
1

Dynamic Forwarding over Tree-on-DAG for
Scalable Data Aggregation in Sensor Networks

Kai-Wei Fan, Sha Liu, and Prasun Sinha
Department of Computer Science and Engineering, The Ohio State University

Email: {fank, liusha, prasun}@cse.ohio-state.edu

Abstract— Computing and maintaining network structures for
efficient data aggregation incurs high overhead for dynamic
events where the set of nodes sensing an event changes with time.
Moreover, structured approaches are sensitive to the waiting-time
which is used by nodes to wait for packets from their children
before forwarding the packet to the sink. Although structure-
less approaches can address these issues, the performance does
not scale well with the network size. We propose a semi-
structured approach that uses a structure-less technique locally
followed by Dynamic Forwarding on an implicitly constructed
packet forwarding structure to support network scalability. The
structure, Tree on DAG (ToD), is composed of multiple shortest
path trees. After performing local aggregation, nodes dynamically
decide the forwarding tree based on the location of the sources.
The key principle behind ToD is that adjacent nodes in a graph
will have low stretch in one of these trees in ToD, thus resulting
in early aggregation of packets. Based on simulations on a 2000

nodes network and real experiments on a 105 nodes Mica2-based
network, we conclude that efficient aggregation in large scale
networks can be achieved by our semi-structured approach.

Index Terms— Data Aggregation, Anycasting, Structure-free,
ToD

I. INTRODUCTION

Data aggregation is an effective technique for conserving
communication energy in sensor networks. In sensor networks,
the communication cost is often several orders of magnitude
larger than the computation cost. Due to inherent redundancy
in raw data collected from sensors, in-network data aggrega-
tion can often reduce the communication cost by eliminating
redundancy and forwarding only the extracted information
from the raw data. As reducing consumption of communi-
cation energy extends the network lifetime, it is critical for
sensor networks to support in-network data aggregation.

Various data aggregation approaches have been proposed
for data gathering applications and event-based applications.
These approaches make use of cluster based structures [1] [2]
or tree based structures [3]–[8]. In data gathering applications,
such as environment and habitat monitoring [9]–[12], nodes
periodically report the sensed data to the sink. As the traffic
pattern is unchanging, these structure-based approaches incur
low maintenance overhead and are therefore suitable for such
applications. However, in event-based applications, such as
intrusion detection [13] [14] and biological hazard detection
[15], the source nodes are not known in advance. Therefore
the approaches that use fixed structures can not efficiently

This work was partially supported by NSF’s CAREER program (Grant
number CNS 0546630) and NSF’s RI program (Grant number CNS 0403342)

aggregate data, while the approaches that change the structure
dynamically incur high maintenance overhead [4] [5]. The
goal of this paper is to design a scalable and efficient data
aggregation protocol that incurs low maintenance overhead
and is suited for event-based applications.

Constructing an optimal structure for data aggregation for
various aggregation functions has been proven to be an NP-
hard problem [16] [17]. Although heuristics can be used,
another problem associated with the convergecast traffic pat-
tern, where nodes transmit their packets to the cluster-head
or parent in cluster or tree structures, results in low per-
formance of structure based data aggregation protocols. In
[18] the simulation results show that the packet dropping
rate in Shortest Path Tree (SPT) is higher because of heavy
contention caused by the convergecast traffic. This results in
more packet drops and increased delays. As a result, enforcing
a fixed order of packet transmissions becomes difficult, which
impacts the performance of data aggregation in structured
approaches. Typically, packets have to be transmitted in a
fixed order from leaves to the root in a tree-like structure
to achieve maximum aggregation. Dropped packets not only
make the optimal structure sub-optimal, but also waste energy
on transmitting packets that are unable to reach the sink.

In [19] it shows that the performance gain by using
heuristics to create the Steiner Minimum Tree (SMT) for
aggregation is not significant compared with using only the
Shortest Path Tree (SPT), not to mention that the overhead of
constructing such a structure may negate the benefit resulting
from data aggregation. However, their conclusions were based
on the assumption of randomly located data sources, which
is different from the scenarios in event-based sensor networks
where a set of close-by nodes is expected to sense an event.

Realizing the shortcomings of structured approaches, an
anycast based structure-less data aggregation protocol [20] is
proposed. It involves mechanisms to increase the chance of
packets meeting at the same node (Spatial Aggregation) at the
same time (Temporal Aggregation). As the approach does not
guarantee aggregation of all packets, the cost of forwarding
unaggregated packets increases with the scale of the network.

To benefit from the strengths of structured and structure-
less approaches, we propose a semi-structured approach in
[21]. In this paper we further extend its ability to support
irregular topology networks. The main challenge in designing
such a protocol is to determine the packet forwarding strategy
in absence of a pre-constructed global structure to achieve
early aggregation. Our approach uses a structure-less technique

locally followed by Dynamic Forwarding on Tree on DAG
(ToD), an implicitly constructed packet forwarding structure
which is composed of multiple shortest path trees, to support
network scalability. After performing local aggregation, nodes
dynamically decide the forwarding tree based on the location
of the source nodes. The key principle behind ToD is that
adjacent nodes in a graph will have low stretch in at least one
of these trees in ToD, thus resulting in early aggregation of
packets. This paper makes the following contributions:

• We propose an efficient and scalable data aggregation
mechanism that can achieve early aggregation without
incurring overhead of constructing a structure.

• We implement the ToD on TinyOS and compare it against
other approaches on a 105 nodes sensor network.

• For studying the scalability aspects of our approach,
we implement ToD in the ns2 simulator and study its
performance in networks of up to 2000 nodes.

The organization of the paper is as follows. Section II
presents background and related work. Section III presents the
semi-structure approach. Section IV analyzes the performance
of ToD in the worst case. The performance evaluation of the
protocols using experiments and simulations is presented in
Section V. Finally Section VI concludes the paper.

II. RELATED WORK

Data aggregation has been an active research area in sensor
networks for its ability to reduce energy consumption. Some
works focus on how to aggregate data from different nodes
[22]–[25], some focus on how to construct and maintain a
structure to facilitate data aggregation [1]–[8], [17], [26]–[31],
and some focus on how to efficiently compress and aggregate
data by taking the correlation of data into consideration [17],
[32]–[35]. As our work focuses on how to facilitate data
aggregation without incurring the overhead of constructing a
structure, we briefly describe the structure-based as well as
structure-less approaches in current research.

In [1] [2], the authors propose the LEACH protocol to clus-
ter sensor nodes and let the cluster-heads aggregate data. The
cluster-heads then communicate directly with the base station.
PEGASIS [27] extends LEACH by organizing all nodes in a
chain and letting nodes be the head in turn. The authors extend
PEGASIS in [27], [28] by allowing simultaneous transmission
that balances the energy and delay cost for data gathering. Both
LEACH and PEGASIS assume that any node in the network
can reach the base-station directly in one-hop, which limits
the size of the network for them to be applicable.

GIT [3] is built on top of a routing protocol, Directed
Diffusion [22] [23], which is one of the earliest proposed
attribute-based routing protocols. In Directed Diffusion, data
can be aggregated opportunistically when they meet at any
intermediate node. Based on Directed Diffusion, the Greedy
Incremental Tree (GIT) establishes an energy-efficient tree
by attaching all sources greedily onto an established energy-
efficient path and pruning less energy efficient paths. However
due to the overhead of pruning branches, GIT might lead to
high cost in moving event scenarios.

To reduce tree migration in mobile event scenarios, Dy-
namic Convoy Tree-Based Collaboration (DCTC) is proposed

[4] [5]. DCTC assumes that the distance to the event is known
to each sensor and uses the node near the center of the event
as the root to construct and maintain the aggregation tree
dynamically. However it involves heavy message exchanges
which might offset the benefit of aggregation in large-scale
networks. From the simulation results in DCTC [5], the energy
consumption of tree expansion, pruning and reconfiguration is
about 33% of the data collection.

In [8], the authors propose an aggregation tree construction
algorithm to simultaneously approximate the optimum trees
for all non-decreasing and concave aggregation functions. The
algorithm uses a simple min-cost perfect matching to construct
the tree. Other works, such as SMT (Steiner Minimum Tree)
and MST (Multiple Shared Tree) for multicast algorithms
which can be used in data aggregation [17] [19] [31], build a
structure in advance for data aggregation. In addition to their
complexity and overhead, they are only suitable for networks
where the sources are known in advance. Therefore they are
not suitable for networks with mobile events.

Moreover, fixed tree structure might have long stretch
between adjacent nodes. A stretch of two nodes u and v in a
tree T on a graph G is the ratio between the distance from
node u to v in T and their distance in G. Long stretch implies
that packets from adjacent nodes have to be forwarded many
hops away before aggregation. This problem has been studied
as MSST (Minimum Stretch Spanning Tree) [36] and MAST
(Minimum Average Stretch Spanning Tree) [37]. They are also
NP-hard problems, and it has been shown that for any graph,
the lower bound of the average stretch is O(log(n)) [37], and
it can be as high as O(n) for the worst case [38]. Even for
a grid network, it has been shown that the lower bound for
the worst case is O(

√
n) [37]. A polynomial time algorithm

is proposed in [39] to construct a group-independent spanning
tree that can achieve O(log(n)) stretch.

