
Visual Analysis of Trajectory Clusters for Video Surveillance

Shantanu Singh∗ Raghu Machiraju∗ Richard Parent∗

Department of Computer Science and Engineering
The Ohio State University

ABSTRACT

In this paper, we present an interactive trajectory analysis system
designed for a surveillance setup. A codebook construction tech-
nique is used to cluster pedestrian trajectories. The codebooks pro-
vide a model which can be used for prediction, anomaly detection.
and analysis of pedestrian behaviour.A graphical user interface is
presented that allows an operator to perform these tasks interac-
tively.

1 INTRODUCTION

With the increasing demands on homeland security, there has been
a pressing need for the development of technologies to assist in the
prevention and detection of attacks. The most significant step to-
wards prevention and detection has been the increase in the level of
vigilance in all forms. Video surveillance is a key tool that provides
ubiquitous vigilance, enabling security personnel to safely monitor
the most complex and dangerous of environments. However, even
in the simplest of enviroments, a video surveillance operator may
face an enormous information overload. There are often too many
cameras, much fewer display screens, and even fewer personnel to
monitor them. It is nearly impossible to monitor individual ob-
jects scattered across multiple views of the environment. It thus be-
comes imperative to extract higher level information from the video
streams in order to make the surveillance task more feasible for the
operator. The trajectories of moving objects extracted from a scene
provide a reasonable high level information about the scene dynam-
ics. By analyzing these trajectories, an operator can gain significant
insight into the dynamics of the environment.

In this paper we focus on the analysis of pedestrian trajectories
in large public spaces.A trajectory potentially encodes information
about the behaviour of a person or group of persons in an environ-
ment. For example, in a parking lot scenario, one may infer the
intent of a person through his trajectory - the motion of a person
winding in and out of a row of cars might indicate suspicious activ-
ity. Such inferences can be used to further aid the operator in the
surveillance task.

Our approach is to extract trajectory data from archived video
footage of a scene, provide the operator with a framework to visu-
alize the data, and aid the process of making inferences about the
dynamics of the scene. We realize our goals by creating a codebook
representation of trajectory data which then facilitates a prediction
and anomaly detection mechanism. The model itself is further pro-
cessed to present a summarized view of the dynamics of the scene
at different spatial scales. The operator-driven analysis is realized
through the use of a graphical user interface, which not only allows
the operator to browse and drill down but also enables the detection
of anomalous behavior and the learning of trends.

∗e-mail:{singhsh,raghu,parent}@cse.ohio-state.edu

The rest of the paper is organized as follows. Section 2 reviews
related work. In Section 3, we provide an overview of the system
with a schematic explaining the interaction of its components. Sec-
tion 4 describes the processing modules. In Section 5, the analysis-
visualization loop is explained. Experiments conducted with the
system on a surveillance video are detailed in Section 6. Section 7
summarizes the conclusions of this work.

2 RELATED WORK

The goal of automating the task of video surveillance has been the
focus of a significant portion of research in the field of computer vi-
sion. Much of the work has been in the direction of object detection
[13] and tracking [14]. There has been recent work [11] [10] in the
direction of analysing pedestrian trajectories in order to understand
the activity in the scene.

Systems such as W4[7] and VSAM[2] attempt to provide a com-
plete automated surveillance system, dealing with all stages of
processing from the low-level operations of detection and track-
ing to extracting high-level information, such as pedestrian be-
haviour.There has been previous work towards creating a vizual-
ization framework to support security operations [9]

The more general problem of using visualization techniques for
clustering and anomaly detection has received much of attention
[12, 8, 4]. The hierarchical clustering explorer [12] provides a
technique to improve clustering of high dimensional data through
user interacation. Similarly, a visual framework for clustering and
anomaly detection has been proposed[4].

3 OVERVIEW

Fig 1 gives an overview of our visual anlysis system. The inter-
action between two components - the processing module and the
analysis-visualization loop - is the mainstay of our system. The ex-
traction of trajectories, their clustering and transitional graph analy-
sis is carried out in the processing module. Trajectory data extracted
from a video is clustered using a codebook generation technique
described in the next section. The clusters obtained are then used
to create a transitional graph describing activity scene and to pro-
vide a model for prediction and anomaly detection. The analysis-
visualization loop is used interactively with the clusters, transitional
graph, and prediction modules to gain insight about the trajectory
data. This component is often employed in an iterative drill-down
fashion by the user based on what he or she observes in the raw
video or the analyses.

