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Abstract
NFS over RDMA implementations on two op-

erating systems are shown to achieve 10 gigabit

Infiniband wire saturation with careful manage-

ment of memory registration. While NFS is highly

desirable in grid computing environments for

its familiar file API and ease of management,

performance issues in its implementations over

Ethernet protocol stacks have impeded its use in

them. We show that NFS version 3 clients and

servers on two architecturally distinct operating

systems can be layered atop the new RPC/RDMA

protocol, and achieve outstanding performance

through the use of appropriate memory reg-

istration techniques. With NFS/RDMA and

Infiniband, we demonstrate performance in

excess of 700MB/s on OpenSolaris and 900MB/s

on Linux, at CPU utilizations of only 10%.

1. Introduction

Since its inception in the mid-80’s, the Net-

work File System (NFS) [38] protocol has be-

come ubiquitous as a means for sharing files over

the network. It has been deployed on a vari-

ety of architectures and platforms such as Open-

Solaris and Linux [6, 4], including workstations

and high performance computing clusters. Be-

cause of its popularity, NFS has evolved through

several generations which added features, perfor-

mance enhancements and pushes for standardiza-

tion [38, 35, 40] to its repertoire. Despite the

rapid development of different cluster file sys-

tems [50, 18, 7, 39, 43], incarnations of NFS

continue to be used as the primary file system

for maintaining shared directories (such as users’

home directories), largely because of its reliabil-

ity and ease of deployment.

Traditionally, high-speed networks such as

Myrinet and Quadrics have been based on propri-

etary vendor specific technology. Recently, im-

plementations of high performance networks [30,

2] based on open standards such as Infini-

Band [24] and 10 Gigabit Ethernet [23, 21] have

become widely available. These implementa-

tions allow for low-latency messaging of a few

micro-seconds and high-bandwidth communica-

tion. For example, the Mellanox InfiniBand 4X

Single Data Rate (SDR) HCA allows for a uni-

directional throughput of up to 1 GBps and half

ping-pong latency of less than 4µs [30]. Sup-

porting these high performance networks are open

source vendor agnostic stacks such as the Open-

Fabrics communication stack for Linux [33] and

the InfiniBand Transport Layer (IBTL) [6] for

OpenSolaris. These stacks allow for network in-

dependent, low overhead access to communica-

tion primitives.



In addition to the low latency, high bandwidth

communication, many of these networks also

have Remote Direct Memory Access (RDMA)

capabilities. RDMA operations allow two peers

to read and write data directly from each others

address space. RDMA operations unlike more

traditional send/receive channel semantics, are in-

herently one-sided, not involving the CPU at the

remote end. To access the address space of a re-

mote process through RDMA operations usually

requires the creation, exchange and use of RDMA

Steering Tags.

With the wide deployment of standardized

hardware with associated open source software to

access the hardware, it is natural to ask whether

a common file system protocol such as NFS

can be designed to take advantage of RDMA

mechanisms. While there have been other at-

tempts to design file systems and protocols such

as PVFS[47] and DAFS [48, 19] with RDMA,

these systems were built for specialized purposes.

In addition, protocols such as DAFS use propri-

etary interfaces which limit their usage to certain

applications such as databases which have been

specifically designed to use them. In addition,

both of them are deployed in user-space, and do

not offer the protection afforded by a kernel based

implementation. In addition, while there is an im-

plementation of NFS/RDMA [16] for the Open-

Solaris operating system, it suffers from security

and performance limitations due to the RDMA

Read based design and multiple buffer copies.

Our experiments reveal that on two Opteron 2.2

GHz systems with x8 PCI-Express SDR Infini-

Band adapters capable of a unidirectional band-

width of 900 MegaBytes/s (MB/s), the IOzone [3]

multi-threaded Read bandwidth saturates at just

under 375 MB/s.