DAA [20] is the first proposed structure-less data aggrega-
tion protocol that can achieve high aggregation without incur-
ring the overhead of structure approaches. DAA uses anycast
to forward packets to one-hop neighbors that have packets
for aggregation. It can efficiently aggregate packets near the
sources and effectively reduce the number of transmissions.
However, it does not guarantee the aggregation of all packets.
As the network grows, the cost of forwarding packets that
were unable to be aggregated will negate the benefit of energy
saving resulted from eliminating the control overhead.

In order to get benefit from structure-less approaches even
in large networks, scalability has to be considered in the
design of the aggregation protocol. In this paper, we propose a
scalable structure-less protocol, ToD, that can achieve efficient
aggregation even in large networks. ToD uses a semi-structure
approach that does not have the long stretch problem in
fixed structure nor incur structure maintenance overhead of
dynamic structure, and further improves the performance of
the structure-less approach.

III. SCALABLE DATA AGGREGATION

As described before, the goal of our protocol is to achieve
aggregation of data near the sources without explicitly con-
structing a structure for mobile event scenarios. Aggregating

2

packets near the sources is critical for reducing the number of
transmissions. Aggregating without using an explicit structure
reduces the overhead of construction and maintenance of
the structure. In this section, we propose a highly scalable
approach that is suitable for very large sensor networks.

Our protocol is based on the Data Aware Anycast (DAA)
and Randomized Waiting (RW) approaches1 proposed in [20].
DAA does not guarantee that packets will be forwarded to
one node for aggregation. When more packets are transmitted
from sources to the sink without aggregation, more energy is
wasted. Therefore we propose the use of Dynamic Forwarding
for further aggregation. There are two phases in our protocol:
DAA and Dynamic Forwarding. In the first phase, packets
are forwarded and aggregated to a selected node, termed
aggregator, using DAA. In the second phase, the leftover un-
aggregated or partially aggregated packets are forwarded on a
structure, termed Tree on DAG (ToD), for further aggregation.

sink

nodes triggered by event B

nodes triggered by event A

Fig. 1. Fixed tree structure for aggregation can have long distance
(link-stretch) between adjacent nodes, as in the case of nodes trig-
gered by event B. In this example we assume that nodes in the range
of event B are within transmission range of each other.

Constructing a structure dynamically with explicit message
exchanges incurs high overhead. Therefore we use an implic-
itly computed structure to forward packets. However, using a
fixed structure has the long stretch problem as described in
Section II. Take Fig. 1 as an example of pre-computed tree
structure where gray nodes are the sources. The fixed tree
structure works well if the nodes that generate packets are
triggered by event A because their packets can be aggregated
immediately on the tree. However, if the nodes that generate
packets are triggered by event B, their packets can not be
aggregated even if they are adjacent to each other. Therefore
we design a dynamic forwarding mechanism over ToD, to
avoid the problem of long stretch.

A. ToD in One Dimensional Networks

For illustrating the concept of ToD, we first describe the
construction of ToD for a 1-D (a single row of nodes) network,
as shown in Fig. 2.

We define a cell as a square with side length ∆ where
∆ is greater than the maximum diameter of the area that
an event can span. The network is divided into cells. These
cells are grouped into clusters, called F-clusters (First-level
clusters). The size of the F-clusters must be large enough to
cover the cells an event can span, which is two when we
only consider 1-D cells in the network. All nodes in F-clusters
send their packets to their cluster-heads, called F-aggregators.

1In rest of this paper, we use DAA or Data Aware Anycast to refer to the
combination of the two approaches.

……

……………………
……………………

……

network

one row instance of the network

sink

Fig. 2. We illustrate the ToD construction from one row’s point of
view to simplify the discussion.

Nodes in the F-cluster can be multiple hops away from the
F-aggregator. The formation of the clusters and the election
of the aggregators are discussed later in Section III-C. Each
F-aggregator then creates a shortest path to the sink. Therefore
the structure is a shortest path tree where the root is the sink
and the leaves are F-aggregators. We call this tree an F-Tree.
Fig. 3(a) shows the construction of the F-Tree.

In addition to the F-clusters, we create the second type of
clusters, S-clusters (Second-level clusters) for these cells. The
size of an S-cluster must also be large enough to cover all cells
spanned by an event, and it must interleave with the F-clusters
so it can cover adjacent cells in different F-clusters. Each S-
cluster also has a cluster-head, S-aggregator, for aggregating
packets. Each S-aggregator creates a shortest path to the sink,
and forms a second shortest path tree in the network. We call it
S-Tree. The illustration of an S-Tree is shown in Fig. 3(b). For
all sets of nearby cells that can be triggered by an event, either
they will be in the same F-cluster, or they will be in the same
S-cluster. This property is exploited by Dynamic Forwarding
to avoid the long stretch problem discussed earlier.

After the S-Tree is constructed, the F-aggregators connect
themselves to the S-aggregators of S-clusters which its F-
cluster overlaps with, as shown in Fig. 3(c). For example, in
Fig. 3(c), the F-aggregator F4 connects to S-aggregators S3
and S4 because its F-cluster overlaps with S-cluster 3 and 4.
Thus, the combination of F-Tree and S-Tree creates a Directed
Acyclic Graph, which we refer to as the ToD (Tree on DAG).

Nodes first use the Data Aware Anycast (DAA) approach to
aggregate as many packets as possible. When no further ag-
gregation can be achieved, nodes forward their packets to their
F-aggregators. If an event only triggers nodes within a single
F-cluster, its packets can be aggregated at the F-aggregator,
and be forwarded to the sink using the F-Tree. However, in
case the event spans multiple F-clusters, the corresponding
packets will be forwarded to different F-aggregators. As we
assumed that the event size is not larger than the size of a cell,
an event on the boundary of F-clusters will only trigger nodes
in cells on the boundary of the F-clusters. By the construction
of S-clusters, adjacent cells on the boundary of F-clusters
belong to the same S-cluster. Thus, F-aggregators can exploit
the information collected from received packets to select the
S-aggregator that is best suited for further aggregation. This
information is obtained from the source of traffic that can
be encoded in the packets. Often such information is readily
available in the packet. Otherwise, 4 extra bits can be used to
indicate which cell the packet comes from.

3

A B C D

F1 F2

S2

F4

S4

F6

S6

F8 F3 F5 F7

S1 S3 S5 S7

Cells

Other nodes in the
network

F-Aggregators
Cells with packets

F1 F2 F4 F6 F8 F3 F5 F7

F-Tree S-Tree

Overlapping

ToD

(a) (b)

(c)

A B C D
F-clusters

A B C D
S-clusters

S-Aggregators

S2 S4 S6 S1 S3 S5 S7

Fig. 3. The construction of F-Tree, S-Tree, and ToD. (a) Leaf nodes are cells. Pairs of neighbor cells define F-clusters. Each F-cluster
has an F-aggregator, and F-aggregators form the F-Tree. (b) Each pair of adjacent cells not in the same F-cluster form an S-cluster. Each
S-cluster has an S-aggregator, and S-aggregators form the S-Tree. Nodes on the network boundary do not need to be in any S-cluster. (c)
Each F-aggregator connects to two S-aggregators of S-clusters which its F-cluster overlaps with. This structure called the Tree on DAG or
ToD. F-aggregator in ToD uses Dynamic Forwarding to forward packets to the root, or through an S-aggregator in the S-Tree based on
where the packets come from.

Consider the example in Fig. 3(c). Since the maximum
number of cells an event can span is two, either these two
cells are in the same F-cluster, or they are in the same S-
cluster. If they are in the same F-cluster, their packets can be
aggregated at the F-aggregator. For example, if the event spans
A and B, F1 knows that no other F-cluster has packets for
aggregation, and it can forward the packets using the F-Tree.
If the event spans two cells that are in different F-clusters, the
two F-aggregators in the two F-clusters will receive packets
only from one of their cells. The F-aggregators then conjecture
which F-cluster might also have packets based on which cells
the packets come from. For example, if the event spans C and
D, F4 will only receive packets from C. Therefore F4 can
know either the event happens only in C, or the event spans
C and D. Consequently, F4 can forward packets to S4, the
S-aggregator of its overlapped S-clusters covering C. Also F5
will forward its packets to S4 if packets only come from D.
Therefore these packets can be aggregated at S4.

Note that we do not specifically assign cells on the boundary
of the network to any S-cluster. They do not need to be in any
S-cluster if they are not adjacent to any other F-cluster, or they
can be assigned to the same S-cluster as its adjacent cell.

The ToD for 1-D network has the following property.

Property 1. For any two adjacent nodes in ToD in one
dimensional network, their packets will be aggregated either
at a first level aggregator, or will be aggregated at a second
level aggregator.

Proof. There are only three possibilities when an event trig-
gers nodes to generate packets. If only nodes in one cell
are triggered and generate the packets, their packets can be
aggregated at one F-aggregator since all nodes in a cell reside
in the same F-cluster, and all packets in an F-cluster will be
aggregated at the F-aggregator.

