
Designing Efficient Asynchronous Memory Operations Using Hardware Copy
Engine: A Case Study with I/OAT

K. VAIDYANATHAN, W. HUANG, L. CHAI AND D. K. PANDA

Technical Report
Ohio State University (OSU-CISRC-2/07-TR12)

Designing Efficient Asynchronous Memory Operations Using Hardware Copy
Engine: A Case Study with I/OAT∗

K. Vaidyanathan W. Huang L. Chai D. K. Panda
Computer Science and Engineering,

The Ohio State University,
{vaidyana, huanwei, chail, panda}@cse.ohio-state.edu

Abstract

Memory copies for bulk data transport incur large
overheads due to CPU stalling, small register-size
data movement, etc. Intel’s I/O Acceleration Tech-
nology offers an asynchronous memory copy engine in
kernel space which alleviates such overheads. In this
paper, we propose a set of designs for asynchronous
memory operations in user space for both single pro-
cess (as an offloaded memcpy()) and IPC using the
copy engine. We analyze our design based on over-
lap efficiency, performance and cache utilization. Our
microbenchmark results show that using the copy en-
gine for performing memory copies can achieve close
to 87% overlap with computation. Further, the copy
engine improves the copy latency of bulk memory data
transfers by 50% and avoids cache pollution effects.
With the emergence of multi-core architectures, the
support for asynchronous memory operations holds a
lot of promise in reducing the gap between the memory
and processor performance.

1 Introduction

Several applications in the fields of biomedical in-
formatics, satellite weather image analysis, engineer-

∗This research is supported in part by DOE grants #DE-FC02-
06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-
0403342 and #CNS-0509452; grants from Intel, Mellanox, Cisco
systems, Linux Networx and Sun Microsystems; and equipment
donations from Intel, Mellanox, AMD, Apple, Appro, Dell, Mi-
croway, PathScale, IBM, SilverStorm and Sun Microsystems.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

ing and sciences not only demand for large number
of compute cycles but also for higher memory and
network performance. To address the compute cy-
cle requirement, large number of processors are get-
ting added to current-generation systems. Emerg-
ing new technologies such as Multi-Core Processors
(also known as Chip-level Multiprocessing or CMP)
provide several cores on a single node. Currently
dual-core architectures (two cores per die) are widely
available from various industry leaders including In-
tel, AMD, Sun (with up to 8 cores) and IBM. Sim-
ilarly, network performance has also been increasing
at a tremendous rate with the introduction of high-
performance networks such as InfiniBand [1], 10 Gi-
gabit Ethernet (10 GigE) [7], etc. Today, several indus-
tries are taking the next step in high-speed networking
with multi ten-gigabit networks such as the Mellanox
20-Gigabit IBA DDR adapters, IBM 30-Gigabit IBA
adapters, etc.

On the other hand, memory performance has not
been improving at a significant pace resulting in a huge
gap between the processor and memory performance.
The limited memory bandwidth is often addressed as
the major performance degradation factor for many
scientific applications. Several memory block opera-
tions such as copy, compare, move, etc., are performed
by the host CPU leading to an inefficient use of the
host compute cycles. In addition, such operations also
affect the caching hierarchy since the host CPU fetches
the data onto cache, thereby, evicting some other valu-
able resources in cache. The problem gets even worse
with the introduction of multi-core systems since sev-
eral cores can concurrently access the memory leading
to memory contention issues, CPU stalling issues, etc.

Due to several of the issues mentioned above, the abil-
ity to overlap computation and memory operation as
a memory latency-hiding mechanism becomes critical
for masking the gap between processor and memory
performance.

