
Group-based Coordinated Checkpointing for MPI: A Case Study on InfiniBand

Qi Gao Wei Huang Matthew Koop Dhabaleswar K. Panda

Technical Report
OSU-CISRC-1/07-TR07

1



Group-based Coordinated Checkpointing for MPI: A Case Study on InfiniBand ∗

Qi Gao Wei Huang Matthew Koop Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{gaoq, huanwei, koop, panda}@cse.ohio-state.edu

Abstract
With the rapid development in High End Computing

(HEC) systems, more and more computer clusters with
thousands nodes are being deployed. Fault tolerance in
cluster environments has become a critical requirement to
guarantee the completion of application execution. Check-
pointing and rollback recovery is a common approach to
achieve fault tolerance. Although widely used in practice,
coordinated checkpointing has known limitation on scala-
bility especially when a central storage system is used to
store checkpoint files. In this paper, we propose a new de-
sign of group-based checkpointing to alleviate the scala-
bility limitation of coordinated checkpointing. By carefully
scheduling the MPI processes to take checkpoints in smaller
groups, group-based checkpointing reduces the effect of the
storage bottleneck and allows the rest of processes to make
progress while one group of processes are taking check-
points. Detailed evaluations are conducted through micro-
benchmarks and High Performance Linpack (HPL). The ex-
perimental results show that the group-based checkpoint-
ing can reduce the effective delay for checkpointing signifi-
cantly, up to 78% for HPL on 32 nodes.

1 Introduction
With the rapid development in High End Computing

(HEC) systems, more and more computer clusters with
thousands nodes are being deployed. The failure rates of
those systems, however, also increases along with their
size and complexity. As a result, the running times of
many scientific applications are becoming longer than the

∗This research is supported in part by DOE grants #DE-FC02-
06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-0403342 and
#CNS-0509452; grants from Intel, Mellanox, Cisco systems, Linux Net-
worx and Sun Microsystems; and equipment donations from Intel, Mel-
lanox, AMD, Apple, Appro, Dell, Microway, PathScale, IBM, SilverStorm
and Sun Microsystems.

mean-time-between-failure (MTBF) of the cluster systems.
Therefore, fault tolerance in cluster environments has be-
come a critical requirement to guarantee the completion
of application execution. A commonly used approach to
achieve fault tolerance is checkpointing and rollback recov-
ery, where the intermediate states of running parallel appli-
cations can be saved and used for restart upon failures.

The Message Passing Interface (MPI) [21] is the de facto
programming model on which parallel applications are typ-
ically written. However, since the MPI has no specifica-
tion regarding fault tolerance, critical MPI applications have
to rely on their own checkpointing mechanism, which in-
creases the design time for new applications and potentially
leads to rewriting code of legacy applications. In addition,
it is difficult for application designers to predict the failure
rates of different systems on which the application will run
and adjust the checkpointing algorithm accordingly. There-
fore, providing checkpointing support in the MPI library is
desirable in many cases to achieve application transparency.

There are two main categories of checkpointing proto-
cols: coordinated checkpointing and uncoordinated check-
pointing, which use different approaches to guarantee
global consistency. Uncoordinated checkpointing allows
processes to save their states independently of each other,
but requires message logging to maintain consistency and
avoid cascading rollback propagation, a.k.a. domino ef-
fect [23]. Since there is a clear trend for large clusters to be
equipped with high performance networks, such as Infini-
Band [18], the overhead of message logging would be pro-
hibitive considering the very high bandwidth and message
rate the networks can provide. Coordinated checkpointing
guarantees the consistency by global coordination, and usu-
ally requires all processes to save their states at relatively the
same time. Therefore, it has inherent limitations on scala-
bility. In a real-world scenario, checkpoint files are usually
stored on a reliable central storage system, which tends to
be a bottleneck for checkpointing of large parallel jobs with

2



many processes.
In this paper, we propose group-based checkpointing as

an extension to the coordinated checkpointing protocol to
alleviate the scalability limitation caused by the storage
bottleneck. The key idea of group-based checkpointing
is that when taking a consistent global checkpoint, all the
processes are carefully scheduled to take individual check-
points so that they do not access the stable storage at same
time. By checkpointing a smaller group of processes at
one time, the processes in the checkpointing group can ob-
tain a larger share of the bandwidth to storage and thus re-
duce their checkpointing delay greatly. While at the same
time, the design allows processes in other groups to proceed
with their execution as much as possible, and only commu-
nications which can introduce inconsistency of the global
checkpoint is deferred. On one hand, this design limits the
number of processes concurrently accessing central storage
to reduce the checkpoint delay for large MPI jobs, on the
other hand it avoids the message logging overhead to pro-
vide a very low overhead in failure free case.