In this paper, we take on the challenge of de-

signing and implementing a high performance

NFS over RDMA for OpenSolaris. This imple-

mentation should allow a user to transparently en-

joy the benefits of improved throughput and low

overhead of a high-performance RDMA enabled

network. In addition, the implementation should

be designed with the security of the server in

mind. Finally, we would also like to provide an

interoperable NFS/RDMA implementation across

multiple operating systems which would allow a

large class of applications to transparently enjoy

the benefits of RDMA.

While investigating the issues of designing ef-

ficient NFS over RDMA for OpenSolaris and

Linux, we are also taking into account the ad-

vocated IETF RPC RDMA draft [15] require-

ments of NFS security and interoperability. For

these purposes, we demonstrate the inappropri-

ateness of the current RDMA Read based de-

sign of OpenSolaris NFS over RDMA. For ex-

ample, such RDMA Read based design exposes

part of the server memory space to any client.

This likely puts the server at risk from mis-

behaving or even malicious clients because of

length limitations in protection keys for RDMA

buffers [24]. An RDMA Read based design

may significantly limit the number of concurrent

RDMA operations. Over InfiniBand, this num-

ber is as small as eight (for current generations of

InfiniBand HCAs) compared to virtually unlim-

ited for RDMA Write [30]. Performance evalua-

tion with an RDMA Write based design shows a

maximum improvement of 47% in IOzone Read

throughput compared to a RDMA Read based

design. In addition, CPU utilization is also re-

duced from over 24% with the RDMA Read de-

sign to under 5% with the RDMA Write based de-

sign. We provide an optimized design, which con-

forms to NFS direct data placement and RPC over

RDMA drafts [14, 15]. In this design, and com-

pliant with these documents, only the NFS server

is allowed to initiate RDMA operations, including

RDMA Read and RDMA Write as appropriate.

We also try to evaluate the bottlenecks that

arise while using RDMA as the underlying trans-

port. While RDMA operations may offer many

benefits, they also have several constraints which

may essentially limit their performance. These

constraints include the requirement that all buffers
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meant for communication must be pinned and

registered with the HCA. Given that NFS oper-

ations are short lived, bursty and unpredictable,

buffers may have to be registered and deregis-

tered on the fly to conserve system resources

and maintain appropriate security restrictions in

place in the system. Specifically, our experiments

show that with appropriate registration strategies,

a RDMA Write based design can achieve a peak

IOzone Read throughput of over 700 MB/s on

OpenSolaris and a peak Read bandwidth of close

to 900 MB/s for Linux.

In this paper we make the following contribu-

tions:

• A comprehensive discussion of the de-

sign considerations for implementing

NFS/RDMA protocols.

• A high performance implementation of

NFS/RDMA for OpenSolaris, and a discus-

sion of its relationship to a similar imple-

mentation for Linux.

• An in-depth performance evaluation of both

designs.

• Design considerations for the relative limita-

tions and potential solutions to the problem

of registration overhead.

The rest of the paper is presented as follows.

Section 2 provides an overview of NFS and In-

finiBand. In Section 4, we describe the detailed

design of NFS over RDMA, focusing on the uti-

lization of RDMA Write in the new RPC/RDMA

transport and its conformance to the IETF stan-

dards [14, 15]. In Section 6, we provide the initial

performance evaluation of the design. Section 7

discusses the breakdown of time in the RDMA

Write design. Section 8 discusses different regis-

tration strategies. We discuss related work in Sec-

tion 9. Finally, Section 10 concludes the paper

and discusses future work.

2. Background

In this section, we provide an introduction to

NFS and InfiniBand.

2.1. Network File System (NFS)

Network File System (NFS) [9] is ubiquitously

used in most modern clusters. It allows users to

transparently share file and IO services on a va-

riety of different platforms. NFS is based on the

single server, multiple client model. Communi-

cation between the NFS client and the server is

via the Open Network Computing (ONC) remote

procedure call (RPC) described in IETF RFC

1831 [41]. The first implementation of ONC RPC

also called Sun RPC for a Unix type operating

system was developed by Sun MicroSystems. Im-

plementations for most other Unix like operating

systems including Linux have become available.