If an event triggers nodes in two cells, and these two cells
are in the same F-cluster, the packets can be aggregated at the

F-aggregator as well.
If an event triggers nodes in two cells and they are in

different F-clusters, they must be in the same S-cluster because
S-clusters and F-clusters are interleaved. Moreover, packets
in one F-cluster will only originate from the cell that is
closer to the other F-cluster that also has packets. Therefore
the F-aggregator can forward packets to the S-aggregator for
aggregation accordingly, and packets will be aggregated at the
S-aggregator.

Since the cell is not smaller than the maximum size of an
event, it is impossible for an event to trigger more than two
cells, and this completes the proof.

B. ToD in Two Dimensional Networks

Section III-A only demonstrates the construction for one
row of nodes to illustrate the basic idea of dynamic forwarding,
and it works because each cell is only adjacent to one (or
none, if the cell is on the boundary of the network) of the
F-clusters. Therefore if an event spans two cells, the two
cells are either in the same F-cluster or in the same S-cluster,
and the F-aggregator can conjecture whether to forward the
packets to the S-aggregator, or to the sink directly. When
we consider other cells and F-clusters in the adjacent row,
a cell on the boundary of an F-cluster might be adjacent to
multiple F-clusters. If an event spans multiple cells, each F-
aggregator may have multiple choices of S-aggregators if the
cells in their F-cluster are adjacent to multiple F-clusters.
If these F-aggregators select different S-aggregators, their
packets will not be aggregated. However, the ideas presented in
1D networks can be extended for the 2D networks. But instead
of guaranteeing that packets will be aggregated within two
steps as in the 1D case (aggregating either at an F-aggregator
or an S-aggregator), the ToD in 2D guarantees that the packets
can be aggregated within three steps.

We first define the cells and clusters in two dimensions. For
the ease of understanding, we use grid clustering to illustrate

4

the construction. As defined before, the size of a cell is not
less than the maximum size of an event, and an F-cluster must
cover all the cells that an event might span, which is four cells
in 2D grid-clustering. Therefore the entire network is divided
into F-clusters, and each F-cluster contains four cells. The S-
clusters have to cover all adjacent cells in different F-clusters.
Each F-cluster and S-cluster also has a cluster-head acting as
the aggregator to aggregate packets. Fig. 4 shows a 5 × 5
network with its F-clusters and S-clusters.

(a) F-clusters (c) S-clusters

A B C

D

(b) Cells

G H I

E F

C1

A4 B3

B1 C2

A3

A1 A2 B2

B4 C3 C4

D3

D1 D2

D4 E3

E1 E2

E4 F3

F1 F2

F4

G3

G1 G2

G4 H3

H1 H2

H4 I3

I1 I2

I4

S1 S2

S3 S4

C1

A4 B3

B1 C2

A3

A1 A2 B2

B4 C3 C4

D3

D1 D2

D4 E3

E1 E2

E4 F3

F1 F2

F4

G3

G1 G2

G4 H3

H1 H2

H4 I3

I1 I2

I4

2
�

2
�

2

�

 Fig. 4. Grid-clustering for a two-dimension network. (a) The network
is divided into 5×5 F-clusters. (b) Each F-cluster contains four cells.
For example the F-cluster A in (a) contains cell A1, A2, A3, and
A4. (c) The S-clusters have to cover all adjacent cells in different
F-clusters. Each S-cluster contains four cells from four different F-
clusters.

Since the size of a cell (one side of the square cell) must be
greater or equal to the maximum size of an event (diameter of
the event), an event can span only one, two, three, or four cells
as illustrated in Fig. 5. If the event only spans cells in the same
F-cluster, the packets can be aggregated at the F-aggregator.
Therefore we only consider scenarios where an event spans
cells in multiple F-clusters.

Fig. 5. The possible numbers of cells an event may span in 2 × 2

cells, which are one, two, three, and four from left to right. The four
cells in each case are any instance of four cells in the network. They
may be in the same F-cluster or different F-clusters.

Fig. 6 shows four basic scenarios that an F-aggregator
may encounter when collecting all packets generated in its
F-cluster. All other scenarios are only different combinations
of these four scenarios. If packets originate from three or
four cells in the same F-cluster, the F-aggregator knows that
no other nodes in other F-clusters have packets, and it can
forward the packets directly to the sink. If only one or two
cells generate packets, it is possible that other F-clusters also
have packets. We assume that the region spanned by an event
is contiguous. So simultaneous occurrence of scenarios of
(a) and (c), or (b) and (d), is impossible in the F-cluster.
However, such scenarios are possible in presence of losses in
a real environment where packets from third or fourth cluster
are lost. In such cases the F-aggregator can just forward the
packets directly to the sink because no other F-cluster will
have packets from the same event.

When the F-aggregator collects all packets within its cluster,
it knows which cells the packets come from and can forward
the packets to best suited S-aggregator for further aggregation.
For example, if the packets only come from one cell as in

Fig. 6. All possible scenarios in an F-aggregator’s point of view. Each
case shows 3×3 F-clusters, and the aggregator of the center F-cluster
is making the decision. The dark grayed squares are cells that generate
packets, and the light grayed squares represent the corresponding S-
cluster of the dark grayed cells.

Fig. 6(a), the F-aggregator can forward the packet to the S-
aggregator of the S-cluster that covers that cell. However, if
packets come from two cells in an F-cluster, the two cells
must be in different S-clusters. For example, Fig. 7(a), where
the F-aggregator of F-cluster X receives packets from two
cells, is the combination of (a) and (b) in Fig. 6. It is possible
that the F-aggregator of F-cluster Y may receive packets from
cells as in Fig. 6 (c), (d), or both. Since the F-aggregator of
F-cluster X does not know which case the F-aggregator of
F-cluster Y encounters, it does not know which S-aggregator
to forward packets to. To guarantee the aggregation, the F-
aggregator of F-cluster X forwards the packet through two
S-aggregators that covers cell C1 and C2, therefore packets
can meet at least at one S-aggregator. If both F-aggregators
receive packets from two cells in its cluster, to guarantee that
the packets can meet at least at one S-aggregator, these two
F-aggregators must select the S-aggregator deterministically.
The strategy is to select the S-aggregator that is closer to the
sink. If the packets meet at the first S-aggregator, it does not
need to forward packets to the second S-aggregator. The S-
aggregator only forwards packets to the second S-aggregator
if the packets it received only come from two cells in one
F-cluster. We will present a simplified construction later (in
Section III-C) for the selection of S-aggregators.

F-aggregators

1st S-aggregators

2nd S-aggregators

F-cluster X

F-cluster Y S-cluster I

S-cluster II

C1 C2

C3

(a) (b)

Fig. 7. (a) The F-aggregators have two choices for S-aggregators if
they receive packets from two cells. (b) Depending on how many cells
generate packets in its F-cluster, one F-aggregator sends packets to
two S-aggregators while the other F-aggregator sends packets to only
one S-aggregator. We assume that the sink is located at bottom-left
of the network.

To guarantee that the packets can meet at least at one S-
aggregator, the second S-aggregator must wait longer than
the first S-aggregator. Therefore, if the S-aggregator receives
packets from only one cell, it waits longer to wait for possible
packets forwarded by the other S-aggregator because it could
be the second S-aggregator of the other F-aggregator. Fig.
7(b) shows an example of one F-aggregator sending packets
to the first S-aggregator and then the second S-aggregator,
while the other F-aggregator sends packets directly to the
second S-aggregator. As long as the second S-aggregator waits
sufficiently longer than the first S-aggregator the packets can

5

be aggregated at the second S-aggregator.
The ToD for the two dimension networks has the following

property.

Property 2. For any two adjacent nodes in ToD, their packets
will be aggregated at the F-aggregator, at the 1st S-aggregator,
or at the 2nd S-aggregator.

Proof. First we define the F-aggregator X as the aggregator of
F-cluster X and S-aggregator I as the aggregator of S-cluster
I , and so forth.

For packets generated only in one F-cluster, their packets
can be aggregated at the F-aggregator since all packets in the
F-cluster will be sent to the F-aggregator.

If an event triggers nodes in different F-clusters, there are
only three cases. First, only one cell in each F-cluster generates
packets. In this case, all cells having packets will be in the
same S-cluster since the adjacent cells in different F-clusters
are all in the same S-cluster. Therefore their packets can be
aggregated at the S-aggregator.