We have implemented our design of group-based check-
pointing on MVAPICH2 [20, 22], a high performance MPI
implementation over InfiniBand, and evaluated our design
on an InfiniBand cluster. The experimental results indicate
that our new design reduces the effective delay for check-
pointing significantly, up to 78% for HPL benchmark on
32 nodes. Though our current implementation is based on
InfiniBand and MVAPICH2, the design can be readily ap-
plicable to other coordination checkpointing protocols for
other MPI implementations.

The rest of the paper is organized as follows: In Section 2
we briefly discuss the background. In Section 3 we present
the design of group-based checkpointing and discuss some
key design issues. In Section 4, we describe the metrics of
checkpoint delay and the evaluation results. In Section 5,
we discuss related works. Finally, we conclude this paper
and briefly mention future directions in Section 6.

2 Background
2.1 Checkpointing Technologies

Checkpointing and rollback recovery is a commonly
used approach for failure recovery. By periodically saving
the running state of applications, the checkpointing system
allows applications to restart from a time point in the middle
of their executions upon failure instead of from the begin-
ning. A detailed survey on rollback recovery techniques can
be found in [13].

As discussed in Section 1, uncoordinated checkpointing
has larger overhead in failure free cases because of message
logging, but coordinated checkpointing has scalability lim-
itation largely due to the storage bottleneck.

Several technologies are available to make use of local
disk or spare memory on peer nodes as temporary buffer to

hold checkpoint files. However, there are three facts making
these approaches less practical: a) Scientific applications
tend to use as much memory as possible for computation,
which makes the node memory to be a scarce resource and
not able to be used to store checkpoints. b) The local disk
may not be available on the computing nodes in new large
clusters, e.g. the compute nodes in the Peloton clusters in
LLNL, are diskless [19]. c) Buffering the checkpoint files in
local disk may undermine the ability to recover from failure,
because if the node crashes before the checkpoint files are
completely transferred to reliable storage, the checkpoint
files may be lost.

Note that in this paper we refer the blocking design of
coordinated checkpointing protocol as ‘coordinated check-
pointing’, which does not require any message logging. Al-
though the non-blocking design of Chandy-Lamport coordi-
nated checkpointing protocol [10] allows processes to make
progress when other processes are taking checkpoints, it
does not explicitly schedule them globally. Therefore, in
an MPI application, all the processes are still likely to take
checkpoints at the same time and hit the storage bottleneck.
In addition, the non-blocking protocol also requires logging
some messages in the channels during checkpointing. The
message logging overhead for this protocol on high speed
interconnect is reported in [11].

2.2 Checkpointing on OS-bypass Networks
In recent years, high speed networks have been deployed

on clusters to improve the overall performance. These in-
terconnects usually use intelligent network interface cards
(NIC) and provide user-level protocols to allow OS-bypass
communications for low latency and high bandwidth. How-
ever, as compared to Ethernet, these high performance in-
terconnects introduce additional challenges for system-level
checkpointing. These challenges are discussed in our previ-
ous work [15]. Essentially, since communication context is
cached on NIC and also memory mapped in process address
space for user-level access, network connections are usually
required to be explicitly torn down before the checkpoint
and reconnected afterwards.

InfiniBand [18] is a typical and widely used high per-
formance interconnects, which uses connection-oriented
model for best performance and advanced features, such as
Remote Direct Memory Access (RDMA). And most MPI
implementations on InfiniBand use connection-oriented
model as default. To establish connections on InfiniBand,
however, two peers have to exchange connection parame-
ters using other communication channels. As a result, the
cost for connection management are much higher as com-
pared to using the TCP/IP protocol. And, even for a local
checkpoint on one node to take place, all the remote pro-
cesses it connects to need to participate in the costly pro-
cedure for connection tear-down and rebuild. This require-

3



ment makes the checkpointing protocols like uncoordinated
checkpointing and non-blocking coordinated checkpointing
much more expensive to use on InfiniBand.

3 Group-based Coordinated Checkpointing
3.1 Motivation

In coordinated checkpointing, the overall checkpointing
delay consists of two parts, coordination delay and storage
accessing delay. With the order-of-magnitude improvement
in network speed but limited improvement in disk speed in
recent years, the current dominating delay for checkpoint-
ing is the storage accessing delay [13]. For large-scale par-
allel applications, the central storage system is likely to be
a bottleneck of checkpointing. Usually the throughput of
a storage system is limited, and thus the more number of
processes accessing the storage concurrently, the less band-
width each process obtains.

