive neighbors. The process continues, with the infor-
mation propagating through the network until at time T
there are o(T') active nodes in the network. In earlier work,
the effect of a contagious node has been limited to one times-
tamp, which means that an active node can attempt to acti-
vate its neighbors only once. However this does not capture
the fact that the network topology can change, with the
neighbors of nodes changing over time. After a contagious
node has activated some of its neighbors, new nodes might
come in contact with it in subsequent time instances. In this
regard, we relax this constraint allowing a node to remain
contagious when confronted with new neighbors. A node
can thus attempt to activate each unique neighbor once.
When a node is surrounded by contagious nodes, it’s propen-
sity to get activated is given by an activation function.

Definition: The activation function for a node v, Ac,() is
a non-negative function that maps the weights associated
with the neighbors of v, wt(x,v) Vo = neighbor(v) to either
0or 1.

We describe two Activation functions,Max and Sum, for a
node v as

Ay (u1, uz, ..., um) = (arg max (wty(ui)) >0,  (17)

A ™ (ur, U2, ooy Um ) = Z wiy(ui) > 0y (18)

1<i<m

Here, 0, denotes the activation threshold for node v. The
weights on the edges represent the likelihood of that particu-
lar interaction leading to an activation. If the edge between
two nodes has a high weight, it indicates that if one of the
nodes gets activated, the chance of it activating the other is
high. In our case, we define the weights for an interaction
based on the Sociability Index values of the nodes involved,
since Sociability can best capture the aforementioned prop-
erty. If a node is highly sociable, it has a high propensity
of passing on information to other nodes it interacts with.
Hence, for each interaction of node x with a neighbor, y, the

weight of the interaction is given by

wtz(y) = Sol (y) (19)

Similarly wt,(x) = Sol(z). Note that since we are dealing
with diffusion over time, the Sol(x) represents the cumula-
tive value defined in (5) until the current time point. The
Sociability values thus can change over time.

The set of nodes activated in a given time interval ¢ due to
the initial node x and the cardinality of this set are given by
R, (%) and o4 (7) respectively. The total set and number of
nodes activated due to x after T' timestamps of the diffusion
process are given as

Ro(T) = Ui=1 Ra (i) (20)

7o(T) = Y (i) (21)

It is also important to consider the effect of deleted nodes
and edges. When a node is not participating in any interac-
tion in the current timestamp it is said to be isolated. An
isolated node cannot influence any other nodes since it has
no interactions.

Claim 7.1. An active node can be isolated.

PROOF. As we mentioned earlier, the topology of the net-
work can change at every timestamp. Hence, a node that
has just become active can be separated from its neighbors
due to the deletion of edges. The node will then remain
isolated until a new interaction is formed with it.

An example of this scenario is shown in Figure 5. Node A
begins the diffusion process activating node B. B is conta-
gious at time i and activates node C. However at the next
timestamp, C no longer interacts with B, D and E. Although
it is active and contagious, it is isolated at this time instant.
In the future, if it interacts with other nodes, it can attempt
to activate them once.

Influence Maximization: Influence Maximization is an
important problem for diffusion models and has practical
applications in viral marketing and epidemiology. The chal-
lenge is to find an initial set of active nodes that can influ-



Cluster 1

Cluster 2

Object Recognition Using Appearance-Based Parts and Relations

Hierarchical Organization of Appearance-Based
Parts and Relations for Object Recognition

Mining Insurance Data at Swiss Life

A Data Mining Support Environment and its Application
on Insurance Data

M-tree: An Efficient Access Method for Similarity Search in Metric Spaces

Processing Complex Similarity
Queries with Distance-Based Access Methods

Optimizing Queries in Distributed and Composable Mediators

Distributed View Expansion in Composable Mediators

Scaling up Dynamic Time Warping to Massive Dataset

Scaling up dynamic time warping for datamining applications

Table 7: Continue Events - Column 1 shows a paper from a cluster that is part of a Continue event. Column
2 shows the paper from the cluster in the next timestamp.