4 PROCESSING M ODULES

4.1 Clustering by Codebook Construction

Clustering is central to analysis of information in our system. The
input to the clustering algorithm are 2D trajectories extracted from
video sequences. A trajectoryΠ is represented by a sequence of
points in two dimensions.

Π = 〈p1, p2, . . . , pk〉 (1)

Figure 1: System Overview

The clustering algorithm constructs a codebook using a technique
that is tantamount to performing vector quantization [6] in a vector
space consisting of trajectories. It should be noted that the trajecto-
ries or vectors in this cluster space can be of unequal length. Labels
or codes are accorded to clusters which in turn are composed of tra-
jectories spatially proximate to each other. Our method is similar to
what was reported in [10].

The key to any viable clustering algorithm are distance measures.
Given, that the algorithms deal with points and trajectories (con-
nected set of points), we define five specific measures.

Point-trajectory distance: The distance between a pointp and
a trajectoryΠ is given by:

d1(Π, p) = min
1≤i≤k

de(p, pi) (2)

wherede is the point-wise Euclidean distance.
Asymmetric trajectory-trajectory distance: The asymmetric

distance between two trajectoriesΠ1 = 〈p1, p2, . . . , pk1〉 andΠ2 =
〈q1,q2, . . . ,qk2〉 is given by

d2(Π1,Π2) = max
1≤i≤k2

d1(Π1,q j) (3)

Symmetric trajectory-trajectory distance:The symmetric dis-
tance betweenΠ1 andΠ2 is defined as:

d3(Π1,Π2) = max(d2(Π1,Π2),d2(Π2,Π1)) (4)

It should be noted that the metricd3 is also known as the Haus-
dorff distance.

Trajectories are clustered into codebooks. A codebook repre-
sents a group of trajectories that are close to each other by thed3
distance measure. A codebook is represented by

Ω = 〈c1,c2, . . . ,cn〉 (5)

where each node,ci is a5-tuple defined by:

ci = 〈pi , p̂i , fi , r i , l i〉 (6)

where, in turn,pi is the position of a node,̂pi is the normal unit
vector at the node,fi is the frequency with which the node has
been updated, andr i andl i represent the the rightmost and leftmost
points that have updated the node. A codebook can also be viewed
as another 5-tuple, hence the notation

Ω = 〈Ωc,Ω̂,F,Ωr ,Ωl 〉 (7)

where Ωc = 〈p1, p2, . . . , pn〉, Ω̂ = 〈p̂1, p̂2, . . . , p̂n〉,
F = 〈 f1, f2, . . . , fn〉, Ωr = 〈r1, r2, . . . , rn〉 andΩl = 〈l1, l2, . . . , ln〉,

Trajectory-codebook distance:The distance between a trajec-
tory Π and a codebookΩ is defined as

d4(Π,Ω) = min(d3(Π,Ωl),d3(Π,Ωr)) (8)

Figure 2: The five distance measures

This distance measure is used to check whether a trajectory falls
within the cluster defined by a codebook.

Codebook-codebook distance:The distance between two code-
booksΩ1 andΩ2 is defined as

d5(Ω1,Ω2) = min(d4(Ω1l ,Ω2),d4(Ω1r ,Ω2)) (9)

The distance measured5 is used to decide whether two code-
books should be merged.The five distance metrics are illustrated in
Fig. 2.

With these distances defined, we can now describe the algorithm
for construction of codebooks. Algorithm 1 details the steps for the
construction. In each iteration a new trajectory is used to either up-
date the existing set of codebooks (C) or create a new codebook.C
is initialized to the empty set (line 1). Thereafter the new trajectory
is compared with all the codebooks inC and the closest matching
codebook is found (lines 3-4).If the distance to the closest codebook
is greater than a distance thresholddmax, or if the codebook set is
empty, then a new codebook is added toC. The new codebook is
initialized using the nodes of the trajectory (lines 6-11).