Figure 1. Bandwidth per Clients for Storage with Dif-
ferent Number of Clients

Figure 1 demonstrates that using 4 PVFS2 servers with a
total of about 140MB/s throughput as the storage, the band-
width each clients obtains decreases significantly when the
number of clients increases. The case where 32 clients
shares 140MB/s reflects a typical ratio of the number of
CPUs to storage bandwidth in real cluster deployment. e.g.
1024-node cluster of Peloton clusters in LLNL has 8192
CPUs and the storage throughput is 25.6 GB/s [19]. From
the experiment, we can see that it is desirable to have a co-
ordination protocol to limit the number of processes taking
checkpoints at the same time.

In addition, previous studies [25] indicate that in many
parallel applications each process only communicates to a
limited number of peer processes. Therefore the MPI pro-
cesses can potentially make reasonable progress while some
other MPI processes in the MPI job take their checkpoints.

Based on these observations, we design group-based
checkpointing to explore the potential opportunities to re-
duce the checkpointing delay for large MPI jobs.

3.2 The Proposed Design
The main goal of group-based coordinated checkpoint-

ing is that when checkpointing a large MPI job with many

processes, all the MPI processes should be carefully sched-
uled to take individual checkpoints at slightly different time
to avoid the storage bottleneck, and meanwhile the global
consistency should be maintained by a coordination proto-
col without message logging to avoid extra overhead.

Figure 2. Regular Coordinated Checkpointing V.S.
Group-based Coordinated Checkpointing

As illustrated in Figure 2, in our design, instead of all
processes trying to take checkpoints at the same time and
suffering a large checkpointing delay, processes are into
smaller groups and scheduled to take their own checkpoints
group by group to form a consistent global checkpoint.
Therefore, each processes in the checkpointing group can
obtain a much larger bandwidth to the storage system and
thus reduce their checkpointing delay greatly.

The group-based design of coordinated checkpointing
certainly involves more coordination overhead. However,
even on Gigabit Ethernet, the coordination delay is very
small as compared to storage accessing delay, and it can be
further reduced in the order of magnitude by utilizing high
speed networks. Therefore, when considering the trade-offs
between coordination overhead and storage accessing over-
head of checkpointing in HPC environment, it is preferable
to optimize the storage accessing delay at the cost of in-
creasing the coordination overhead to a certain extent.

Group-based coordinated checkpointing involves two
levels of coordination protocols. The inter-group coordina-
tion protocol is used to schedule the progress groups to take
checkpoints in turn and guarantee the consistency among
different groups, and the intra-group coordination protocol
is used to guarantee the consistency among processes within
a group. For intra-group coordination, any existing coor-
dinated checkpointing protocol can be applied. For inter-
group coordination, to guarantee the consistency, the proto-
col needs to ensure that the groups which have already taken

4



P4
P5

P2
P3

P0
P1 A A'

B B'

Figure 3. Consistency in Inter-group Communication
during Checkpointing

the checkpoint do not communicate with the groups which
have not yet taken the checkpoint.

As shown in Figure 3, checkpoints in three groups form
a recovery line. Within a group no message passing can
cause inconsistency, but between different groups, message
passing across the recovery line can potentially lead to an
inconsistent state. For example, at restart time, message A

will become a lost message, and message B will become
an orphan message. Therefore, message A and B need to
be deferred to A

′ and B
′ respectively so that no message

is passed across the recovery line. Under this condition, a
consistent recovery line is formed without logging any mes-
sage, and later each process can restart from its own check-
point with a consistent view of a global state.

Another alternative to handle messages crossing the re-
covery line is to log these messages and resolve the poten-
tial inconsistency at restart time. However, there are per-
formance trade-offs involved for that approach especially
on high speed networks. To enable message logging, zero-
copy rendezvous protocols, which are commonly used in
high speed networks to improve performance, can not be
used, which will affect the performance in failure-free cases
negatively. Therefore, in our current design, we choose to
defer the message passing across the recovery line to re-
solve inconsistency.

An important issue in group-based checkpointing is how
to form checkpoint groups. To achieve maximum bene-
fits, checkpoint groups should be formed matching with the
communication pattern of the application so that most fre-
quent communication happens within groups. In addition,
the size of the group also plays an important role in check-
pointing delay since it is related to not only the communi-
cation pattern but also the efficiency for accessing storage.
We will discuss these issues in more detail in Section 4.