Direct Memory Access (DMA) has been tradition-
ally used to transfer the data directly from the host
memory to any input/output device without the host
CPU intervention. Several networks such as Infini-
Band and Myrinet provide a zero-copy data transfer
support. However, such solutions are mainly used
for transferring data from one node to another. Re-
searchers in the past have attempted to use DMA
engines to accelerate bulk data movement within a
node. Many of these approaches have not entirely
succeeded due to huge DMA startup costs, comple-
tion notification costs and other performance-related
issues. Recently, Intel’s I/O Acceleration Technology
(I/OAT) [6, 9, 11] introduced an Asynchronous DMA
Copy Engine (ADCE) in kernel space that has direct
access to main memory to improve performance and
reduce the overheads mentioned above.

In this paper, we propose a set of designs for
asynchronous memory operations in user space for
both single process (as an offloaded memcpy()) and
Inter-Process Communication (IPC) using the copy
engine. In order to achieve this, we design and im-
plement a kernel module that provides a set of inter-
faces for userspace applications. In our design, we ef-
ficiently handle IPC synchronization, memory align-
ment, scheduling across DMA channels and avoiding
user buffer pinning costs. We analyze our design based
on overlap efficiency, performance and cache utiliza-
tion.

Our experimental results show that using ADCE for
memory copies can achieve close to 87% overlap with
computation. Further, it improves the latency of large
memory data transfers by 50% and increases the IPC
bandwidth for large message sizes by a factor of two.
Also, the copy engine assists in avoiding 30% perfor-
mance degradation due to cache pollution effects.

2 Background

In this section we provide a brief motivation for us-
ing copy engines in bulk data transfers and describe
the architecture of I/OAT Copy Engine.

2.1 Motivations for Copy Offload Engine

Figure 1 illustrates the basic architecture of a copy
execution using a CPU vs using a DMA copy engine.
As mentioned in [12], utilizing a copy engine for bulk
data transfer offers several benefits:

1. Reduction in CPU Resources and Better Perfor-
mance: Memory copies are usually implemented as a
series of load and store instructions through registers.
Data is fetched onto the cache and then onto the regis-
ters. Typically, the CPU performs the copy by register
size which is 32 or 64 bit long. On the other hand,
using a copy engine, memory copies can be done at a
faster rate (close to block sizes) since it directly oper-
ates with main memory. Further, the load and store in-
structions used in CPU-based copies may end up occu-
pying the CPU resources, limiting the CPU to not look
far ahead in the instruction window. Copy engines can
help in freeing up CPU resources so that other useful
instructions can be executed.

2. Computation-Memory Copy Overlap: Since the
memory-to-memory copy operation can be performed
without host CPU intervention using an asynchronous
copy engine, we can achieve better overlap with mem-
ory copies. This is similar to DMA operation where
data is transfered directly between the memory and de-
vice which is commonly used by networks such as In-
finiBand, Quadrics, etc.

3. Avoiding Cache Pollution Effects: Large mem-
ory copies can pollute the cache significantly. Unless
the source or destination buffers are needed by the ap-
plication, allocating this buffer in the cache may result
in polluting the cache as it can evict other valuable re-
sources in the cache. As mentioned in [12], cluster
applications such as web servers do not touch the data
immediately even after completing the memory copy.
Using a copy engine in this case, results in avoiding
any cache pollution as it can directly perform the copy
without getting the data onto the cache.

2.2 I/OAT Copy Engine Architecture

I/OAT [6] offloads the data copy operation from
the CPU with the addition of an asynchronous DMA
copy engine (ADCE). ADCE is implemented as a
PCI-enumerated device in the chipset and has multi-
ple independent DMA channels with direct access to
main memory. When the processor requests a block

M
em

or
y

Cache

Registers

CPUCopy on CPU

Copy on DMA
copy engine

Cache Pollution
Critical resource touched

Stalled on Mem
Register−based

CPU not stalled CPU critical
compute overlap resources untouched Reduced pollution

DMA

Engine
Copy

Block granularity

Block granularity

Figure 1. Copy execution on CPU vs Copy En-
gines [12]

memory operation from the engine, it can then asyn-
chronously perform the data transfer with no host pro-
cessor intervention. When the engine completes a
copy, it can optionally generate an interrupt.