If the trajectory matches a codebook with a distance less that
dmax then that codebook is updated using the nodes of the trajec-
tory (lines 13-33). In the update process, each node of the trajec-
tory is considered and thed1 distance measure is used to find the
closest matching node in the codebook. The matching codebook
node is then moved towards the trajectory node, along the normal
direction at the node, by a distance proportional to the weight of the
codebook.

The clustering algorithm requires the computation ofΩ̂ which
is the ordered set of normals for each node of the codebook. To
computeΩ̂, a cubic spline [5] is fit through the set of points inΩc
and the normals at the nodes of the codebook are computed.

Once the codebooks are constructed, they undergo a second stage
of clustering. A hierarchical clustering algorithm, explained in Al-
gorithm 2, is used to merge similar codebooks in order to create
a better clustering. The merge operation used in lines 8 and 10 is
similar to the updating operation performed in Algorithm 1 lines
13-33. The codebook with the higher frequency is chosen as the
reference. The lower frequency codebook is used to update it. Each
node of the lower frequency codebook is iterated through and the
node in the reference codebook that is closest to it is updated, just
as in Algorithm 1 (lines 17-33).

Through this process of clustering the given set of trajectories,
we have quantized the trajectory space and hence the physical do-

Algorithm 1 Construct codebook setC given trajectory setT

Require: T = {Π1,Π2, . . . ,ΠN}
1: C← φ
2: for i = 1 to N do
3: d∗←min{d4(Πi ,Ω) : Ω ∈C}
4: Let Ω∗ be the codebook such thatd∗ = d4(Πi ,Ω∗)
5: if d∗ > dmax or C = φ then
6: /* Create a new codebook */
7: Ωc ←Πi , Ωl ←Πi , Ωr ←Πi
8: ComputeΩ̂ from Ωc
9: F ← 〈1,1, . . . ,1︸ ︷︷ ︸

n−times

〉 wheren = |Πi |

10: Ωnew← 〈Ωc,Ω̂,F,Ωr ,Ωl 〉
11: C←C∪Ωnew
12: else
13: /* Update the codebookΩ∗*/
14: Let Πi = 〈q1,q2, . . . ,qM〉
15: Let Ω∗

c = 〈p1, p2, . . . , pK〉
16: for j = 1 to M do
17: Let k∗ be the index such thatde(pk∗ ,q j) = d1(Ω∗

c,q j)
18: /* Project q j onto the normal atpk∗ and updatepk∗ */
19: q′j ← (q j − pk∗).p̂k∗ + pk∗

20: pk∗ ← f j∗ p j∗+q′i
f j∗+1

21: /* Updatelk∗ andrk∗ usingq′j */
22: if de(q′j , r j∗) < de(q′j , l j∗) then
23: if ‖pk∗ −q′j‖+‖q′j − rk∗‖ ≥ ‖pk∗ − rk∗‖ then
24: rk∗ ← q′j
25: end if
26: else
27: if ‖pk∗ −q′j‖+‖q′j − lk∗‖ ≥ ‖pk∗ − lk∗‖ then
28: lk∗ ← q′j
29: end if
30: end if
31: f j∗ ← f j∗ +1
32: end for
33: RecomputêΩ∗ from Ω∗

c
34: end if
35: end for

Algorithm 2 Hierarchically cluster the codebook setC

Require: C = {Ω1,Ω2, . . . ,ΩL}
1: updated← true
2: while updateddo
3: updated← f alse
4: d∗←min{d5(Ωi ,Ω j) : Ωi ,Ω j ∈C}
5: Let Ωi∗ ,Ω j∗ be the codebooks such thatd∗ = d5(Ωi∗ ,Ω j∗)
6: if d∗ < dmax then
7: if sum(Fi∗) < sum(Fj∗) then
8: Ωnew←merge(Ωi∗ ,Ω j∗)
9: else

10: Ωnew←merge(Ω j∗ ,Ωi∗)
11: end if
12: C← (C−{Ωi∗ ,Ω j∗})∪Ωnew
13: updated← true
14: end if
15: end while

main under scrutiny into a set of sub-regions or codebooks. The
codebooks provide a model of the trajectories which are used for
prediction/anomaly detection and construction of a transition graph,
as described in the subsequent sections.