3.3 Detailed Design Issues
We have implemented our design of group-based check-

pointing on MVAPICH2 [20], a high performance MPI-2
implementation over InfiniBand based on MPICH2 [2].

Several key design issues are discussed here and our so-
lutions based on MVAPICH2 are also described. However,

these issues can be addressed similarly on different MPI im-
plementations.

3.3.1 Coordination Framework
Our coordination framework to support group-based check-
pointing is based on our previous work [15], in which a
framework has been designed to coordinate all MPI pro-
cesses to take global consistent checkpoints concurrently,
upon user’s request or periodically with a certain time inter-
val. In this design, we extend the functionality of some key
components of the framework including the central Check-
point/Restart (C/R) coordinator in the MPI job console, and
the local C/R controller in individual MPI processes. The
central C/R coordinator is redesigned to manage group in-
formation, including the members’ ranks and the check-
pointing states of group, so that it keeps track of which
groups have taken the checkpoint already and which have
not. And one more state called ‘passive coordination’ is
added in the state machine maintained by the local C/R con-
troller. This state indicates that another group of processes
are taking the checkpoints, and the process may be required
to perform necessary coordination, such as connection tear-
down or rebuild.

Our current coordination framework utilizes both the
off-band channel and the in-band channel. The off-band
channel is based on our extended version of the Multi Pur-
pose Daemon (MPD) [9], the default process manager for
MPICH2 and MVAPICH2. Since this is the only chan-
nel available between the MPI job console and individual
MPI processes, the off-band channel is used for propagating
checkpoint requests and group states, as well as scheduling
process groups to take checkpoints in turn. The in-band
channel is mainly used for connection management, which
is discussed next.

3.3.2 Connection Management
As mentioned in Section 2, connection management for In-
finiBand is more complex and more costly. In the regular
coordinated checkpointing case, since all processes partici-
pate in checkpointing at the same time, they can tear-down
and rebuild connections collectively. In group-based check-
pointing, however, the connections between processes must
be controlled dynamically on a per connection base, so that:
a) Each MPI process can disconnect/reconnect to only a
specific subset of processes. b) Any side can initiate a con-
nect/disconnect procedure without the active participation
from remote side.

We have designed a connection manager for group-based
checkpointing using Unreliable Datagram (UD) provided
by InfiniBand. The UD-based connection manager has
better performance and scalability as compared to connec-
tion manager using TCP/IP, which makes it more suitable
for checkpointing since connection establishment and tear-
down happens much more frequently here.

5



(Passive)
Process B,

(Active)
Process A,

Ckeckpoint

disconnect_request

disconnect_reply

reconnect_request

reconnect_reply

buffered messages

remote update messages

Message
(buffered)

Message
(buffered)

Message
(buffered)

Control message
through RC

Control message
through UD

Data message
through RC

Figure 4. Connection Management in Group-based
Checkpointing

The working scenario of the connection management is
illustrated in Figure 4. Suppose process A is about to take a
checkpoint and process B is not in the checkpointing group.
The process A will serve as the active side of the protocol
to first disconnect from process B before the checkpoint,
and reconnect to process B as needed after the checkpoint.
The detailed discussion on the channel consistency between
MPI processes during checkpointing can be found in our
previous paper [15].

3.3.3 Message Buffering and Request Buffering
To defer passing the messages across the recovery line, two
buffering techniques, message buffering and request buffer-
ing, are used under different circumstances.

Message buffering is to temporarily hold the messages
which are to be sent across the recovery line. It is used only
for the small messages which have already been copied into
communication buffers but have not been posted to the net-
work. These messages are buffered in message queues ac-
cording to their destinations, and will be sent in the original
order when the communication to the destination is allowed.

However, buffering all the message content is very ex-
pensive. Therefore, in our design, the request buffering
is used in all possible cases, i.e. for large messages and
the small messages which have not yet been copied to a
communication buffer. In most MPI implementation, there
are internal data structures to carry the communication re-
quests from user applications to the bottom layer (network
driver). Request buffering is to keep the communication re-
quests in ‘incomplete’ state and buffer them in queues so
that they can be processed by bottom layer later. But for
zero-copy rendezvous protocol, since we allow the check-
point can happen in middle of the protocol, the progress
information is also kept with the request.