Though ADCE offers several benefits, the following
issues need to be taken care of. The memory controller
uses physical addresses, so a single transfer cannot
span discontinuous physical pages. Hence, memory
operations should be broken up into individual page
transfers. Secondly, memory copies whose source
and destination overlap should be carefully handled.
Applications need to schedule such operations in an
appropriate order so as to preserve the semantics of
the operation. Lastly, the copy engine must maintain
cache coherence immediately after data transfer. Data
movement performed by the memory controller should
not ignore the data stored in the processor cache, po-
tentially requiring a cache coherence transaction on
the bus.

3 Proposed Design

In this section, we describe our proposed design
in supporting asynchronous memory operation for
userspace applications. We first describe the design
for single process and IPC. Later, we discuss how
efficiently we handle issues such as synchronization,
memory alignment, user buffer pinning, etc.

3.1 Basic Design for User-Space Applica-
tions

Currently, Intel supports several interfaces in kernel
space for copying data from a source page/buffer to

a destination page/buffer. These interfaces are asyn-
chronous and the copy is not guaranteed to be com-
pleted when the function returns. These interfaces re-
turn a non-negative cookie value on success, which is
used to check for completion of a particular memory
operation. It is necessary to wait on another function
to wait for the copies to complete.

A memory copy operation typically involves three
operands: (i) a source address, (ii) a destination ad-
dress and (iii) number of bytes to be copied. For
user-space applications, the source and destination ad-
dresses are virtual addresses. However, as mentioned
in Section 2, the DMA copy engine can only under-
stand physical addresses. The first step in performing
the copy is to translate the virtual address to physical
addresses. For various reasons related to security and
protection, this is done at the kernel space. Once we
get the physical address, we also need to make sure
that the physical pages that are mapped to the user
application does not get swapped onto the disk while
the copy engine performs the data transfer. Hence,
we need to lock the pages in memory before initiat-
ing the DMA and unlock the pages after the comple-
tion of the copy operation, if required. We use the
get user pages() function in the kernel space to lock
the user pages.

Table 1. Basic ADCE Interface

Operation Description
adma copy(src, dst, len) Blocking copy routine
adma icopy(src, dst, len) Non-blocking copy routine
adma check copy(cookie) (Non-blocking) check for

completion
adma wait copy(cookie) (Blocking) wait for

completion

In order for the userspace applications to use the
copy engine, we propose the addition of the follow-
ing interfaces, as shown in Table 1. The adma icopy
operation helps in initiating the copy and returns a
cookie which can be used later to check for completion
while the adma copy check operation helps in check-
ing if the corresponding memory operation has com-
pleted. The adma copy wait operation waits for the
corresponding memory operation to complete and the

adma copy operation is a blocking version which uses
the copy engine and does not return until the copy fin-
ishes.

3.2 Design for Inter-Process Communica-
tion (IPC)

In addition to offloaded memory operations within
a single process, applications also require support for
exchanging messages across different processes in a
single node. Typically, parallel applications which run
on different processors use such mechanisms for in-
ter process communication. As shown in Figure 2,
there are many ways of performing inter process com-
munication. The most common way followed is the
user space shared memory based approach. In this
approach, processes A and B create a shared mem-
ory region. Process A copies the source data onto the
shared memory and process B copies this shared mem-
ory segment to its destination. Clearly, this approach
involves an extra copy. Several MPI implementations
use this approach [4]. As mentioned in Section 2,
this approach also occupies some CPU resources. An-
other approach is the NIC-based loop back approach
wherein network device can DMA the data from the
source to the destination. The third approach [8] is to
map the user buffer in kernel space and use the stan-
dard copy operation in kernel to avoid an extra copy
incurred by user space shared memory approach. In
this paper, we propose a fourth approach, which is uti-
lizing the DMA copy engine to perform the copy. Such
an approach does not incur any extra copies, not touch
many CPU critical resources and also avoids any cache
pollution effects.