RPC is an extension to the local procedure calling

semantics, and allows programs to make calls to

nodes on remote nodes as if it were a local proce-

dure call. RPC traditionally uses TCP or UDP as

the underlying communication transport. RDMA

transport enabled RPC specifications and proto-

cols have become available [15]. Since the RPC

calls may need to propagate between machines in

a heterogeneous environment, the RPC stream is

usually serialized with the eXternal Data Repre-

sentation (XDR) standard (IETF RFC 1832 [42])

for encoding and decoding data streams. NFS has

seen three major generations of development. The

first generation, NFS version 2 (RFC 1094 [5]),

provided a stateless file access protocol between

the server and client using RPC over UDP. NFS

version 3 [35] (RFC 1813 [13]) added to the fea-

tures of NFSv2 and provided several performance

enhancements, including larger block data trans-

fer, TCP-based transport and asynchronous write,

among many others. The latest version NFS ver-

sion 4 [1] specification was developed by IETF

(RFC 3530 [40]) and includes features for im-

proved access and performance.
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2.2. InfiniBand

The InfiniBand Architecture (IBA) [24] is an

open specification designed for interconnecting

compute nodes, IO nodes and devices in a sys-

tem area network. In an InfiniBand network,

compute nodes are connected to the fabric by

Host Channel Adapters (HCA’s). InfiniBand al-

lows communication through several combina-

tions of connection-oriented and reliable com-

munication semantics. The RPC/RDMA proto-

col specifies the use of Reliable Connected mode

(RC). In this model, each initiating node (client

in RPC/RDMA) needs to be connected to every

other node it wants to communicate with (server)

through a peer-to-peer connection called a queue-

pair (send and receive work queues). The queue

pairs are associated with a completion queue

(CQ). The connections between different nodes

need to be established before communication can

be initiated. This connection establishment can

take place either through an out-of-band channel

over another control network, or with the help of

a connection manager (CM). Typically, the stan-

dard Infiniband CM daemon facility is used.

Communication operations or Work Queue Re-

quests (WQE) operations are posted to a work

queue. The completion of these communication

operations is signaled by completion events on

the completion queue. The sender may either

choose to poll the completion queue for comple-

tions, block on the completion queue, or opt to

receive an interrupt when there is a completion,

by registering a completion handler. Commu-

nication in InfiniBand uses the traditional chan-

nel semantics (send/receive operations), as well

as memory semantics such as the Remote Direct

Memory Access (RDMA) operations. Commu-

nication buffers need to be registered with the

InfiniBand HCA. Implementations of InfiniBand

stacks include the Open Fabrics [33] and Open-

Solaris IBTL [6].

3 InfiniBand Communication Model

InfiniBand supports channel semantics as well

as memory semantics for reliable communication.

Communication operations in InfiniBand require

buffers to be registered. We discuss the communi-

cation operations as well as memory registration

in the following section.

3.1 Communication Primitives

Channel Semantics: Channel semantics or

Send/Receive operations are traditionally used for

communication. A receive descriptor or RDMA

Receive (RV) which points to a pre-registered

fixed length buffer, is usually posted on the re-

ceiver side to the receive queue before the RDMA

Send (RS) can be initiated. The receive descrip-

tors are usually matched with the corresponding

send in the order of the descriptor posting. On

the sender side, receiving a completion notifica-

tion for the send indicates that the buffer used for

sending may be reused. On the receiver side, get-

ting a receive completion indicates that the data

has arrived and is available for use. In addition,

the receive buffer may be reused for another op-

eration.

Memory Semantics: Memory semanics or re-

mote Direct Memory Access (RDMA) are one-

sided operations initiated by one of the peers con-

nected by a queue pair. The peer which initiates

the RDMA operation (active peer) requires both

an address (either virtual or physical), as well as

a steering tag to the memory region on the re-

mote peer (passive peer). The steering tag is ob-

tained through memory registration. To prepare a

region for a memory operation, the passive peer

may need to perform memory registration. Also a

message exchange may be needed between the ac-

tive and passive peers to obtain the message buffer

addresses and steering tags. RDMA operations

are of two types, RDMA Write (RW) and RDMA
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Read (RR). RDMA Read obtains the data from the

memory area of passive peer and deposits it in the

memory area of the active peer. RDMA Write

operations on the other hand move data from the

memory area of the active peer to corresponding

locations on the passive peer.