3.3.4 Asynchronous Progress
Asynchronous progress is very important for inter-group
coordination. Unlike the processes in the checkpointing
group, which are focusing on coordination and checkpoint-

ing, processes in other groups are potentially busy with
computation. If they do not make progress in inter-group
coordination a timely manner, the checkpointing processes
will suffer a large coordination delay.

Therefore, when a process is entered the passive coordi-
nation state, meaning that another group is taking the check-
point, it will temporarily activate a helper thread which will
call progress engine to make progress if the progress engine
has not been called for a certain amount of time. The helper
thread has negligible overhead but can guarantee the timely
progress of inter-group coordination.

4 Performance Evaluation
In this section, we analyze the benefits of group-based

checkpointing in terms of reduction in checkpoint delay.
First, we introduce the metrics and characterize two impor-
tant parameters which can affect the performance impact
for checkpointing to MPI applications. Then, we analyze
the effects of these parameters using micro-benchmarks. At
last, we describe the experimental results from High Perfor-
mance Linpack (HPL) [3] benchmark.

4.1 Experimental Platform
We implemented group-based checkpointing based on

MVAPICH2-0.9.8. The experiments are conducted on an
InfiniBand cluster of 36 nodes, with 32 compute nodes
and 4 storage nodes. Each compute node is equipped with
dual Intel 64-bit Xeon 3.6GHz CPUs, 2GB memory, and
Mellanox MT25208 InfiniBand HCA. Each storage node
is equipped with dual AMD Opteron 2.8 GHz CPUs, 4GB
memory, and Mellanox InfiniBand MT25208 HCA. The op-
erating system used is Redhat AS4 with kernel 2.6.17.7.
The file system used is PVFS2 on top of local SATA disks.
The network protocol used by PVFS2 is TCP on top of IP
over IB (IPoIB). To avoid the contention of file accessing
through the network to get stable performance, we use one
process per node configuration. The base performance of
the file system is shown in Figure 1.

4.2 Performance Metrics
We use three metrics in this paper to measure the perfor-

mance of group-based checkpointing, defined as follows:
• Effective Ckpt Delay: The delay in execution time

caused by taking one checkpoint during the applica-
tion’s execution. It is the most important metric, which
reflects the effective performance impact of a check-
point to the application.

• Individual Ckpt Time: The delay observed by each
individual MPI process when taking a checkpoint,
which reflects the down time of each individual pro-
cess in the middle of execution.

• Total Ckpt Time: The total time from the point when
a checkpoint request is issued to the point when all pro-
cesses have finished taking their checkpoints.

6



For regular coordinated checkpointing, since all the pro-
cesses take their checkpoints at the same time, we have:

Effective Delay = Individual Time = Total Time
However for group-based coordinated checkpointing,

since processes take checkpoints group by group, we have:
Individual Time = Total Time / Number of Groups
Ideally, the effective checkpoint delay should be the indi-

vidual checkpoint time. Due to the synchronization and de-
pendencies, however, MPI processes can not always make
full progress when some process group is taking a check-
point. Therefore, in practice:

Individual Time ≤ Effective Delay ≤ Total Time
Note that in group-based checkpointing the total time

only reflects the worst case application impact.
There are several parameters affecting the effective

checkpoint delay. In the remaining parts of this section, we
focus on two most important parameters: checkpoint group
size and issuance time of the checkpoint request.

4.3 Evaluation with Micro-benchmarks
To evaluate the benefits of group-based checkpointing,

we design a set of micro-benchmarks to simulate commu-
nication patterns of MPI applications. Since we are mainly
concerned with how processes are synchronized with each
other and how they make progress, we use an abstracted
model. As depicted in Figure 5, in our benchmarks, pro-
cesses are organized in smaller groups, and during execu-
tion, processes communicate within group more frequently
and synchronize globally less frequently. Note that differ-
ent frequencies are used in different experiments to mea-
sure different cases, and the checkpoint file size in micro-
benchmarks is configured to be 180MB per process, which
is sufficiently large to show the trend.

Figure 5. Micro-benchmarks

Figure 6. Ideal Case of Group-based Checkpointing

Figure 6 shows the ideal case of group-based check-
pointing where the application is embarrassingly parallel,
such that all processes only compute individually and make
progress by themselves without synchronization. It is clear
that the Effective Delay is almost same as the Individual
Ckpt Time. Since the file accessing time is the dominant
factor here, well above 90%, the Individual Ckpt Time ap-
proximately reduces by half every time when the checkpoint
group size is reduced by half.