��

��

���������������
���������������
���������������

�������������
�������������
�������������

���������
���������
���������
���������

�����������������
�����������������
�����������������

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

Process B

User buffer

NIC based
Loop Back Copy (NLBC)

Memory Copy (USMC)

Process A

User buffer

Asynchronous DMA Copy
Engine based Copy (ADCEC)

Kernel Assisted Memory
Mapped Copy (KAMMC)

User space Shared

ADCEC

KAMMC

USMC

NLBC

Figure 2. Different IPC Mechanisms

We support the following user interface, as shown in
Table 2, for applications to exchange messages across
different processes. The adma read and adma write
operations read and write data onto another process
and adma iread and adma iwrite operations initiate
the data transfer. However, due to the presence of two
different processes, synchronization becomes a bottle-
neck for performance. Data transfer cannot be initiated
unless both the processes have posted their buffers for
data transfer. We describe the challenges in handling
these scenarios in Section 3.3. The adma icheck oper-
ation checks whether the memory operation has com-
pleted and the adma wait operation waits till the mem-
ory operation completes.

Table 2. ADCE Interface for IPC

Operation Description
adma iread(fd, addr, len) Non-blocking read routine
adma iwrite(fd, addr, len) Non-blocking write routine
adma read(fd, addr, len) Blocking read routine
adma write(fd, addr, len) Blocking write routine
adma check(cookie) (Non-blocking) check for

read/write completion
adma wait(cookie) (Blocking) Wait for

read/write completion

Figure 3 shows the mechanism by which we support
IPCs. Our design can be easily integrated with the pipe
or socket semantics. Currently, we support the socket
semantics for establishing the connection between dif-
ferent processes. Once the connection is made, pro-
cesses can use the set of interfaces mentioned above
for utilizing the copy engine. Let us consider two con-
nected processes (A and B). If process A needs to send
data to process B, process A makes a request to the
kernel (Step 1). In step 2, the kernel locks the user
page and adds the entry to a list of cached virtual to
physical mappings. The kernel then makes an entry
to a list of pending read and write requests. At this
time, if process B posts its read buffer (Step 4), the
kernel locks the user page and caches the page map-
ping (Step 5). The kernel searches the list to find the
matching write request (Step 6). Since the write buffer
is already posted, it initiates the DMA copy (Step 7).
Process A waits for the completion of operation (Step

8) by issuing a request to the kernel. The kernel first
makes sure that the corresponding buffers are posted
by waiting on a semaphore (Step 9a). This semaphore
is initially in a locked state and released when both the
read and write buffers match. Steps 10-11 are similar
to Steps 8-9.

User Buffer

...

User Buffer

1. Request (ioctl)

Process A

User

Kernel 9a. Wait on semaphore
9b. Wait for DMA

completion
5b. Cache the page

mapping

11a. Wait on semaphore
11b. Wait for DMA

completion

6. Search

Linked List of Posted Requests
3. Post Request

2a. Lock the user pages
2b. Cache the page

mapping

5a. Lock the user pages

7. Initiate DMA copy

8. Wait

4. Request (ioctl)

10. Wait

Process B

Figure 3. IPC using DMA copy engine

3.3 Handling IPC Synchronization

Since we have two different processes performing
communication using the copy engine, synchroniza-
tion becomes a critical issue before initiating the DMA
transaction. For example, consider processes A and
B wanting to communicate a buffer of size 1 KB. We
need to handle the following cases making sure that
latency, progress and CPU utilization do not get af-
fected significantly. Case 1: Process A posts the write
buffer and waits for the operation to finish. Then pro-
cess B posts an adma iread operation. Case 2: Process
B posts the read buffer and waits for the operation to
finish. Then process A posts an adma iwrite opera-
tion. Case 3: Both processes A and B post their re-
spective buffers before performing the wait operation.
To address these cases, we use a binary semaphore in
our implementation. For Case 1, we queue the request
posted by Process A during the write request and we
allow the process to wait on the semaphore during the
wait operation. When Process B posts a read buffer,
the DMA is initiated and immediately process A is
woken up by releasing the semaphore. Process A then
waits on the DMA copy to finish and the control is
given back to the user process. For Case 2, a simi-
lar approach is followed except that Process A wakes
up process B after process A posts the corresponding
write buffer. In Case 3, both processes A and B see a

matching request posted and thus do not wait on any
semaphore and directly check for DMA completion.
All three cases avoid unnecessary polling and the con-
trol is released immediately after the buffers are posted
so that DMA completion is checked immediately lead-
ing to better notification.