A comparison of the different communication

primitives in terms of Security (Receive Buffer

Exposed), Involvement of the receiver (Receive

Buffer Posted), Protection and Exchange Mes-

sage Buffer Address and Steering Tag Exchange

(Rendezvous) for the receive buffer is shown in

Table 1.

Table 1. Communication Primitive Properties

Channel Memory

Semantics Semantics

Buffer X

Exposed

Buffer X

Pre-Posted

Steering X

Tag

Rendezvous X

3.2 Memory Registration

Communication operations in InfiniBand re-

quire memory areas to be registered [24]. Reg-

istration is a multi-stage operation. Registration

involves assigning physical pages to the virtual

area. If physical pages have already been as-

signed to the virtual area, the virtual to physical

address translation needs to be determined. In

addition, the physical pages need to be prepared

for DMA operations initiated by the HCA. This

involves making the pages unswappable by pin-

ning them. Both these operations may be per-

formed by the operating system virtual memory

system. In addition, the HCA needs to be made

aware of the translation of the virtual to physi-

cal addresses. The HCA also needs to assign a

steering tag which may be sent to remote peers

for accessing the memory region in RDMA oper-

ations. The virtual to physical translation and the

steering tag are stored in the HCA’s Translation

Protection Table (TPT). This involves one trans-

action across the I/O bus. However, the response

time of the HCA may be quite high, depending

upon how much load is at the HCA, the organiza-

tion of the TPT, allocation strategies and overhead

in the TPT, etc [31]. As a result of the combined

effects of these operations, registration is an ex-

pensive operation and may constitute a consider-

able overhead, especially when it is in the criti-

cal path. Figure 1 shows the half ping-pong la-

tency of a message with and without registration

costs included. To reduce the cost of memory
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Figure 1. Latency and Registration costs in InfiniBand on

OpenSolaris

registration, different optimizations and registra-

tion modes have been introduced. These include

Fast Memory Registration [20, 31, 24] and Physi-
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cal Registration [24].

Fast Memory Registration (FMR): Fast

Memory Registration [20, 31, 24] allows for the

allocation of the TPT entries and steering tags

at initialization, instead of at registration time.

The other operations of memory pinning, virtual

to physical memory address translations and

updating the HCA’s TPT entries remain the same.

The allocated entries in the TPT cache are then

mapped to a virtual memory area. This technique

is therefore not dependent on the response time

of the HCA to allocate and update the TPT

entries and as a result can be considerably faster

than a regular registration call. The limitations

of FMR include the fact that it is restricted

to privileged consumers (kernel), and the fact

that the maximum registration area is fixed at

initialization.

Additionally, the Mellanox implementation of

FMR [20] introduces additional optimizations to

the InfiniBand specification [24]. Similar to the

specification [24], it defines a pool of steering tags

which may be associated with a virtual memory

area at the time of registration. The difference

arises at deregistration. The steering tag and vir-

tual memory address is placed on a queue. When

the number of entries in the queue becomes more

than a certain threshold called the dirty water-

mark, the invalidations for the entries are flushed

to the HCA. This invalidates the TPT entries for

the particular set of steering tags and virtual ad-

dresses in the queue. While this optimization can

potentially improve performance, this introduces

a security restriction. While the entries in the

queue have not been flushed, there is a window of

vulnerability after the deregistration call is made.

During this window, a remote peer with the steer-

ing tag can access the virtual memory area.

Physical Registration: In addition to virtual

addresses, communication in InfiniBand may also

take place through physical addresses. Physical

Registration takes two different forms, i.e. map-

ping all of physical memory and the Global Steer-

ing Tag optimization. Mapping all of physical

memory involves updating the HCA’s TPT entries

to map all physical pages in the system with steer-

ing tags. This operation places a considerable bur-

den on the HCA in modern systems which may

have GigaBytes of main memory and is usually

not supported. The Global Steering Tag avail-

able to privileged consumers (such as kernel pro-

cesses) allows communication operations to use

a special remote steering tag. The communica-

tion operation must use a physical addresses. The

consumer must pin the memory before communi-

cation starts and obtain a virtual to physical map-

ping, but does not need to register the mapping

with the HCA.