Figure 7. Checkpoint Group Size and Effective Delay
Figure 7 shows the impact of different checkpoint group

sizes on the effective checkpoint delay. To highlight the
impact of checkpoint group size, in this experiment, MPI
processes communicate only within a group using block-
ing MPI calls continuously, which effectively synchronizes
them in groups. The communication group size varies
from 16 to 2. From the results, we observe that when
the checkpoint group covers one or more communication
group, the Effective Ckpt Delay is still same as the Indi-
vidual Ckpt Time, but when the checkpoint group size re-
duces to smaller than the communication group size, Effec-
tive Ckpt Delay remains at the same level, or even increases
when the checkpoint group size is very small, such as 2 or
1. This is mainly because that the aggregated bandwidth for
a small number clients is not optimal, and the total storage
accessing time for a communication group increases.

These results indicate that the appropriate checkpoint
group size should be chosen according to the communi-
cation group size to better realize the benefits of group-
based checkpointing, however, noticeable benefits still can
be achieved even with sub-optimal checkpoint group sizes.

The issuance time of checkpoint request, i.e. checkpoint
placement time, is also an important parameter. Although
there are many issues related to checkpoint placement, here
we only focus on its effect on group-based checkpointing.
In this experiment, we set both the checkpoint group size
and the communication group size to be 8, and enforce
a global synchronization using MPI Barrier every minute.
As shown in Figure 8, the Effective Ckpt Delay lies in be-
tween the Individual Ckpt Time and Total Ckpt Time. When
the checkpoint is placed closer to the synchronization line,
the Effective Ckpt Delay is larger, closer to the Total Ckpt

7



Figure 8. Checkpoint Placement and Effective Delay

Time. It is because that in this case, the process groups
which finish their checkpoint earlier can not progress across
the global barrier to the next phase of execution without vi-
olating the semantics of barrier, as illustrated in Figure 9.
However, this negative effect can be avoided if the applica-
tion is designed to be skew-tolerant.

Figure 9. Additional Checkpoint Delay Caused by Syn-
chronization

In Figure 10, the effects of both checkpoint group size
and issuance time of checkpoint are combined. In this ex-
periment, MPI processes communicate in groups of 4 pro-
cesses for every 30 seconds, and synchronize globally for
every 2 minutes. And we take checkpoints using different
checkpoint group sizes for three representative time points:
• A (155 Second): Far from both global synchronization

and far group synchronization.
• B (95 Second): Relatively close to global synchroniza-

tion.
• C (145 Second): Far from global synchronization, but

very close to group synchronization.
We observe that for time point A, significant reductions

are shown in Effective Ckpt Delay for using smaller group
size. For the time point C, the benefits are also very large,
but reducing the checkpoint group size to smaller than com-
munication group size does not result in less delay. And for
the time point B, the overall benefits are only limited by
the global synchronization before the effect of checkpoint
group size is shown.

From the results micro-benchmarks, we can see that both
checkpoint group size and issuance time of the checkpoint

Figure 10. Effective Delay in Combined Cases
request are important parameters, but they affect the Effec-
tive Ckpt Delay in different ways. And in practice, they
should be chosen according to applications communication
characteristics.

4.4 Evaluation using High Performance Linpack

Figure 11. Effective Ckpt Delay for HPL
For most applications, the communication patterns are

not as simple as in the micro-benchmarks described above.
However, communication patterns of many applications can
be characterized similarly. In this section, we describe
the experimental results for High Performance Linpack
(HPL) [3] benchmark, which is to solve a dense linear sys-
tem on distributed-memory computers. The matrix data are
distributed to a two-dimensional grid of processes, and pro-
cesses mostly only communicate in the same row or same
column. In our experiments, we choose a 8 × 4 config-
uration with a larger block size. Thus the communication
group size is effectively 4.

In the experiment, we choose 8 time points evenly dis-
tributed across the execution time, and measure the Effec-
tive Ckpt Delay for different checkpoint group sizes. Fig-
ure 11 shows the detailed experimental results, from which
we observe that in general the Effective Ckpt Delay in the
cases with group size 2, 4, 8, or 16 is noticeably less than
the regular checkpointing case, where the group size is 32,

8



with up to 78% reduction. Average reductions for all time
points with group sizes 2, 4, 8, and 16 are 37%, 46%, 46%,
and 35% respectively. However, with group size 1, the Ef-
fective Ckpt Delay is not reduced much, and in some cases
becomes even more than the regular checkpointing case.
That is expected because the processes are not able to make
progress individually and the full bandwidth provided by
parallel file system is not fully utilized. Note that the de-
lays are different for different time points even in regular
checkpointing case. That is because during the execution,
the total size of temporary buffers is different, and that re-
sults in a relative large variation of checkpoint file size.