3.4 Handling Memory Alignment

Another issue is the memory alignment problem as-
sociated with source and destination buffers. Since the
copy engine operates with main memory, the perfor-
mance of the copy operation can be enhanced if the
memory is page-aligned. For example, lets say that
the source address starts at offset 0 and the destina-
tion address at 2K. If we assume the page size to be
4 KB, then we can only schedule a maximum of 2 KB
copy since the copy length is required to be within the
page-boundary, leading 2000 such operations if we as-
sume a 4 MB data transfer. On the other hand, if the
addresses were page-aligned, we only need 1000 such
operations. In the worst case, we may end up issu-
ing copies for very small messages (<100 bytes) for
several iterations. Clearly, by making the addresses
page-aligned, we can save on the number of copy op-
erations and more importantly avoid issuing very small
data transfers using the copy engine.

3.5 Handling User Buffer Locking

As mentioned in Section 2, the copy engine deals
with physical addresses as it directly operates on main
memory. To avoid swapping of user pages to the disk
during a copy operation, it is mandatory that the ker-
nel locks the user buffers before initiating the DMA
copy. Usually this locking cost is quite large, in the
order of µs contributing significantly to the total time
required for data transfer. To reduce this cost, we
lock the buffers initially and do not release the locked
buffers even after the completion of data transfer. For
subsequent data transfers, if the same user buffer is
reused, we can avoid the locking costs and directly
use the physical address that maps to the virtual ad-
dress. However, if the application uses malloc() and
free() calls, the kernel module needs to be aware of
such changes and appropriately release these buffers.

3.6 Handling Scheduling across DMA
channels

Several applications can use the DMA engine si-
multaneously. Hence, it is possible that a small mem-
ory operation is queued behind several large memory
operations. Due to the fact that we have several DMA
channels, scheduling these memory operations on ap-
propriate channels becomes a challenging task. Cur-
rently, we use a simple approach of using the channels
in a round-robin manner and schedule the memory op-
erations. We plan to extend this work on using dedi-
cated channels and adaptive schemes in future.

4 Experimental Results

We ran our experiments on a dual dual-core Intel
3.46 GHz processors and 2 MB L2 cache system with
SuperMicro X7DB8+ motherboards which include 64-
bit 133 MHz PCI-X interfaces. The machine is con-
nected with an Intel PRO 1000Mbit adapter. We used
the Linux RedHat AS 4 operating system and kernel
version 2.6.9-30.

4.1 Latency and Bandwidth Performance

Figure 4a shows the performance of copy latency
using CPU and ADCE for small message sizes. In this
experiment, both source and destination buffers fit in
the cache. For CPU-based copy operation, we mea-
sure the memcpy operation of libc library and average
it over several iterations. This is indicated as libc mem-
cpy (CPU-based) line in the figure. For ADCE, we use
the adma icopy operation followed by the adma wait
operation and measure the time to finish both the op-
erations.