4.2 Prediction and Anomaly Detection

If the frequencies of the codebooks are normalized, i.e., if we divide
the frequency of each codebook by the sum of frequencies of all
codebooks, then the codebook set approximates the density of the
distribution of trajectories. The codebooks can then be used for
anomaly detection as well as prediction. To detect an anomaly we
simply check if the closest codebook is greater or lesser thandmax,
which the distance threshold used in Algorithm 1

ANOMALY DETECTION:
1: d∗←min{d4(Π,Ω) : Ω ∈C}
2: if d∗ > dmax then
3: Π is anomalous
4: else
5: Π is normal
6: end if

whereC is the codebook set.
Similarly, to predict the course of a trajectory as it evolves we

check at each step the closest codebook that it matches.
PREDICTION:

1: Let Ω∗ be the codebook such thatd∗ = d4(Π,Ω∗)
2: Ω∗ defines the the bounds for the predicted trajectory.

4.3 Transition Graph

Algorithm 3 describes the steps to create a transition graphΨ from
the set of codebooksC. The algorithm works as follows. The
codebook frequencies are accumulated into2D spatial bins (lines
4-11). A threshold (specified by the user through the Analysis-
Visualization loop) is used to prune bins with low frequency. A
node in the graph corresponds to a2D bin. An edge is added be-
tween two nodes when a codebook passes through the two corre-
sponding bins (lines 15-30). A node is assigned the frequency of its
corresponding bin.

The transition graph provides an understanding of the pedestrian
traffic through a sequence of transitions. The nodes represent the
points of transition. The edges represent the movement from one
node to another. The edges incident on a node indicate directions
of pedestrian movement from that location.

5 ANALYSIS -V ISUALIZATION L OOP

The Analysis-Visualization loop, realised through a graphical user
interface, provides the operator with mechanism to interact with the
processing modules. The GUI is shown in Fig. 3. The interaction
with each of the modules is described below.

1. Codebook GenerationThe quality of the clusters generated
depend upon the parameterdmax which is the distance thresh-
old in the codebook construction algorithm. A good cluster-
ing is characterized by the well-separatedness of codebooks,
which can be checked by visual inspection. The GUI allows
the operator to specify this parameter and visualize the clus-
tering. The codebooks can then be filtered based on their fre-
quency. By setting a threshold, the operator can specify what
percentage, by frequency, of the codebooks are displayed.

2. Prediction and Anomaly detectionThe operator is allowed
to load existing trajectory data or synthesize a trajectory by
drawing it on the screen . When the operator draws the tra-
jectory, the system displays the best matching codebook and

updates the display at every step of user input. By construct-
ing a synthetic trajectory, the operator can gain an insight into
the trajectories that are flagged as anomalies by the system.

3. Transition Graph construction The construction of the tran-
sition graph requires binning of the 2D space. The operator
can specify the number of bins for the two dimensions. A
threshold value can also be specified which filters the bins
prior to the construction of the graph. Bins with a normalized
frequency above the threshold are considered when construct-
ing the graph. Both the bins sizes and the threshold control
the resolution of the graph, and thereby the information that
can be gained from it. By specifying small bin sizes and a low
threshold, the algorithm produces a graph with edges of short
length, describing pedestrian traffic with high specificity. To
get a less granular view of the traffic, higher values for bin
sizes and threshold can be set.

Algorithm 3 ConstructΨ from C

Require: C = {Ω1,Ω2, . . . ,ΩL}
1: /*nx andny are the number of bins in thex andy dimensions.

w andh are the width and height of the view of the scene*/
2: declareW[1..nx][1..ny] /*W is array of bins in the 2D space.*/
3: initialize W[i][j]← 0 for 1≤ i ≤ nx,1≤ j ≤ ny
4: for i = 1 to L do
5: Let Ωi = 〈c1,c2, . . . ,cK〉
6: for j = 1 to K do
7: Let c j = 〈p j , p̂ j , f j , r j , l j 〉
8: row←

⌈
nx

px
j

w

⌉
; col←

⌈
ny

py
j

h

⌉

9: W[row][col]←W[row][col]+ f j
10: end for
11: end for
12: W← W

sum(W) /* NormalizeW*/

13: declareG← φ
14: /*G is adjacency list of the transition graph*/
15: for i = 1 to L do
16: Let Ωi = 〈c1,c2, . . . ,cK〉
17: for j = 1 to K do
18: Let c j = 〈p j , p̂ j , f j , r j , l j 〉
19: row←