Physical Registration can considerably reduce

the impact of memory registration on communi-

cation, but is restricted to privileged consumers.

The issue of security needs to be considered.

The Global Steering Tag potentially allows un-

fettered access to remote peers, which may have

obtained the Remote Steering Tag through ear-

lier communication with the peer. It should be

used in environments where there is a level of

trust between the peers. In addition, the issue

of integrity should be considered. The HCA is

unable to perform checks on incoming requests

with physical addresses and an associated remote

steering tag. Given that the peers can corrupt each

others memory areas through a communication

operation with an invalid physical address, the

Global Steering Tag should be used in environ-

ments where there is sufficient confidence in the

correctness of the communication sub-system.

4. NFS/RDMA OpenSolaris Architec-

ture

Callaghan et.al. designed an initial implemen-

tation of NFS/RDMA [15] for the Solaris Operat-

ing System which subsequently became an open
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source project OpenSolaris [6]. This existing ar-

chitecture is shown in Figure 2. The architecture

VFSRPC/RDMA

Receive

File System

Procedure

NFS

VFS
RPC/RDMA

Procedure

NFS

Send

Receive Path

Send Path

RDMA
SEND

SQ RQ

Interrupt 
Handler

SQRQ

Decode

Copy

Server task queue

Transport Walkers

Applications

VFS

NFS

NFS Client

Interrupt Handler

Buffer/Receive  Re−Posted

Buffer/Receive  Posted

SQ Send Queue

SQ Receive Queue

InfiniBand Network

RPC/

RDMA

NFS Server

Buffer/Request Outstanding 

Buffer Available

Figure 2. Architecture of the NFS/RDMA stack in Open-

Solaris

was designed to allow transparency for applica-

tions accessing files through the Virtual File Sys-

tem (VFS) [8] layer on the client. Accesses to

the file system through VFS are routed to NFS.

If RDMA was the transport selected while doing

the mount, NFS will make the RPC call through

RPC over RDMA to the server. The RPC Call

generally being small will go as an inline requests

which are described in the next section.

4.1. Inline Protocol for RPC Call and RPC Reply

The RPC Call and Reply are usually small and

within a threshold, typically less than one 1KB.

In the RPC/RDMA protocol the call and reply

may be transferred inline via a copy based pro-

tocol similar to that used in MPI stacks such as

MPICH-GM [32]. The copy based protocol uses

the channel semantics of InfiniBand described in

Section 3.1. During startup (at mount time), af-

ter the InfiniBand connection is established, the

client and server each will establish a pool of

send and receive buffers. The server posts re-

ceive buffers from the pool on the connection.

The client may send requests to the server up to

the maximum pool size using RDMA Send oper-

ations. This exercises a natural upper limit on the

number of requests which the client may send to

the server. At the time of making the RPC Call,

the client will prepend an RPC/RDMA header

(Figure 3) to the NFS Request passed down to it

from the NFS layer as shown in Figure 2. It will

post a receive descriptor from the receive pool

for the RPC Call, then issue the RPC Call to the

server through an RDMA Send operation. On the

OpenSolaris NFS server, this will invoke an in-

terrupt handler which will copy out the request

from the receive buffer and repost it to the con-

nection. (The Linux server does not perform the

copy, and reposts the receive descriptor at a some-

what later time.) The request will then be placed

in the server’s task queue. A transport context

thread will eventually pick up the request which

will then be decoded by the RPC/RDMA on the

server. Bulk data transfer chunk will be decoded

and stored at this point. The request will then be

issued to the NFS layer which will then issue it

to the file system. On the return path from the

file system, the request will pass through the NFS

layer. It will then encode the results and make the

RPC Reply back to the client. The interrupt han-

dler at the client will wake up the thread parked

on the request and control will eventually return

to the application.