Figure 12 shows the average checkpoint delay with re-
spect to different checkpoint group sizes, with a vertical
line indicating the maximum and minimum delay for each
group size. We can clearly see that the checkpoint group
sizes 4 and 8 give best performance. These results match
the configuration, 8 × 4 processes, which we use in HPL
experiments.

Figure 12. Checkpoint Delay with Different Checkpoint
Group Sizes

5 Related Works
Many efforts have been carried out to provide fault tol-

erance to MPI programs. In recent years, the MPICH-V
team [1] has developed and/or evaluated several roll-back
recovery protocols, including both uncoordinated check-
pointing with message-logging protocols, such as V1 [5],
V2 [6], Vcausal [7], and coordinated checkpointing pro-
tocols, such as Vcl [8] based on Chandy-Lamport Algo-
rithm [10], and Pcl [11] based on the blocking coordinated
checkpointing protocol. FT-MPI [14] has extended the MPI
specification to provide support to applications to achieve
fault tolerance on application level. LA-MPI [4] enables
data reliability checking and provides network fault tolerant
by using multiple network devices. LAM/MPI [24] has in-
corporated checkpoint/restart capabilities based on Berke-
ley Lab’s Checkpoint/Restart (BLCR) [12] to checkpoint
MPI program, which also uses the blocking coordinated
checkpointing protocol. Their efforts have been recently
incorporated in OpenMPI project with an extended frame-
work [17]. In our earlier work [15], we have proposed a

framework to checkpoint MPI programs over InfiniBand us-
ing a similar blocking coordinated checkpointing protocol.

In this paper, we extended the blocking coordinated
checkpointing design to take group-based checkpoints,
which reduces the effective checkpoint delay and im-
proves the scalability of checkpointing for MPI. The group-
based checkpointing differs from uncoordinated check-
pointing and non-blocking Chandy-Lamport coordinated
checkpointing in the sense that a consistent global check-
point is formed by the individual checkpoints without
message-logging at any time. This is a very critical fea-
ture for clusters using high performance interconnect such
as InfiniBand, where message logging can potentially im-
pose a large overhead. Observations for the noticeable mes-
sage logging overhead in checkpointing MPI on high speed
network has also been reported recently by in [11].

Another approach to deal with the storage bottleneck
is incremental checkpointing. Recently, a low-overhead,
kernel-level checkpointer called TICK [16] has been de-
signed for parallel computers with incremental checkpoint-
ing support. We believe that group-based checkpointing
mechanism can be combined with incremental checkpoint-
ing techniques to further reduce the checkpointing over-
head.

6 Conclusions and Future Work
In this paper, we have presented a design of group-

based checkpointing as an extension to the coordinated
checkpointing protocol to improve scalability. By care-
fully scheduling the processes in an MPI job to take indi-
vidual checkpoints group by group, the group-based check-
pointing alleviates the storage bottleneck and reduces the
checkpointing delay observed by every process. A proto-
type implementation has been developed based on MVA-
PICH2, and a detailed performance evaluation has been car-
ried out using micro-benchmarks and HPL on an Infini-
Band cluster. The experimental results demonstrate that
group-based checkpointing can reduce the effective delay
for checkpointing significantly, up to 78% for HPL bench-
mark on 32 nodes.

For future research, we plan to study in more depth on
two important factors affecting the checkpoint delay, check-
point group selection and checkpoint placement, on larger
platform. We also plan to study how to combine the in-
cremental checkpointing techniques to further reduce the
checkpoint delay.

Acknowledgements

We would like to express our sincere gratefulness to Dr.
Paul Hargrove from LBNL for helpful advices and discus-
sions about BLCR.

9



References

[1] MPICH-V Project. http://mpich-v.lri.fr.
[2] MPICH2, Argonne. http://www-unix.mcs.anl.gov/mpi/mpich2/.
[3] A. Petitet and R. C. Whaley and J. Dongarra and A. Cleary.

http://www.netlib.org/benchmark/hpl/.
[4] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.

Risinger, and M. W. Sukalski M. A. Taylor, T. S. Woodall. Archi-
tecture of la-mpi, a network-fault-tolerant mpi. In Proceedings of
Int’l Parallel and Distributed Processing Symposium, Santa Fe, NM,
April 2004.