Second, the event spans three cells, C1, C2, and C3, and
two of them are in one F-cluster and one of them is in the
other F-cluster. Without loss of generality, we assume that C1
and C2 are in the same F-cluster, F-cluster X , and C3 is in the
other F-cluster, F-cluster Y . Moreover C3 must be adjacent
to either C1 or C2, and let us assume that it is C2. From
the ToD construction we know that C2 and C3 will be in
the same S-cluster, S-cluster II , and C1 will be in another
S-cluster, S-cluster I . Fig. 7(a) illustrates one instance of this
case. First the F-aggregator X will aggregate packets from C1
and C2 because they are in the same F-cluster, and forward the
aggregated packets through S-aggregator I to S-aggregator II ,
or the other way around, because C1 is in S-cluster I and C2
is in S-cluster II . F-aggregator Y will aggregate packets from
C3 and forward packets to S-aggregator II because C3 is in
S-cluster II . Because packets of F-aggregator Y only come
from C3, they will have longer delay in S-aggregator II in
order to wait for packets being forwarded through the other
S-aggregator. In the mean time, if F-aggregator X forwards
packets to S-aggregator II first, the packets can be aggregated
at S-aggregator II . If F-aggregator X forwards packets to S-
aggregator I first, S-aggregator I will forward packets to S-
aggregator II with shorter delay because the packets come
from two cells in one F-cluster, therefore their packets can
also be aggregated at S-aggregator II .

In the third case, the event spans four cells. Two of them will
be in one F-cluster and the other two will be in the other F-
cluster. Without loss of generality, we can assume that cells C1
and C2 are in F-cluster X and cells C3 and C4 are in F-cluster
Y , and C1 and C3 are adjacent, C2 and C4 are adjacent. From
the ToD construction, C1 and C3 will be in one S-cluster,
S-cluster I , and C2 and C4 will be in the other S-cluster, S-
cluster II . Because from S-aggregator I and II , F-aggregator
X and Y choose one that is closer to the sink as the first S-
aggregator, they will choose the same S-aggregator. Therefore
their packets can be aggregated at the first S-aggregator, and
this completes the proof.

Though in this section we assume that the size of an event
is smaller than the size of the cell, our approach can still work
correctly and perform more efficiently than DAA even if the
size of the event is not known in advance. This is because
the nodes will use Dynamic Forwarding over ToD only at
second phase where the aggregation by DAA is no longer
achievable. Therefore at worst our approach just falls back to
DAA. Section V-A shows that in experiments, ToD improves
the performance of DAA by 27% even if the size of the event
is greater than the size of a cell.

C. Clustering and Aggregator Selection

In this paper we use grid-clustering to construct the cells and
clusters. Although other clustering methods, such as clustering
based on hexagonal or triangular tessellation, can also be used,
we do not explore them further in this paper. In principle any
clustering would work as long as they satisfy the following
conditions. First, the size of the cell is greater than or equal
to the maximum size of an event. Second, the F-cluster and
S-cluster must cover the cells that an event may span, and the
S-cluster must cover the adjacent cells in different F-clusters.

As opposed to defining an arbitrary clustering, using grid-
clustering has two advantages. First, the size of the grid can
be easily determined by configuring the grid size as a network
parameter. Second, as long as the geographic location is known
to the node, the cell, F-cluster and S-cluster it belongs to can
be determined immediately without any communication. Geo-
graphic information is essential in sensor networks, therefore
we assume that sensor nodes know their physical location by
configuration at deployment, a GPS device, or localization
protocols [40], [41]. As a consequence, all the cells, F-clusters,
and S-clusters can be implicitly constructed.

After the grids are constructed, nodes in an F-cluster and S-
cluster have to select an aggregator for their cluster. Because
the node that acts as the aggregator consumes more energy
than other nodes, nodes should play the role of aggregator
in turn in order to evenly distribute the energy consumption
among all nodes. Therefore the aggregator selection process
must be performed periodically. However the frequency of
updating the aggregator can be very low, from once in several
hours to once in several days, depending on the capacity of the
battery on the nodes. Nodes can elect themselves as the cluster-
head with probability based on metrics such as the residual
energy, and advertise to all nodes in its cluster. In case two
nodes select themselves as the cluster-head, the node-id can
be used to break the tie.

The other approach is that nodes use a hash function to hash
current time to a node in their cluster as the aggregator. Nodes
have to know the address of all nodes in its F-cluster and sort
them by their node id. A hash function hashes the current time
to a number k from 1 to n where n is the number of nodes
in its cluster, and nodes use the kth node as the aggregator.
Because the frequency of changing the aggregator could be
low, the time used could be in hours or days, therefore the
time only needs to be coarsely synchronized, and the cluster-
head election overhead can be avoided.

However, the Dynamic Forwarding approach requires that
each F-aggregator knows the location of S-aggregators of S-

6

clusters that its F-cluster overlaps with. Therefore each time
the S-aggregator changes, it has to notify the F-aggregators.
To simplify the cluster-head selection process and avoid the
overhead of propagating the update information, we delegate
the role of S-aggregators to F-aggregators. Instead of selecting
a node as the S-aggregator and changing it periodically for an
S-cluster, we choose an F-cluster, called Aggregating Cluster,
for each S-cluster, and use the F-aggregator of the Aggregating
Cluster as its S-aggregator. The Aggregating Cluster of an S-
cluster is the F-cluster which is closest to the sink among
all F-clusters that the S-cluster overlaps with, as shown in
Fig. 8(a), assuming that the sink is located on the bottom-
left corner. Therefore as the F-aggregator changes, the corre-
sponding S-aggregator changes as well. When an F-aggregator
forwards packets to an S-aggregator, it forwards them toward
the aggregating cluster of that S-aggregator. When packets
reach the aggregating cluster, nodes in that F-cluster know
the location of their F-aggregator and can forward packets to
it. Therefore no aggregator update has to be propagated to
neighboring clusters.

F-cluster S-cluster

The common aggregator for both the
shaded F-cluster and S-cluster

(a) (b)

F-aggregator

F-aggregator and 1st S-aggregator

2nd S-aggregator

Fig. 8. (a) The S-cluster selects the F-cluster closest to the sink among
its overlapped F-clusters, assuming that the sink is located at the
bottom-left corner of the network. (b) The white F-aggregator selects
the F-cluster containing the gray F-aggregator as the aggregating
cluster.

Now the role of S-aggregators is passed on to the F-
aggregators, and the F-cluster selected by an S-aggregator
is the one closer to the sink. When an F-aggregator wants
to forward packets to both S-aggregators, it selects the F-
cluster that is closer to itself as the aggregating cluster of
the first S-aggregator (could be itself) to reduce the number
of transmissions between aggregators, as shown in Fig. 8(b).
This selection does not affect the property that packets will
eventually be aggregated at one aggregator because the S-
clusters that cover the cells in two F-clusters are the same,
therefore the selected aggregating clusters will be the same.

The benefits of using this approach are five-fold. First, no
leader election is required for S-clusters, which eliminates the
leader election overhead. Second, nodes only need to know the
F-aggregator of their F-clusters, which is very scalable. Third,
when the F-aggregator changes, the S-aggregator changes as
well, but the change does not need to be propagated to other
F-clusters or S-clusters. Fourth, if nodes choose the aggregator
by hashing current time to get a node id of the aggregator in
its cluster, only nodes within the same F-cluster need to be
synchronized with each other. And last, since the Aggregating
Clusters of S-clusters are statically computed, there is no
overhead for computing the Aggregating Clusters.

D. ToD in Irregular Topology Networks

In ToD, F-aggregators forward packets to their Aggregating
Clusters using Dynamic Forwarding rules. These aggregating
clusters are selected implicitly based on their relative locations
to F-aggregators. However in real deployment, the deployed
field may not be fully covered by sensors because of obstacles
or randomness of deployment. These uncovered regions are
referred to as voids. If an F-aggregator selects an aggregating
cluster residing in a void, its packets can not be forwarded
for further aggregation. To address this problem, the Dynamic
Forwarding rules must take voids into consideration. If the
selected aggregating cluster is located within a void, an
alternate cluster should be used as a substitute.

In this section we assume that nodes know if there are nodes
in their eight neighboring F-clusters because the aggregating
clusters selected by an F-cluster are always its adjacent F-
clusters. This can be achieved by hello beaconing in the
beginning of network deployment. After deployment, each
node broadcasts a beacon containing its F-cluster ID and an
8-bit vector (initially all 0) indicating which neighboring F-
cluster has nodes. If a node receives a beacon from a neigh-
boring F-cluster, it updates the 8-bit vector and propagates this
information to all nodes in its F-cluster. Therefore nodes can
know whether there are nodes in their neighboring F-clusters.
If network topology changes because nodes are mobile or
because of node failures, nodes on the boundary of each F-
cluster can broadcast the hello beacon periodically to keep
track of the existence of nodes in neighboring F-clusters.

Also, we assume that the voids do not split nodes in one
F-cluster. This guarantees that nodes in one F-cluster can
communicate with each other without routing through nodes
in other F-clusters. Though ToD still works if nodes in one
F-cluster are split into two or more connected components,
packets may be aggregated at several aggregators which limits
the chance of further aggregation.

Sources

Void

(a) (b) (c)

(d) (e) (f)

Imaginary 2nd S-aggregator

Imaginary 1st S-aggregator

(g) (h) (i)

Fig. 9. The possible scenarios for an F-aggregator selecting an
aggregating cluster within a void. Case I: (a) to (c). (a) and (c) are
isomorphic. Case II: (d) and (e). (d) and (e) are isomorphic. Case III:
(f) to (i). (f) and (g), and (h) and (i), are isomorphic respectively.