4.2. RDMA Protocol for bulk data transfer

NFS procedures such as READ, WRITE,

READLINK and READDIR may transfer data

whose length is larger than the inline thresh-

old [41]. In addition, the RPC call itself may be

larger than the inline data threshold. There are

multiple ways of transferring the bulk data. The

existing approach is to use RDMA Read only and

is referred to as the Read-Read design. Our ap-

proach is to use a combination of RDMA Read

and RDMA Write operations and is called the

Read-Write design. We describe both these ap-
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proaches in detail. Before we do that, we define

some essential terminology.

Chunk Lists: provide encoding for bulk data

whose length is larger than the inline threshold

and which should be moved via RDMA. A chunk

list consists of a single counted array of segments

or one or more lists. Each of these lists is in turn a

counted array of zero or or more segments. Each

segment encodes a steering tag for a registered

buffer, its length and its offset in the main buffer.

There are different types of chunks; Read chunks,

Write chunks and Reply chunks.

• Read chunks used in the Read-Read and

Read-Write design encode data that may be

RDMA Read from the remote peer.

• Write chunks used in the Read-Write design

are used to RDMA Write data to the remote

peer.

• Reply chunks used in the Read-Write design

are used for procedures like READDIR and

READLINK, and are used to RDMA Write

the entire NFS response.

RPC Long Call: The RPC Long Call is typ-

ically used when the RPC request itself is

larger than the inline threshold. In this case,

the client encodes a chunk list along with a

RDMA NOMSG flag in the header shown in Fig-

ure 3. The RPC Long Call is used by both the

Read-Read and Read-Write designs.

RPC Long Reply: The RPC Long Reply is typ-

ically used when the RPC Reply is larger than

the inline size. The RPC Long Reply is used in

both the Read-Read and Read-Write designs but

the mechanisms are different.

4.3. Read-Read Based Design

The current RPC/RDMA design in OpenSo-

laris [11] is shown in Figure 4(a). It is based on

Read Write or Reply
XID Version  Credits

Message 
Type

Transaction ID
RPCoRDMA Version   

Flow Control Field

0: An RPC call or Reply (RDMA_MSG)
1: An RPC call or Reply with no body (RDMA_NOMSG)
2: An RPC call or Reply with padding (RDMA_MSGP)
3: Client signals reply completion (RDMA_DONE)

Chunk List
RPC Call or
Reply Msg

Figure 3. RPC/RDMA header

RDMA Read. As shown in the figure, the RPC

Call and RPC Reply are handled using the inline

protocol described in Section 4.1. The protocol

for the bulk data transfer is as follows:

RPC Long Call: If the RPC Call message

is larger than the inline size, the RPC Call

from the client includes a Read Chunk List.

The message type in the header in Figure 3 is

set to RDMA NOMSG. If the message type is

RDMA NOMSG, the server decodes the read

chunks encoded in the RPC/RDMA header and

issues RDMA Reads to fetch these chunks from

the client. The data from these chunks con-

stitutes the remainder of the header (the fields

Read, Write or Reply Chunk List onwards in Fig-

ure 3). The remainder of the header is then de-

coded. If the message type is RDMA NOMSG,

the server decodes the read chunk encoded in the

RPC/RDMA header (Figure 3) and issues RDMA

Read to fetch these chunks from the client. The

data from these chunks constitutes the data fol-

lowing the message header. The remainder of the

header is then decoded.

NFS Procedure Write: For an NFS procedure

WRITE, the client encodes a Read chunk list. On

the server side, these read chunks are decoded, the

RDMA Reads corresponding to each segment are

issued and the server thread blocks till the RDMA

Reads complete. The operation is then handled

by the NFS layer. Once the operation completes,

control is returned to the RPC layer which then

sends an RPC Reply via the inline protocol de-

scribed in Section 4.1.
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NFS Procedure READ: For a NFS READ pro-

cedure, the NFS server needs to encode a Read

chunk list in the RPC Reply. The RPC Reply is

then returned to the client via the inline proto-

col in Section 4.1. The client decodes the Read

chunk lists and issues the RDMA Reads. Once

the RDMA Reads complete, the client issues an

RDMA DONE to the server which allows it to

free its pre-registered buffers.