⌈
nx

px
j

w

⌉
; col←

⌈
ny

py
j

h

⌉

20: if j = 1 then
21: nodeprev = (row,col)
22: else
23: if W[row][col] > t then
24: nodecur ← (row,col)
25: G←G∪ (nodeprev,nodecur)
26: nodeprev← nodecur
27: end if
28: end if
29: end for
30: end for

6 EXPERIMENTS

We describe a setup to show how the system can be operated in
order to gain an understanding of pedestrian traffic by analysing
trajectory data. The analysis-visualization loop is carried out by the
operator, with the GUI providing the interface between the operator
and the processing units.

The data used for this experiment is from a security camera video
mounted on a university building. The video is 10 minutes in length

and is captured at a 320x240 resolution. The preprocessing step
involves the extraction of pedestrian trajectories, which was done
using a mean shift tracker [3], followed by manual correction of the
tracks. The extracted trajectories are shown in Fig. 4.

Figure 4: Pedestrian trajectories extracted from surveillance video

The operator first clusters the trajectories using the codebook
construction algorithm. The algorithm requires the specification of
the distance thresholddmax, which controls the quality of cluster-
ing. The operator can arrive at a good clustering (characterized by
well separated clusters) by visualizing the codebooks generated for
different values ofdmax. In the experiment, codebooks were gener-
ated with values ofdmax in the range 15 to 30 in steps of 1. Code-
books generated with values 15, 25 and 30 are shown in Fig. 5. We
see thatdmax= 15generates clusters that are cluttered. By filtering
through the codebooks generated withdmax= 30, we find that the
codebooks begin to get distorted, as seen in Fig. 5(d). This is be-
cause with a high threshold, trajectories with different orientations
update the same codebook, resulting in a codebook with distortions.
Codebooks generated withdmax = 25 give a well separated set of
trajectory clusters.

Once the codebooks are generated, the operator can construct
a transition graph to visualize pedestrian traffic in the scene. The
transition graph shows how pedestrians transit across the environ-
ment, as described previously. Construction of the graph also re-
quires the specification of some parameters. The operator can ad-
just the bin size and the weight threshold until the graph provides
an uncluttered view of pedestrian transitions. By setting a higher
threshold on the frequency of the bins, the operator can view the
entry -exit pairs, since most or all of the intermediate nodes fall
below the threshold. The entry-exit pairs are the pairs of locations
where the pedestrians make an entry into, or exit from, the scene.

In the experiment, we specify the number of bins along the rows
and the columns to be 20, and the threshold for the bin weights to
be 0. The graph generated is seen in Fig.6(a). The size of the nodes
are proportional to the weight of the bins they correspond to. The
graph in Fig.6(a) provides a high resolution view of the pedestrian
traffic. In order to see the entry-exit pairs, we set a higher threshold.
Fig.6(b) shows the entry-exit pairs in the scene.

Finally, the operator the prediction and anomaly detection mech-
anism to analyse the motion of a single pedestrian. A stored pedes-
trian trajectory can be loaded and checked for the existence of an
anomaly. Alternatively, a trajectory can be synthesized by the op-
erator by drawing on the screen, and the prediction mechanism can

Figure 3: Graphical User Interface

be used to view the probable trajectories.
To experiment with this mode, we first load two sample trajec-

tories from a database into the anomaly detection module. The tra-
jectory in Fig.7(a) is a normal trajectory, which the detection mech-
anism recognizes. The closest matching codebook gets displayed.
Fig.7(b) shows an anomalous trajectory which gets highlighted in
red.

We now synthesize a trajectory by drawing it on the screen. Fig
8 shows the successive stages of the prediction. In Fig. 8(a)-(c)
the trajectory matches existing codebooks, and the bounds of the
codebook provide a prediction of the trajectory. In Fig. 8(d), the
trajectory has gone ”out of course”, and does not match any of the
codebooks, and hence gets tagged as anomalous.

Through these experiments we see that by providing an inter-
active GUI, the operator can work with the processing modules to
visualize the behaviour of pedestrians in the scene, as evinced by
their trajectories.