The only scenario that the dynamic forwarding rules must
be modified is when the selected aggregating cluster is within
a void. There are three possibilities. The first one is when
an F-aggregator receives packets from only one of its cells

7

where only one aggregating cluster will be selected as Case I
shown in Fig. 9(a) to (c). The second and third possibilities are
when an F-aggregator receives packets from two of its cells
where two aggregating clusters will be selected, and either the
first one (Case II, Fig. 9(d) and (e)) or the second one (Case
III, Fig. 9(f) to (i)) is in a void. For case II where the first
aggregating cluster is within a void, the F-aggregator can send
the packets directly to the sink because no other F-clusters will
have packets (The only F-cluster that the event may span is
within the void). Therefore we only discuss cases I and III.

F-aggregator and 1st S-aggregator
Original 2nd S-aggregator
Substitute 2nd S-aggregator

Fig. 10. If the selected aggregating cluster is within a void, the top-
right F-cluster will be selected as the substitute aggregating cluster.

For cases I and III, if the selected aggregating cluster is
within a void, F-aggregators will use the top-right F-cluster
of the original aggregating cluster as the substitute (assume
that the sink is at the bottom-left of the network), as shown in
Fig. 10. After the packets are forwarded to the F-aggregator
which is also the first S-aggregator, they are supposed to
be forwarded to the original second S-aggregator. Since the
second aggregating cluster is within a void, the F-aggregator
will first wait a short period for possible packets from neighbor
cells. If it does not receive packets from other cells, the packets
will then be forwarded to the top-right F-cluster instead for
further aggregation.

(a) (b)

Fig. 11. The scenarios where the selected aggregating cluster and its
substitute aggregating cluster are both in a void.

If the substitute aggregating cluster is also within a void as
Fig. 11(a), the packets will be forwarded to the sink directly.
However the scenario as Fig. 11(b) can happen in reality. In
this case, if the two cells with sources are connected directly
without routing around the voids, we use one of these two
F-clusters, say the bottom-right F-cluster, as the aggregating
cluster; otherwise the packets will be forwarded to the sink
because routing around the voids to aggregate packets may
consume more energy than just forwarding them to the sink.

Property 3. The modified dynamic forwarding rules guarantee
that packets can be aggregated to one aggregator in the
presence of voids if nodes in one F-cluster and in neighboring
F-clusters can communicate with each other without routing
through other F-clusters.

Proof. There are three cases as shown in Fig. 9 where some
neighboring F-clusters are in a void. For Case II, since the
only F-cluster that the event can span is within a void, the

packets can be aggregated at the F-aggregator. Therefore we
only consider cases I and III.

To show that packets will be aggregated at one aggregator, it
is sufficient to show that for any possible combination of cases
I and III where an event can span (such as (a, b, c), (a, h), or
(f, h)), the modified dynamic forwarding rules will eventually
select a common aggregating cluster for these F-clusters.

Assume that the void does not exist. The original dynamic
forwarding rules guarantee that packets will be aggregated at
one aggregating cluster. This aggregating cluster could be the
first aggregating cluster or the second aggregating cluster. If
the common aggregating cluster is the first aggregating cluster
and it is not within the void, the packets can be aggregated
at the first aggregating cluster. If the first aggregating cluster
is within the void, Fig. 9(d) and (e) are the only possibilities
and the packets can be forwarded to the sink directly.

If the common aggregating cluster is the second aggregating
cluster and it is not within the void, the packets can be
aggregated at the second aggregating cluster. If the second
aggregating cluster is within the void, the substitute aggregat-
ing cluster will be selected. Because the second aggregating
cluster selected by F-aggregators are the same, the substitute
aggregating cluster will also be the same, and packets will be
aggregated at the substitute aggregating cluster.

If the substitute aggregating cluster is also within the void
as Fig. 11(a), all F-clusters that might be spanned by the event
are in the void, therefore the packets can be aggregated at the
F-aggregator. If it is the case as Fig. 11(b), since nodes can
communicate with nodes in neighboring F-clusters directly,
the packets can be forwarded to the bottom-right F-clusters
for further aggregation. This completes the proof.

IV. PERFORMANCE ANALYSIS

In this section we show that the maximum distance between
any two adjacent nodes in ToD only depends on the size of
the cells, and is independent of the size of the network. We
ignore the cost from the aggregator to the sink since for perfect
aggregation, only one packet will be forwarded to the sink
from the aggregator, therefore the cost is comparatively small.
Compared to the lower bound O(

√
n) [37] of the grid network

for a fixed tree, ToD can achieve constant factor even in the
worst case.

u
v

s

fu

fv

�

Fig. 12. The worst case scenario for ToD.

The worst case in ToD is illustrated in Fig. 12 where only
two adjacent nodes, u and v, in the corner of two different
F-clusters generate packets, and their F-aggregators, fu and
fv, are located at the opposite corner. We assume a dense
deployment of sensor nodes, therefore the distance between
two nodes can be transferred to the cost of transmitting a
packet between these nodes. Fig. 12 is the worst case since if

8

more nodes are generating packets in one cluster, it will only
amortize the cost of sending packets from the F-aggregator
to the S-aggregator, and more nodes in multiple F-clusters
generating packets will only lower the average distance.

We assume that the length of one side of the cell is ∆, and
two nodes are adjacent if their distance is less than a unit of
distance. Therefore in Fig. 12 the distance that packets from
u and v have to be forwarded before they are aggregated at s
is the sum of distances between u to fu to s and v to fv to
s, and is (2∆

√
2 + 4∆

√
2) + (2∆

√
2 + 4∆) = 8∆

√
2 + 4∆.

Therefore in the optimal approach, only one transmission is
required because u and v are adjacent. In ToD, 8∆

√
2 + 4∆

number of transmission is required for the worst case.
However, since we use DAA as the aggregation technique,

packets from adjacent nodes will be aggregated immediately.
Therefore for the worst cast to happen, the distance between u
and v must be at least 2 units, and our protocol has 4∆

√
2 +

2∆ ' 7.66∆ times number of transmissions than optimal. The
upper bound is only dependent on the size of a cell, and the
size of the cell is dependent on the size of an event. This value
is independent of the size of the network and therefore is very
suitable for large-scale networks.

On average, the number of transmissions will be much less
than 4∆

√
2 + 2∆ because first, typically there will be many

nodes generating packets. Second, the distance between a node
and its F-aggregator is not always 2∆

√
2, and the distances

between the F-aggregators and the S-aggregator are shorter,
too. Third, the DAA approach can efficiently aggregate pack-
ets from adjacent nodes thereby further reducing the number
of transmissions. Therefore we expect the average distance for
nodes generating packets to be much less than the worst case.

V. PERFORMANCE EVALUATION

In this section we use experiments and simulations to
evaluate the performance of our semi-structured approach and
compare it with other protocols.

A. Testbed Evaluation

We conduct experiments on Kansei sensor testbed [42] [43].
The testbed consists of 105 Mica2-based motes and each mote
is hooked onto a Stargate. The Stargate is a 32-bit hardware
device from CrossBow [44] running Linux. The Stargates are
connected to the server using wired Ethernet. Therefore we can
program these motes and send messages and signals to them
through Stargates via Ethernet connection. The 105 nodes form
a 7 × 15 grid network with 3 feet spacing. The radio signal
using default transmission power covers most nodes in the
testbed. In our experiments we do not change the transmission
power but limit nodes only to receive packets from nodes
within two grid neighbors away, i.e. each node has maximum
12 neighbors.

We implement an Anycast MAC protocol on top of the
Mica2 MAC layer. The Anycast MAC layer has its own
backoff and retransmission mechanisms and we disable the
ACK and backoff of the Mica2 MAC module. The Anycast
MAC implements the RTS-CTS-DATA-ACK for anycast. An
event is emulated by broadcasting a message on the testbed to

the Stargates, and the Stargates send the message to the Mica2
nodes through serial port. The message contains a unique ID
distinguishing packets generated at different time.

When a node is triggered by an event, an event report is
generated. If the node has to delay its transmission, it stores
the packet in a report queue. Both the application layer and
Anycast MAC layer can access the queue, therefore they can
check if the node has packets for aggregation, or aggregate
the received packets to packets in the queue.

First we evaluate the following protocols 2 on the testbed:

• Dynamic Forwarding over ToD (ToD). The semi-
structured approach we proposed in this paper. DAA is
used to aggregate packets in each F-cluster, and aggre-
gated packets are forwarded to the sink on ToD.

• Data Aware Anycast (DAA). The structure-less ap-
proach proposed in [20].

• Shortest Path Tree (SPT). Nodes send packets to the
sink through the shortest path tree immediately after sens-
ing an event. Aggregation is opportunistic and happens
only if two packets are at the same node at the same time.

• Shortest Path Tree with Fixed Delay (SPT-D) Same
as the SPT approach, but nodes delay their transmission
according to their height in the tree to wait for packets
from their children.