NFS Procedure READDIR and READLINK

(RPC Long Reply): This is similar to the case

for the NFS procedure READ. The server encodes

a Read chunk list which is decoded by the client.

The client then issues RDMA Read to fetch the

data from the server. Once the RDMA Reads

complete, the client issues an RDMA DONE to

the server which allows the server to free its pre-

registered buffers.
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Figure 4. Read-Read and Read-Write Based Designs

4.4. Limitations in the Read-Read Design

The Read-Read design has a number of limi-

tations in terms of Security and Performance, and

we discuss these issues in detail.

Security

• Server buffers exposed An important require-

ment for implementations of RDMA trans-

ports for NFS is that it must not be less se-

cure than other transports such as TCP [17].

In the Read-Read design, the server side

buffers are exposed for RDMA operations

from the client. Since the steering tags are

32-bits [24] in length, a misbehaving or mali-

cious client might attempt to guess them and

thereby possibly read a buffer for which it

did not have access.

• Malicious or Malfunctioning clients The

client needs to send an RDMA DONE mes-

sage to the server to indicate that the buffers

used for a Read or Reply chunk may be freed

up. A malicious of malfunctioning client

may never send the RDMA Done message,

essentially tying up the server resources.

Performance

• Synchronous RDMA Read Limitations: The

RDMA Read issued from the NFS/RDMA

server are synchronous operation. Once

posted, the server typically has to wait for the

RDMA Read operation to complete. This is

because the InfiniBand specification does not

guarantee ordering between a RDMA Read

and a RDMA Send on the same connec-

tion [24]. This may add considerable latency

to the server thread.

• Outstanding RDMA Reads: The number of

RDMA Read which can be typically ser-

viced on a connection is governed by two pa-

rameters, the Inbound RDMA Read Queue

Depth (IRD) and the Outbound RDMA Read

Queue Depth (ORD) [24]. The IRD gov-

erns the number of RDMA Read which may

be active at the remote peer, while the ORD

governs the number of RDMA Read which

might be actively issued concurrently from

the local peer. In the current Mellanox im-

plementation of InfiniBand, the maximum

9



allowed value for IRD and ORD is typically

8 [30]. As a result parallelism is reduced

at the server, especially for multi-threaded

workloads.

5. Proposed Read-Write Design

To alleviate some of the deficiencies in the

Read-Read design, the Read-Write design is spec-

ified by the IETF protocol. The Read-Write de-

sign essentially does not allow the client to is-

sue any bulk RDMA data transfer operations.

All bulk RDMA operations are issued from the

server. This has several advantages. For one, the

bulk data transfer buffers are no longer exposed

on the server. This eliminates the possibility of

misbehaving clients reading or writing to these

buffers. The Read-Write design is shown in Fig-

ure 4(b).

RPC Long Call: The protocol for an RPC Long

Call in the Read-Write design is exactly the same

as in the Read-Read case discussed in Section 4.3.

A Read Chunk is encoded in the RPC Call, which

is decoded at the server. The Read Chunk is then

read in by the server which then proceeds to de-

code it.

NFS Procedure WRITE: The protocol for a

NFS WRITE procedure in the Read-Write design

is exactly the same as in the Read-Read case dis-

cussed in Section 4.3. A Read Chunk is encoded

in the RPC Call, which is decoded at the server.

The Read Chunk is then read in by the server.

The server then sends the RPC Reply back to the

client.

NFS Procedure READ: For a NFS READ pro-

cedure, the client needs to encode a Write chunk

list in the RPC Call. The server decodes and

stores the Write chunk list. When the NFS pro-

cedure READ returns, the data is RDMA Written

back to the client. The server then sends the RPC

Reply back to the client with an encoded Write

Chunk List. The client uses this Write chunk list

to determine how much data was returned in the

READ call.