As shown in Figure 4a, we see that CPU-based ap-
proach performs well for all message sizes. This is
mainly due to the cache size which is 2 MB. Since
both source and destination buffers can fit in the cache,
CPU-based approach performs better. Figure 4b show
the performance of copy latency for small messages
when source and destination buffers are not in the
cache. In this experiment, we use two 64 MB buffers
as source and destination. After every copy operation,
we move the source and destination pointers by mes-
sage size, so that memory copy always uses different
buffers. We repeat this for a large number of iterations

and ensure that the buffers are not in the cache. As
observed in the figure, we see that ADCE using four
channels performs better from 16 KB. As mentioned
earlier, since we are using buffers that are not in the
cache, for ADCE, we also incur penalties with huge
pinning costs for every copy operation. As a result,
we see that the performance is little worse compared
to the previous experiment where the buffers are in the
cache. Also, the performance of ADCE with one chan-
nel gets better after 256 KB message size. However,
as shown in Figure 4c, we see that the performance
of ADCE for large message sizes is significantly bet-
ter than the CPU-based approach. For 4 MB message
size, we observe that ADCE with four channels results
in 50% improvement in latency as compared to the
CPU-based approach. Also, we observe that ADCE
using four channels achieves better latency compared
to ADCE with one channel.

The bandwidth performance of copy operation is
shown in Figure 5. In this experiment, we post a win-
dow of adma icopy operations (128 in our case) and
wait for these memory operations to finish. We re-
peat this experiment for several iterations and report
the bandwidth. For CPU-based approach, we use the
libc memcpy instead of the adma icopy operation. As
shown in Figure 5, for message sizes till 1 MB, the
CPU-based approach yields a maximum bandwidth of
9189 MB/s. This is mainly due to the caching effect
since the copy happens inside the cache. For message
sizes greater than 1 MB, we observe a huge drop in
bandwidth for CPU-based approach achieving close
to 1443 MB/s. However, ADCE with four channels
achieves a peak bandwidth of 2912 MB/s, almost dou-
ble the bandwidth achieved by CPU-based approach.
ADCE with one channel achieves close 2048 MB/s.

4.2 Overlap of Computation and Memory
Operation

In this section, we evaluate the ability of ADCE to
effectively overlap memory copy process and compu-
tation. To carry this evaluation we design an overlap
benchmark. For a certain message size, the bench-
mark first estimates the latency of blocking memory
copy Tcopy (adma icopy operation immediately fol-
lowed by adma wait operation). To test the overlap
efficiency, the benchmark initiates an asynchronous
memory copy (adma icopy) followed by a certain

 0

 50

 100

 150

 200

 250

 300

 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

 0

 2000

 4000

 6000

 8000

 10000

 12000

16M8M4M2M1M

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

Figure 4. Latency: (a) small message hot-
cache, (b) small message cold-cache and (c)
large message cold-cache

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16M 4M 1M 256k 64k 16k 4k 1k

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

Figure 5. Bandwidth

amount of computation which at least takes time
Tcompute > Tcopy, and finally waits for the comple-
tion (adma wait). The total time is recorded as Ttotal .
If the memory copy is totally overlapped by computa-
tion, we should have Ttotal = Tcompute. If the memory
copy is not overlapped, we should have Ttotal = Tcopy

+ Tcompute. The actual measured value will be in be-
tween, and we define overlap as:

Overlap = (Tcopy + Tcompute - Ttotal) / Tcopy

Based on the above definition, the value of overlap
will be between 0 (non-overlap) and 1 (totally over-
lapped). A value close to 1 indicates a higher overlap
efficiency. Figure 6a illustrates the overlap efficiency
we measured. As we can see, CPU-based copy using
memcpy is blocking, thus we always get an overlap ef-
ficiency of 0. By using ADCE for large size memory
copies, we are able to achieve up to 0.92 (92%) and
0.87 (87%) overlap using one and four channels, re-
spectively. For ADCE with four channels, we check
the completion across four channels and thus it results
in lesser overlap compared to ADCE with one chan-
nel case. For smaller sizes, the overlap efficiency is
small due to DMA startup overheads. We see similar
trend in overlap efficiency when the source and des-
tination buffers are not in the cache as shown in Fig-
ure 6b. However, the actual percentages seen are much
lower. We explain the reason for such lower percent-
ages in the section below.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