Due to the scale of the testbed, we only divide the network
into two F-clusters in ToD, which forces the smallest cell to
have only 9 sensor nodes. However we do not limit the size
of an event to be smaller than the cell size. The event size is
larger than the cell size in all following experiments.

We use normalized number of transmissions as the metric to
compare the performance of these protocols. The normalized
number of transmissions is the average number of transmis-
sions performed in the entire network to deliver one unit of
useful information from sources to the sink. It can be converted
to the normalized energy consumption if we know the sending
and receiving cost of one transmission, therefore the energy
spent on data collection for one packet can be derived. Here we
do not consider energy consumption on idle listening since all
nodes are fully active for all protocols in the experiments and
simulations, and the idle energy consumption would be similar
for all protocols. To reduce the energy consumption on idle
listening, various duty cycling protocols have been proposed.
Due to the page limitation, we are unable to describe how to
integrate those works.

Fig. 13 shows the normalized number of transmissions for
different event sizes. We fixed the location of the event and
vary its diameter from 12 ft to 36 ft where nodes within
two grid-hops to six grid-hops of the event will be triggered
respectively and send packets to the sink located at one corner
of the network. We use 6 seconds as maximum delay for all
protocols except SPT. For event size less than 12 ft, there are
too little nodes been triggered (less than five), and all triggered
nodes are within transmission range. Data aggregation is not
so interesting in such scenario therefore we do not evaluate it.

All protocols have better performance when the size of
the event increases because packets have more chances of

2codes available at http://www.cse.ohio-state.edu/∼fank/research

9

being aggregated. ToD performs best among all protocols in
all scenarios. This shows that DAA can efficiently achieve
early aggregation and the Dynamic Forwarding over ToD can
effectively reduce the cost of directly forwarding unaggregated
packets to the sink in DAA. In SPT-D, when the event size
is smaller, the long stretch effect is more significant than in
larger event scenario. When event size is large, for example,
two-third of nodes in the network are triggered when the
diameter of the event is 36 feet, most of the packets can be
aggregated to their parent with one transmission. This indicates
that in applications where most nodes are transmitting, the
fixed structure such as SPT-D is better, but when only a small
subset of nodes are transmitting, their performance degrades
because of the long stretch problem.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 36 30 24 18 12

N
or

m
al

iz
ed

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Event Size (ft)

ToD
DAA
SPT

SPT-D

Fig. 13. The normalized number of transmissions for different event
sizes from experiments on 105 sensors.

We notice that the variance of some results in SPT and
SPT-D is very high. For example, when the event size is
12 feet in diameter, the maximum normalized number of
transmissions in SPT-D is 3.41, and the minimum value is
2.41. By tracing into the detail experiment logs we found that
the high variance is because of the different shortest path trees.
The tree is re-constructed for each experiment, and therefore
may change from experiment to experiment. We found that
SPT-D always gets better performance in one tree where all
sources are under the same subtree, and performs badly in
the other tree where sources are located under two or three
different subtrees. This further supports our claims that the
long stretch problem in fixed structured approaches affects
their performance significantly.

The second experiment evaluates the performance of these
protocols for different values of maximum delay. We vary the
delay from 0 to 8 seconds, and all nodes in the network
generate one packet every 10 seconds. Fig. 14 shows the
results. As we described, the performance of the structure-
based approaches heavily depends on the delay. The SPT-D
performs worse than ToD when the maximum delay is less
than five seconds, and the performance increases as the delay
increases. On the contrary, the performance of ToD and DAA
does not change for different delays, which is different from
results observed in [20]. We believe that this is because with
the default transmission power, a large number of nodes are
in interference range when nodes transmit. Therefore even if
nodes do not delay their transmissions, only one node can
transmit at any given time. Other nodes will be forced to delay,
which has the same effect as the Randomized Waiting.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Maximum Delay (s)

ToD
DAA
SPT

SPT-D

Fig. 14. The normalized number of transmissions for different
maximum delays from experiments on 105 sensors.

B. Large Scale Simulation

To evaluate and compare the performance and scalability of
ToD with other approaches requires a large sensor network,
which is currently unavailable in real experiments. Therefore
we resort to simulations. In this section we use the ns2
network simulator to evaluate these protocols. Besides ToD,
DAA, and SPT, we evaluate OPT, Optimal Aggregation Tree,
to replace the SPT-D protocol.

In OPT, nodes forward their packets on an aggregation tree
rooted at the center of the event. Nodes know where to forward
packets to and how long to wait. The tree is constructed in
advance and changes when the event moves assuming the
location and mobility of the event are known. Ideally only
n−1 transmissions are required for n sources. This is the lower
bound for any structure, therefore we use it as the optimal case.
This approach is similar to the aggregation tree proposed in [4]
but without its tree construction and migration overhead. We
do not evaluate SPT-D in simulation in the largest simulation
scenario, the network is a 58-hop network. According to the
simulation in smaller network, SPT-D gets best performance
when the delay of each hop is about 0.64 seconds. This makes
nodes closer to the sink have about 36 seconds delay in SPT-D,
which is not advisable.

We perform simulations of these protocols on a 2000m ×
1200m grid network with 35m node separation, therefore there
are a total of 1938 nodes in the network. The data rate of the
radio is 38.4Kbps and the transmission range of the nodes
is slightly higher than 50m. An event moves in the network
using the random way-point mobility model at the speed of
10m/s for 400 seconds. The event size is 400m in diameter.
The nodes triggered by an event will send packets every five
seconds to the sink located at (0, 0). The aggregation function
evaluated here is perfect aggregation, i.e. all packets can be
aggregated into one packet without increasing the packet size.

C. Event Size

We first evaluate these protocols on different number of
nodes generating the packets. This simulation reflects the
performance of each protocol for different event sizes. We
study the performance for 4 mobility scenarios and show the
average, maximum, and minimum values of the results.

Fig. 15(a) shows the result of normalized number of trans-
missions. ToD improves the performance of DAA and SPT by
30% and 85%, and is 25% higher than OPT. However OPT has

10

the best performance by using the aggregation tree that keeps
changing when event moves but its overhead is not considered
in the simulation. SPT has very poor performance since its
aggregation is opportunistic. Except the SPT, the performance
of all other protocols is quite steady. This shows that they are
quite scalable in terms of the event size.

Fig. 15(b) and (c) show the total number of transmissions
and total units of useful information received by the sink. DAA
and ToD have higher number of received packets than OPT
due to the ability of structure-less aggregation to aggregate
packets early and scatter them away from each other to reduce
contention. ToD performs better than DAA in terms of the
normalized number of transmissions because of its ability to
aggregate packets at nodes closer to the source, and thus it
reduces the cost of forwarding packets from sources to the
sink. It has slightly lower number of units of received informa-
tion than DAA. From the simulation logs we found that most
dropped packets in ToD are packets forwarded from sources
to their F-aggregators. We believe that the convergecast causes
higher contention and thus leading to higher dropping rate.

D. Scalability

To evaluate the scalability of a protocol, we limit an event
to move only in a bounded region at a certain distance from
the sink to simulate the effect of different network sizes. We
limit an event to move within a 400m×1200m rectangle, and
change the distance of the rectangle to the sink from 200m
to 1400m, as shown in Fig. 16. In order to be fair to all
scenarios, we limit the event not to move closer than 200m to
the network boundary such that the number of nodes triggered
by the event does not change drastically.

2000m

1200m

200m

400m

200m

Fig. 16. The simulation scenario for scalability. The event is limited
to move only within a small gray rectangle in each simulation.

Fig. 17 shows the results of scalability simulations. The
performance of ToD and OPT remains steady. This shows that
ToD is quite scalable as its performance does not degrade as
the size of the network increases. The performance of both
DAA and SPT degrades as the size of the network increases.
The normalized number of transmissions for DAA and SPT
doubled when the event moves from the closest rectangle (to
the sink) to the farthest rectangle.

Fig. 17(c) shows the number of packets received at the sink
per event. If all packets can be aggregated near the event and
forwarded to the sink, the sink will receive only one packet.
Conversely, more packets received at the sink shows that fewer
aggregations happened in the network. The cost of forwarding
more packets to the sink increases rapidly as the size of the
network increases. We can see that in both DAA and SPT the
sink receives many packets. Though the number of packets
received at the sink remains quite steady, the total number

of transmissions increases linearly as the distance from the
sources to the sink increases.

Ideally the number of received packets at sink is 1, if
all packets can be aggregated at the aggregator. However
the number of received packets at sink is higher than 1 in
ToD and OPT. This is because the delay in CSMA-based
MAC protocol can not be accurately predicted therefore the
aggregator might send the packet to the sink before all packets
are forwarded to it. Though the cost of forwarding the un-
aggregated packets from aggregator to the sink in ToD and
OPT also increases when the size of the network increases,
the increase is comparably smaller than DAA and SPT because
few packets are forwarded to the sink without aggregation. The
number of received packets at the sink in ToD is higher when
the event is closer to the sink. In ToD, nodes in the same F-
cluster as the sink always use sink as the F-aggregator because
we assume that the sink is wire powered and there is no need
to delegate the role of aggregator to other nodes.