7 CONCLUSIONS AND FUTURE WORK

We presented a system to analyse pedestrian behaviour suited for
a surveillance environment. The system processes pedestrian tra-
jectory data and generates a clustering by constructing codebooks.
The codebooks are used to predict trajectories and generate a graph
that depicts pedestrian movement. The codebooks themselves can
be displayed to provide a summary of the pedestrian traffic. By sim-
ulating a trajectory through the scene, the operator can understand
pedestrian behaviour in the scene through the predicted codebooks
that are displayed at each stage of the input. Anomalous trajectories
can also be identified in a similar way.

The system provides a method to analyze pedestrian trajectories,
which is one of the many inputs to a surveillance system. In order
to better serve surveillance needs, a system that integrates further

information, such as time of day, pedestrian pose, etc. would fa-
cilitate a more robust analysis framework. Nevetheless, the visual
analysis framework presented in this paper can provide a basis for
the design of such systems.

8 ACKNOWLEDGEMENTS

We thank Dr. J. W. Davis, Mr. P. Maughan and Dr. D. Woods
for their valuable comments on the initial ideas.This research was
supported in part by the National Science Foundation under grant
IIS-042824.

REFERENCES

[1] J. Alon, S. Sclaro, G. Kollios, and V. Pavlovic. Discovering clusters
in motion time-series data. InIEEE Computer Vision and Pattern
Recognition Conference (CVPR), 2003.

[2] Robert Collins, Alan Lipton, Takeo Kanade, Hironobu Fujiyoshi,
David Duggins, Yanghai Tsin, David Tolliver, Nobuyoshi Enomoto,
and Osamu Hasegawa. A system for video surveillance and mon-
itoring. Technical Report CMU-RI-TR-00-12, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, May 2000.

[3] Dorin Comaniciu and Peter Meer. Mean shift analysis and applica-
tions. In ICCV ’99: Proceedings of the International Conference on
Computer Vision-Volume 2, page 1197, Washington, DC, USA, 1999.
IEEE Computer Society.

[4] I. Davidson and M. Ward. A particle visualization framework for clus-
tering and anomaly detection. InProc. KDD Workshop on Visual Data
Mining, Sept. 2001.

[5] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes.Computer graphics (2nd ed. in C): principles and practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996.

(a) (b)

(c) (d)

Figure 5: Codebooks generated with (a) dmax = 15 (b) dmax = 25 (c) dmax = 30 (d)Distortions produced with dmax = 30

(a) (b)

Figure 6: Transition graphs generated with bin size 20x20 and applying threshold= (a)0 (b)0.03

(a) (b)

Figure 7: Anomaly detection module: (a) A normal trajectory. The closest codebook is displayed (b) Anomalous trajectory

(a) (b)

(c) (d)

Figure 8: (a) Start drawing (b),(c) Updated prediction (d)Anomaly identified

[6] R. Gray. Vector quantization. InIEEE Signal Processing Magazine,
pages 4– 29. IEEE Computer Society, 1984.

[7] Ismail Haritaoglu, David Harwood, and Larry S. Davis. W4: Real-
time surveillance of people and their activities.IEEE Trans. Pattern
Anal. Mach. Intell., 22(8):809–830, 2000.

[8] Alfred Inselberg and Tova Avidan. Classification and visualization for
high-dimensional data. InKDD ’00: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 370–374, New York, NY, USA, 2000. ACM Press.

[9] D.B. Koch. 3d visualization to support airport security operations. In
Aerospace and Electronic Systems Magazine, IEEE, volume 19, pages
23–28, June 2004.

[10] D. Makris and T. Ellis. Finding paths in video sequences. InBritish
Machine Vision Conference 2001, Manchester, UK, 2001.

[11] C. Piciarelli, G.L. Foresti, and L. Snidaro. Trajectory clustering and its
applications for video surveillance. InIEEE Conference on Advanced
Video and Signal Based Surveillance, pages 40–45, 2005.

[12] Jinwook Seo and Ben Shneiderman. Interactively exploring hierarchi-
cal clustering results. volume 35, pages 80–86, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[13] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using pat-
terns of motion and appearance. InMitsubishi Electric Research Lab
Technical Report. TR-2003-90 (2003), 2003.

[14] T. Zhao and R. Nevatia. 3d tracking of human locomotion: a track-
ing as recognition approach. InInternational Conference on Pattern
Recognition, pages I: 546–551, 2002.