16M 4M 1M 256k 64k 16k 4k 1k

O
ve

rla
p

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

16M 4M 1M 256k 64k 16k 4k

O
ve

rla
p

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

Figure 6. Computation-Memory Copy Over-
lap: (a) hot-cache and (b) cold-cache

4.3 Asynchronous Memory Copy Over-
heads

In order to understand the low overlap efficiency ob-
served in the previous section, we measure the split-
up/overhead of ADCE. Figure 7 shows the split-up
overhead of ADCE using four channels. In this ex-
periment, we ran the copy latency test with source
and destination buffers not in the cache and measure
the overhead of user/kernel transition, pinning of user
buffer, DMA startup and completion. We observe that
the pinning cost occupies a significant fraction of the
total overhead. For small message sizes, we see that
all four overheads contribute equally towards the la-
tency and there is very little room for overlap. For
larger message sizes, we see that the pinning cost and
DMA startup cost occupies 30% and 7%, respectively.
The remaining time is overlapped with the computa-
tion (62%).

4.4 Cache Pollution Effects

In this section, we measure the effect of cache pol-
lution with applications. We design the experiment in
the following way. We perform a large memory copy
operation and perform a column-wise access of a small
memory buffer which can fit in the cache. Figure 8
shows the access time for various memory sizes. We
measure the access time without the memory copy and
report it as access w/o copy and for remaining cases,
we perform the memory copy using CPU and ADCE.
As shown in figure, the access time after performing
the copy using ADCE does not change with the nor-
mal access time. However, CPU-based approach in-
creases the access time by 30% due to cache evic-
tion. Since ADCE operates directly on main mem-
ory, ADCE avoids cache pollution effects. As a result,
the access latency after using ADCE does not change.
However, CPU-based approach evicts some of the en-
tries in the cache resulting in an increase in access time
latency.

4.5 IPC Latency and Bandwidth

Figure 9a shows the IPC latency for ADCE based
copy (ADCEC), NIC loopback based copy (NLBC)
and Kernel-assisted memory mapped based copy
(KAMMC). For 4 MB message size, we see that AD-
CEC achieves close to 2954 µs whereas KAMMC and
NLBC achieve close to 5803 and 14333 µs, respec-
tively. Further, for increasing message sizes, the per-
formance of ADCEC is much better than KAMMC
and NLBC, respectively.

Figure 9b shows the IPC bandwidth with ADCEC,
KAMMC and NLBC. Since the buffers can fit in the
cache, we observe that the performance of KAMMC
is better than ADCEC and NLBC till 256 KB mes-
sage size achieving close to 8191 MB/s. However, for
message sizes greater than 1 MB, we see that ADCEC
achieves 2932 MB/s whereas KAMMC and NLBC
achieve only 1438 MB/s and 720 MB/s, respectively.

5 Discussion and Related Work

Emerging technologies such as multi-core proces-
sors (also known as Chip-level Multiprocess) provide
several cores on a single node. Since several of these

Copy Engine Splitup Overhead

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1K 4K 16K 64K 256K 1M 4M
Message Size (bytes)

Pe
rc

en
ta

ge
 O

ve
rh

ea
d

(%
)

User/Kernel Pinning DMA startup
DMA completion Overlap-Time

Figure 7. Asynchronous Copy Overhead

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE
libc memcpy (CPU-based)

access w/o copy

Figure 8. Cache Pollution Effects

 0

 2000

 4000

 6000

 8000

 10000

 12000

16M 4M 1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCEC
KAMMC

NLBC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

16M 4M 1M 256k 64k 16k 4k 1k
Ba

nd
wi

dt
h

(M
B/

s)
Message Size (Bytes)

ADCEC
KAMMC

NLBC

Figure 9. Inter Process Communication: (a)
Latency and (b) Bandwidth

cores access memory at the same time, memory con-
tention issues become very common in such environ-
ments. Also, due to the gap between memory and
processor performance, contention issues will only get
worse with more and more cores. The inability to per-
form useful computation by stalling on memory oper-
ations is often considered the bottleneck in many of
these environments. ADCE helps in alleviating this
bottleneck by its asynchronous feature, thus allow-
ing the cores to perform useful computation during a
memory copy operation.