[5] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Magniette,
V. Néri, and A. Selikhov. MPICH-V: Toward a Scalable Fault Tol-
erant MPI for Volatile Nodes. In IEEE/ACM SuperComputing 2002,
Baltimore, MD, November 2002.

[6] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier,
and F. Magniette. MPICH-V2: a fault tolerant MPI for volatile nodes
based on pessimistic sender based message logging. In IEEE/ACM
SuperComputing 2003, Phoenix, AZ, November 2003.

[7] A. Bouteiller, B. Collin, T. Hérault, P. Lemarinier, and F. Cappello.
Impact of event logger on causal message logging protocols for fault
tolerant MPI. In Proceedings of Int’l Parallel and Distributed Pro-
cessing Symposium (IPDPS), Denver, CO, April 2005.

[8] A. Bouteiller, P. Lemarinier, T. Hérault, G. Krawezik, and F. Cap-
pello. Improved message logging versus improved coordinated
checkpointing for fault tolerant MPI. In Proceedings of Cluster 2004,
San Diego, CA, September 2004.

[9] R. Butler, W. Gropp, and E. Lusk. Components and Interfaces of a
Process Management System for Parallel Programs. Parallel Com-
puting, 27(11):1417–1429, 2001.

[10] M. Chandy and L. Lamport. Distributed Snapshots: Determining
Global States of Distributed Systems. In ACM Trans. Comput. Syst.
31, 1985.

[11] Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pilard,
Ala Rezmerita, Eric Rodriguez, and Franck Cappello. Blocking vs.
non-blocking coordinated checkpointing for large-scale fault tolerant
MPI. In Proceedings of ACM/IEEE SC’2006, Tampa, FL, 11 2006.

[12] J. Duell, P. Hargrove, and E. Roman. The Design and Implementa-
tion of Berkeley Lab’s Linux Checkpoint/Restart. Technical Report
LBNL-54941, Berkeley Lab, 2002.

[13] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. John-
son. A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34(3), 2002.

[14] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-
Grbovic, K. London, and J. J. Dongarra. Extending the MPI Specifi-
cation for Process Fault Tolerance on High Performance Computing
Systems. In Proceeding of International Supercomputer Conference
(ICS), Heidelberg, Germany, 2003.

[15] Q. Gao, W. Yu, W. Huang, and D. K. Panda. Application-Transparent
Checkpoint/Restart for MPI Programs over InfiniBand. In Int’l Con-
ference on Parallel Processing (ICPP ’06), Columbus, OH, August
2006.

[16] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini. Transparent incre-
mental checkpointing at kernel level: A foundation for fault tolerance
for parallel computers. In ACM/IEEE SuperComputing 2005, Seat-
tle, WA, November 2005.

[17] Joshua Hursey, Jeffrey M. Squyres, and Andrew Lumsdaine. A
checkpoint and restart service specification for Open MPI. Technical
Report TR635, Indiana University, July 2006.

[18] InfiniBand Trade Association. http://www.infinibandta.org.

[19] Matt Leininger. InfiniBand and OpenFabrics Successes and
Future Requirements. http://www.infinibandta.org/events/
DevCon2006presentations, 09 2006.

[20] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas,
W. Gropp, and B. Toonen. Design and Implementation of MPICH2
over InfiniBand with RDMA Support. In Int’l Parallel and Dis-
tributed Processing Symposium (IPDPS ’04), April 2004.

[21] Message Passing Interface Forum. MPI: A Message-Passing Inter-
face standard. The International Journal of Supercomputer Applica-
tions and High Performance Computing, 1994.

[22] Network-Based Computing Laboratory. MVAPICH: MPI for Infini-
Band. http://nowlab.cse.ohio-state.edu/projects/mpi-iba/.

[23] B. Randell. Systems structure for software fault tolerance. IEEE
Transactions on Software Engineering, SE-1(2):220–232, 1975.

[24] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell,
P. Hargrove, and E. Roman. The LAM/MPI Checkpoint/Restart
Framework: System-Initiated Checkpointing. International Journal
of High Performance Computing Applications, pages 479–493, 2005.

[25] J. S. Vetter and F. Mueller. Communication Characteristics of Large-
Scale Scientific Applications for Contemporary Cluster Architec-
tures. In Proceedings of International Parallel and Distributed Pro-
cessing Symposium (IPDPS) 2002, Fort Lauderdale, FL, April 2002.

10