Figure 5: Isolation of active nodes. The double circles
indicate active nodes. The grey inner circle represents
contagious nodes. Nodes D and E are inactive.

ence the most number of inactive nodes over the duration
of the diffusion.

Problem Definition: Given a graph G that evolves over
T timestamps and a diffusion model, the task is to find the
set of k initial nodes S to maximize Rgs(7T") where Rs(T) =
UEESRz (T)

Kempe et al [15, 16] discuss a greedy algorithm for finding
the initial set that maximizes the influence. They find the
start nodes that maximize o (T"), where o(T) = > g 02(T).
To find 0, (T') for all nodes x, they simulate the diffusion pro-
cess over the network. However, in our case, the network is
dynamic with edges and nodes getting added or deleted. At
a particular timestamp 4, it is unclear how the network is
going to change at time i4+1. Hence, simulating the diffusion
on the static graph will not work. Considering high-degree
nodes to start the diffusion process has been examined in
social network research [32]. However, using the degree to
determine the initial nodes may not be a good option [15],
since it is possible for nodes of high degree to be clustered,
which limits their range. Instead, we advocate the use of the
Influence Index we defined in the previous section for this
purpose. The Influence Index is an incremental measure
which considers the behavior of the nodes over the previous
timestamps and chooses nodes that have the highest degree
of influence over other nodes. Also, by pruning followers of
influential nodes, we are ensuring that the nodes with high
influence index are not likely to be clustered.

Empirical Evaluation: We conducted an experiment to
evaluate the performance of the Influence index-based ini-
tialization. To compare, we employed an approach based
on accumulated degree, where we picked nodes that had
the highest degree, over the preceding timestamps, to be
the start nodes. As a baseline, we implemented a ran-
dom approach where the initial nodes are chosen at ran-
dom. We constructed a graph using a subset of nodes from
the DBLP collaboration network. We considered the inter-
actions from 1997-2001 to compute sociability, degree and

Method Activated nodes (%) || Activated nodes (%)
Max Activation Sum Activation
Random 16.67 20.39
Accumulated Degree 51.9 65.33
Influence 61.12 81

Table 8: Diffusion Results

influence scores. We then assumed the introduction of a
new idea at 2002 and then tracked its diffusion through the
network over the next 4 timestamps (till 2006). We used
an active set size, k, of 5 and both the Sum and Max acti-
vation functions. We performed the experiments 100 times,
choosing random activation thresholds for the nodes from
[0,1]. The results are shown in Table 8. Our results suggest
that the Influence index can be useful in this regard. It suc-
ceeds in activating 61% and 81% of the nodes in the network
in 4 timestamps for the Max and Sum Activation functions
respectively, clearly outperforming the other approaches.

8. CONCLUSION AND FUTURE WORK

In this paper, we have presented an event-based frame-
work for characterizing the evolution of dynamic interaction
graphs. The framework is based on the use of certain criti-
cal events that facilitate our ability to compute and reason
about novel behavior-oriented measures, which can offer new
and interesting insights for the characterization of dynamic
behavior of such interaction graphs. We have presented a
diffusion model for evolving networks and have shown the
use of behavioral patterns for influence maximization. We
have demonstrated the efficacy of our framework in charac-
terizing and reasoning on two different datasets - the DBLP
dataset and a clinical trials dataset. The application of the
behavioral patterns we obtained to a cluster link prediction
scenario provided favorable results, with the Sociability In-
dex producing a large number of accurate predictions.

A key next step for us is to extend our framework for rea-
soning about events over time. In this context we propose
to adapt and evaluate the use of Allen’s interval algebra [2].
We would also like to improve the performance of Seman-
tic Similarity by extending our ontology, which currently
comprises only of keywords from the titles of papers. We
would also like to extend our framework to reason and infer
other behavioral patterns, as well as include other types of
interaction graphs.
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