Researchers have proposed several solutions for
asynchronous memory operations in the past. User-
level DMA [10, 2] deal with providing asynchronous
DMA explicitly at the user space. Zhao et al [12]
talk about hardware support for handling bulk data
movement. Calhoun’s thesis [3] proposes the need
for dedicated memory controller copy engine and cen-
tralized handling of memory operations to improve
performance. However, many of these solutions are
simulation-based. Ciaccio [5] proposed the use of
self-connected network devices for offloading mem-

ory copies. Though this approach can provide an
asynchronous memory copy feature, it has a lot of
performance-related issues. I/OAT [6] offers an asyn-
chronous DMA copy engine (ADCE) which improves
the copy performance with very little startup costs. In
this paper, we use this hardware for supporting asyn-
chronous memory operations.

6 Conclusions and Future Work
Intel’s I/O Acceleration Technology offers an asyn-

chronous memory copy engine in kernel space that al-
leviates copy overheads such as CPU stalling, small
register-size data movements, etc. In this paper, we
proposed a set of designs for asynchronous memory
operations in user space for both single process (as an
offloaded memcpy()) and IPC using the copy engine.
We analyzed our design based on overlap efficiency,
performance and cache utilization. Our microbench-
mark results showed that using the copy engine for
performing memory copies can achieve close to 87%
overlap with computation. Further, the copy latency of
bulk memory data transfers is improved by 50%.

We plan to analyze the impact of the copy engine
with several MPI-based applications and also other
distributed applications such as web servers as a part
of future work. We also propose to improve our design
so that applications can achieve close to 100% overlap
with computation.
References

[1] InfiniBand Trade Association.
http://www.infinibandta.com.

[2] M. A. Blumrich, C. Dubnicki, E. W. Felten, and
K. Li. Protected, user-level DMA for the SHRIMP
network interface. In Proc. of the 2nd IEEE Symp. on
High-Performance Computer Architecture (HPCA-2),
1996.

[3] M. Calhoun. Characterization of block memory oper-
ations. In Masters Thesis, Rice University, 2006.

[4] L. Chai, A. Hartono, and D. K. Panda. Designing high
performance and scalable mpi intra-node communica-
tion support for clusters. In IEEE International Con-
ference on Cluster Computing, 2006.

[5] G. Ciaccio. Using a self-connected gigabit ethernet
adapter as a memcpy() low-overhead engine for mpi.
In Euro PVM/MPI, 2003.

[6] A. Gover and C. Leech. Accel-
erating network receiver processing.
http://linux.inet.hr/files/ols2005/grover-reprint.pdf.

[7] J. Hurwitz and W. Feng. End-to-End Performance of
10-Gigabit Ethernet on Commodity Systems. IEEE
Micro, January 2004.

[8] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. Limic:
Support for high-performance mpi intra-node com-
munication on linux cluster. In International Confer-
ence on Parallel Processing (ICPP), 2005.

[9] S. Makineni and R. Iyer. Architectural characteriza-
tion of TCP/IP packet processing on the Pentium M
microprocessor. In High Performance Computer Ar-
chitecture, HPCA-10, 2004.

[10] E. P. Markatos and M. G. H. Katevenis. User-level
DMA without operating system kernel modification.
In Proceedings of the Third International Sympo-
sium on High-Performance Computer Architecture,
(HPCA), 1997.

[11] G. Regnier, S. Makineni, R. Illikkal, R. Iyer,
D. Minturn, R. Huggahalli, D. Newell, L. Cline, and
A. Foong. TCP Onloading for Data Center Servers.
In IEEE Computer, Nov 2004.

[12] L. Zhao, R. Iyer, S. Makineni, L. Bhuyan, and
D. Newell. Hardware support for bulk data movement
in server platforms. In Proceedings of International
Conference on Computer Design, 2005.