E. Aggregation Ratio

In this section we conduct simulations for different aggre-
gation ratios. Source nodes generate packets with 50 bytes
payload. Data are aggregated based on a simple aggregation
function where the size of a packet after aggregation is
max{50, n × (1 − ρ)} where n is the number of effective
information and ρ is the aggregation ratio. ρ = 1 stands for
perfect aggregation. The maximum payload of a packet is 400
bytes. Two packets can not be aggregated if the aggregated
size is greater than 400 bytes. As shown in Fig. 18, ToD
improves the normalized number of transmissions of DAA, but
the improvement decreases as the aggregation ratio decreases.
This is because when the aggregation ratio decreases, packet
size increases after aggregation. Packets can not be aggregated
anymore when they reach maximum payload even if they meet.
We observed that both ToD and DAA perform better than OPT
when the aggregation ratio is not 1. This is because the packet
dropping rate in OPT is very high. OPT only receives less than
2000 units of information, compared to more than 5000 in ToD
and DAA. We believe the high dropping rate is because of the
convergecast traffic in OPT. When aggregation ratio decreases,
more packets with larger size is forwarded to the root of the
aggregation tree, which results in high contention and leads to
high dropping rate.

F. Cell Size

The above simulations use maximum size of an event as
the cell size. This ensures that the Dynamic Forwarding can
aggregate all packets at an S-aggregator, and the cost of
forwarding the aggregated packets to the sink is minimized.
However, large cell size increases the cost of aggregating
packets to the aggregator as we use DAA as the aggregation
technique in an F-cluster. In this section we evaluate the impact
of the size of a cell on the performance of ToD.

We vary the cell size from 50m×50m to 800m×800m and
run simulations for three different event sizes, 200m, 400m,
and 600m, in diameter. The results are collected from five
different event mobility patterns and shown in Fig. 19.

11

 0

 5

 10

 15

 20

 25

 30

 35

 500 400 300 200

N
or

m
al

iz
ed

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Event Size (m)

ToD
DAA
SPT
OPT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 500 400 300 200

N
um

be
r

of
 T

ot
al

 T
ra

ns
m

is
si

on
s

Event Size (m)

ToD
DAA
SPT
OPT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 500 400 300 200

U
ni

t o
f

R
ec

ei
ve

d
In

fo
rm

at
io

n

Event Size (m)

ToD
DAA
SPT
OPT

(a) Normalized number of transmissions (b) Number of transmissions (c) Unit of received information

Fig. 15. The simulation results for different event sizes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Distance to the Sink (m)

ToD
DAA
SPT
OPT

 0

 2

 4

 6

 8

 10

 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Distance to the Sink (m)

ToD
DAA
OPT

 0

 5

 10

 15

 20

 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 R

ec
ei

ve
d

Pa
ck

et
s

Distance to the Sink (m)

ToD
DAA
SPT
OPT

(a) Normalized number of transmission (b) Zoom in of Fig. 17(a) (c) Number of received packets

Fig. 17. The simulation results for difference distances from the event to the sink.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Aggregation Ratio

ToD
DAA

OP
AT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Aggregation Ratio

ToD
DAA

OP
AT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

U
ni

t o
f

re
ce

iv
ed

 in
fo

rm
at

io
ns

Aggregation Ratio

ToD
DAA

OP
AT

(a) Normalized number of transmissions (b) Number of transmissions (c) Unit of received information

Fig. 18. The simulation results for different aggregation ratio.

When the size of cell is larger than the event size, the
performance is worse because the cost of aggregating packets
to F-aggregator increases, but the cost of forwarding packets
from S-aggregator does not change. When the size of cell is
too small, the cost of forwarding packets to sink increases
because packets will be aggregated at different F-aggregators
and more packets will be forwarded to the sink without further
aggregation. In general, when the size of the F-cluster is small
enough to only contain one node, or when the size of the F-
cluster is large enough to include all nodes in the network,
ToD just downgrades to DAA.

ToD has the best performance when the cell size is 100m×
100m (F-cluster size is 200m × 200m) when the event size
is 200m in diameter. When the diameter of an event is 400m
and 600m, using 200m × 200m as the cell size has the best
performance (F-cluster size is 400m×400m). This shows that
the ToD performance can be further optimized by selecting the
appropriate cell size. To explore the relation between the event
and cell size for optimization will be part of our future work.

G. Random Deployment for Irregular Topology

In this section we evaluated the modified dynamic for-
warding rules for irregular topology networks. We create five
1000m × 1000m networks and randomly place five circular
obstacles with radius ranging from 100m to 200m, and ran-
domly place 2000 sensors in these fields. For each deployment,
we generate five event moving scenarios as described before.
With voids and random deployment, geographic routing may
encounter a “local minimum” and has to switch from greedy
forwarding to perimeter routing. We implemented the perime-
ter routing on a GG planar graph [45] to deal with local
minimum in greedy forwarding.

To incorporate perimeter routing with anycasting in DAA,
when greedy forwarding encounters a local minimum and
switches from greedy mode to perimeter mode, the local
minimum node specifies the nexthop in the perimeter mode
in the RTS packet. The nexthop node has lower priority to
reply a CTS than nodes having packets for aggregation. This

12

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 100 200 300 400 500 600 700 800

N
or

m
al

iz
ed

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Cell Size (m)

200m
400m
600m

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100 200 300 400 500 600 700 800

N
um

be
r

of
 T

ot
al

 T
ra

ns
m

is
si

on
s

Cell Size (m)

200m
400m
600m

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 100 200 300 400 500 600 700 800

N
um

be
r

of
 R

ec
ei

ve
d

Pa
ck

et
s

Cell Size (m)

200m
400m
600m

(a) Normalized number of transmissions (b) Number of transmissions (c) Number of received packets

Fig. 19. The simulation results for difference cell sizes.

allows the packets to be aggregated if neighboring nodes have
packets for aggregation even in perimeter mode, and routes
packets around the void if they can not be aggregated.

Fig. 20 shows the results for these five deployments. Due to
high variability across different scenarios, we show the results
for each scenario rather than averaging over all scenarios. We
can see similar results as before. ToD can still improves the
normalized number of transmissions compared with DAA, and
performs close to OPT. ToD uses less number of transmissions
than DAA but transmits comparable amount of information.

VI. CONCLUSION

In this paper we propose a semi-structured approach that
locally uses a structure-less technique followed by Dynamic
Forwarding on an implicitly constructed packet forwarding
structure, ToD, to support network scalability. ToD avoids the
long stretch problem in fixed structured approaches and elim-
inates the overhead of constructing and maintaining dynamic
structures. We evaluate its performance using real experiments
on a testbed of 105 sensor nodes and simulations on 2000
node networks. Based on our studies we find that ToD is
highly scalable and it performs close to the optimal structured
approach. Therefore, it is very suitable for conserving energy
and extending the lifetime of large scale sensor networks.

REFERENCES

[1] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-Efficient Communication Protocol for Wireless Microsensor
Networks,” in Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, vol. 2, January 2000.

[2] ——, “An Application-Specific Protocol Architecture for Wireless
Microsensor Networks,” in IEEE Transactions on Wireless
Communications, vol. 1, October 2002, pp. 660–670.

[3] C. Intanagonwiwat, D. Estrin, and R. Goviindan, “Impact of Network
Density on Data Aggregation in Wireless Sensor Networks,” in
Technical Report 01-750, University of Southern California, November
2001.

[4] W. Zhang and G. Cao, “Optimizing Tree Reconfiguration for Mobile
Target Tracking in Sensor Networks,” in Proceedings of INFOCOM
2004, vol. 4, March 2004, pp. 2434–2445.

[5] ——, “DCTC: Dynamic Convoy Tree-based Collaboration for Target
Tracking in Sensor Networks,” in IEEE Transactions on Wireless
Communications, vol. 3, September 2004, pp. 1689–1701.

[6] M. Ding, X. Cheng, and G. Xue, “Aggregation Tree Construction in
Sensor Networks,” in Proceedings of the 58th IEEE Vehicular
Technology Conference, vol. 4, October 2003, pp. 2168–2172.

[7] H. Luo, J. Luo, and Y. Liu, “Energy Efficient Routing with Adaptive
Data Fusion in Sensor Networks,” in Proceedings of the Third
ACM/SIGMOBILE Workshop on Foundations of Mobile Computing,
August 2005.

[8] A. Goel and D. Estrin, “Simultaneous Optimization for Concave
Costs: Single Sink Aggregation or Single Source Buy-at-Bulk,” in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2003.

[9] “Networked Infomechanical Systems,” http://www.cens.ucla.edu .
[10] “Center for Embedded Networked Sensing at UCLA,”

http://www.cens.ucla.edu .
[11] J. Polastre, “Design and Implementation of Wireless Sensor Networks

for Habitat Mon itoring,” Master’s Thesis, University of California at
Berkeley, Spring 2003.

[12] A. Mainwaring, R. Szewczyk, J. Anderson, and J. Polastre, “Habitat
Monitoring on Great Duck Island,” http://www.greatduckisland.net.

[13] A. Arora, P. Dutta, and S. Bapat, “Line in the Sand: A Wireless
Sensor Network for Target Detection, Classification, and Tracking,”
OSU-CISRC-12/03-TR71, 2003.

[14] “ExScal,” http://www.cast.cse.ohio-state.edu/exscal/.
[15] Sental Corporation, “Chemical/Bio Defense and Sensor Networks,”

http://www.sentel.com/html/chemicalbio.html .
[16] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, The

Traveling Salesman Problem : A Guided Tour of Combinatorial
Optimization. John Wiley & Sons, 1985.

[17] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “On Network
Correlated Data Gathering,” in Proceedings of the 23rd Annual Joint
Conference of the IEEE Computer and Communications Societies,
vol. 4, March 2004, pp. 2571–2582.

[18] K. W. Fan, S. Liu, and P. Sinha, “Structure-free Data Aggregation in
Sensor Networks,” in OSU-CISRC-4/06-TR35, Technical Report, Dept
of CSE, OSU, April 2006.

[19] Y. Zhu, K. Sundaresan, and R. Sivakumar, “Practical Limits on
Achievable Energy Improvements and Useable Delay Tolerance in
Correlation Aware Data Gathering in Wireless Sensor Networks,” in
IEEE Second Annual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks, September 2005.

[20] K. W. Fan, S. Liu, and P. Sinha, “On the potential of Structure-free
Data Aggregation in Sensor Networks,” in Proceedings of INFOCOM
2006, April 2006.

[21] ——, “Scalable Data Aggregation for Dynamic Events in Sensor
Networks,” in 4th ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2006.

[22] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor
Networks,” in Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking, August 2000, pp. 56–67.

[23] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed Diffusion for Wireless Sensor Networking,” in
IEEE/ACM Transactions on Networking, vol. 11, February 2003, pp.
2–16.

[24] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
Tiny AGgregation Service for Ad-Hoc Sensor Networks,” in
Proceedings of the 5th symposium on Operating systems design and
implementation, December 2002, pp. 131–146.

[25] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting
Aggregate Queries Over Ad-Hoc Wireless Sensor Networks,” in
Proceedings of the 4th IEEE Workshop on Mobile Computing Systems
and Applications, June 2004, pp. 49–58.

[26] S. Lindsey, C. S. Raghavendra, and K. M. Sivalingam, “Data
Gathering in Sensor Networks using the Energy*Delay Metric,” in
Proceedings 15th International Parallel and Distributed Processing
Symposium, April 2001, pp. 2001–2008.

13

�
�
� �
� �
� �
� �
� �
� �
� �
� �

� � � � �
��� 	
 � � �� � �

� ��
���� �
�� �
��
� ��
�
� � �
��
 �
�
 � ��

!#"%$
"%&('
!#) *

+

, + + +

- + + + +

- , + + +

. + + + +

. , + + +

/ + + + +

/ , + + +

0 + + + +

- . / 0 ,
132 4 5 6 7 8(2 9 :

; <
=> ?@
AB C @
DEF
=G FF
G AEF

H#I3J
I3KML
H#N O

P

Q P P P

R P P P

S P P P

T P P P

U P P P

V P P P

W P P P

X P P P

Q R S T U
Y3Z [\] ^ _%Z ` a

b cd e f
g hi
ji
d ki
l d c
g fh
mne
d f
c

o#p3q
p3rMs
o#t u

(a) Normalized number of transmissions (b) Number of transmissions (c) Unit of received information

Fig. 20. The simulation results for five different random deployment with randomly generated voids. For each deployment, the results from
left to right are ToD, DAA, SPT, and OPT.

[27] S. Lindsey and C. Raghavendra, “PEGASIS: Power-efficient gathering
in sensor information systems,” in Proceedings of IEEE Aerospace
Conference, vol. 3, March 2002, pp. 1125–1130.

[28] S. Lindsey, C. Raghavendra, and K. M. Sivalingam, “Data Gathering
Algorithms in Sensor Networks Using Energy Metrics,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 13, September
2002, pp. 924–935.

[29] J. Wong, R. Jafari, and M. Potkonjak, “Gateway placement for latency
and energy efficient data aggregation,” in 29th Annual IEEE
International Conference on Local Computer Networks, November
2004, pp. 490–497.

[30] B. J. Culpepper, L. Dung, and M. Moh, “Design and Analysis of
Hybrid Indirect Transmissions (HIT) for Data Gathering in Wireless
Micro Sensor Networks,” in ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 8, January 2004, pp. 61–83.

[31] H. F. Salama, D. S. Reeves, and Y. Viniotis, “Evaluation of Multicast
Routing Algorithms for Real-time Communication on High-speed
Networks,” in IEEE Journal on Selected Area in Communications,
vol. 15, April 1997.

[32] A. Scaglione and S. D. Servetto, “On the Interdependence of Routing
and Data Compression in Multi-Hop Sensor Networks,” in
Proceedings of the 8th Annual International Conference on Mobile
Computing and Networking, September 2002, pp. 140–147.

[33] A. Scaglione, “Routing and Data Compression in Sensor Networks:
Stochastic Models for Sensor Data that Guarantee Scalability,” in
Proceedings of IEEE International Symposium on Information Theory,
June 2003, p. 174.

[34] R. Cristescu and M. Vetterli, “Power Efficient Gathering of Correlated
Data: Optimization, NP-Completeness and Heuristics,” in Summaries
of MobiHoc 2003 posters, vol. 7, July 2003, pp. 31–32.

[35] S. Pattern, B. Krishnamachari, and R. Govindan, “The Impact of
Spatial Correlation on Routing with Compression in Wireless Sensor
Networks,” in Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks, April 2004, pp. 28–35.

[36] L. Cai and D. Corneil, “Tree Spanners,” in SIAM Journal of Discrete
Mathematics, vol. 8, 1995.

[37] N. Alon, R. M. Karp, D. Peleg, and D. West, “A graph theoretic game
and its application to the k-server problem,” in SIAM Journal of
Computing, vol. 24, 1995.

[38] D. Peleg and D. Tendler, “Low Stretch Spanning Trees for Planar
Graphs,” in Technical Report MCS01-14, Mathematics & Computer
Sience, Weizmann Institute Of Sience, 2001.

[39] L. Jia, G. Noubir, R. Rajaraman, and R. Sundaram, “GIST:
Group-Independent Spanning Tree for Data Aggregation in Dense
Sensor Networks,” in International Conference on Distributed
Computing in Sensor Systems, June 2006.

[40] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low Cost Outdoor
Localization For Very Small Devices,” in IEEE Personal
Communications, Special Issue on ”Smart Spaces and Environments”,
vol. 7, October 2000.

[41] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust Distributed
Network Localization with Noisy Range Measurements,” in
Proceedings of 2nd ACM Sensys, pp. 50–61.

[42] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat,
V. Kulathumani, M. Sridharan, H. Zhang, and H. Cao, “Kansei: A
Testbed for Sensing at Scale,” in Proceedings of the 4th Symposium on
Information Processing in Sensor Networks (IPSN/SPOTS track), 2006.

[43] A. Arora, E. Ertin, R. Ramnath, W. Leal, and M. Nesterenko, “Kansei:
A High-Fidelity Sensing Testbed,” in IEEE Internet Computing,
special issue on Large-Scale Sensor Networks, March 2006.

[44] Crossbow, “Crossbow,” http://www.xbow.com.
[45] K. Gabriel and R. Sokal, “A New Statistical Approach to Geographic

Variation Analysis,” in Systematic Zoology, 1969, pp. 259–278.

Kai-Wei Fan received his BS and MS degree
in Computer Science and Information Engineering
from National Chiao Tung University, Taiwan
in 1997 and 1999, respectively. He was an senior
engineer and project manager in network security
division in a start-up company from 1999 to
2004. He is currently pursuing his PhD degree in
Department of Computer Science and Engineering
at The Ohio State University. His research
interests include wireless sensor networks and
mesh networks where he focuses on design and

implementation of energy efficient protocols.

Sha Liu received his
BS degree in statistics and MS degree in computer
science at University of Science and Technology
of China in 2001 and 2004 respectively.
Currently he is a Ph.D. student in computer science
of the Ohio State University. His research interests
include low latency routing, wake-up scheduling
and data aggregation in wireless sensor networks.

Prasun Sinha received his PhD from University
of Illinois, Urbana-Champaign in 2001, MS from
Michigan State University in 1997, and B. Tech.
from IIT Delhi in 1995. He worked at Bell Labs,
Lucent Technologies as a Member of Technical
Staff from 2001 to 2003. Since 2003 he is
an Assistant Professor in Department of Computer
Science and Engineering at Ohio State University.
His research focuses on design of network
protocols for sensor networks and mesh networks.
He served on the program committees of various

conferences including INFOCOM (2004-2007) and MOBICOM
(2004-2005). He has won several awards including Ray Ozzie Fellowship
(UIUC, 2000), Mavis Memorial Scholarship (UIUC, 1999), and
Distinguished Academic Achievement Award (MSU, 1997). He received the
prestigious NSF CAREER award in 2006.

14