NFS Procedure READDIR and READLINK

(RPC Long Reply): For a NFS READDIR and

READLINK procedure, the client needs to en-

code a Long Reply chunk list in the RPC Call.

The server decodes and stores the Write chunk

list. When the NFS procedure READ returns, the

data is RDMA Written back to the client. The

server then sends the RPC Reply back to the client

with an encoded Write Chunk List. The client

uses this Write chunk list to determine how much

data was returned in the READ call.

Zero Copy Path for Direct I/O for the NFS

READ procedure: In addition to the basic de-

sign, we also introduce a zero copy mechanism

for user space addresses on the NFS READ pro-

cedure path. This eliminates copies on the client

side and translates into reduced CPU Utilization

on the client.

5.1. Advantages of the Read-Write Design

The difference between the Read-Read and

Read-Write (Figure 4(b)), protocol is that RPC

long replies and NFS READ data may be di-

rectly issued from the server. To enable these, the

client needs to encode either a Write chunk list

or a long reply chunk list. Moving from a Read-

Read based design to a Read-Write based design

has several advantages. The Mellanox InfiniBand

HCA has the ability to issue a large number of

RDMA Write operations in parallel [30]. This

reduces the bottleneck for multi-threaded work-

loads. In addition, since completion ordering be-

tween RDMA Write and RDMA Sends is guaran-

teed in InfiniBand [24], the server does not have

10



to wait for the RDMA Writes from the long re-

ply or the NFS READ operation to complete. The

completion generated by the RDMA Send for the

RPC Reply will guarantee that the earlier RDMA

Writes have completed. This optimization also

helps reduce the number of interrupts generated

on the server. The RDMA Done message and its

resulting interrupt is also eliminated. The genera-

tion of the send completion interrupt on the server

is sufficient to guarantee that the RDMA opera-

tions from the buffers have completed and they

may be deregistered. A similar guarantee exists at

the client also when an RPC Call message is re-

ceived. The elimination of an additional message

helps improve performance. Finally, the control

of server side buffer deregistration is no longer

under the control of the client.

6. Comparison of the Read-Read and

Read-Write Design

Figure 5 and figure 6 shows the IOzone [3]

Read and Write bandwidth respectively with di-

rect I/O on OpenSolaris. Performance of the

Read-Read design are shown as RR. Performance

of Read-Write design are shown as RW. The re-

sults were taken on dual Opteron x2100’s with

2GB memory and Single Data Rate (SDR) x8

PCI-Express InfiniBand Adapters [30]. These

systems were running OpenSolaris build version

33. The back-end file system used was tmpfs

which is a memory based file system [28]. The

IOzone file size used was 128 MegaBytes to ac-

commodate reasonable multi-threaded workloads

(IOzone creates a separate file for each thread).

The IOzone record size was varied from 128KB

to 1MB. From the figure, we can make the fol-

lowing observations:

For both the Read-Read and Read-Write de-

sign, the bandwidth increases with record size.

The RPC/RDMA layer in OpenSolaris does not

fragment individual record sizes. The size on the

wire corresponds exactly to the record size passed

down from IOzone to the NFS layer. Larger mes-

sages have better bandwidth in InfiniBand. This

translates into better IOzone bandwidth for larger

record sizes. Since the size of the file is constant,

the number of NFS operations is lower for larger

record sizes. As a result the improvement in band-

width with larger record sizes is modest.

IOzone Write bandwidth is the same in both

cases. This is to be expected as the NFS WRITE

path through the RPC RDMA layer is the same on

the client and server for both the Read-Read and

Read-Write designs.

The Read-Write design performs better than

the Read-Read design for all record sizes for the

READ procedure. The improvement in perfor-

mance is approximately 47% with one thread at

a record size of 128 KB, but decreases to about

5% at 8 threads. This improvement is primarily

due to the elimination of the RDMA DONE mes-

sage as well as the improved parallelism of issued

RDMA Writes from the server. The READ band-

width for the Read-Read design saturates at 375

MB/s, while the Read-Write design saturates at

400 MB/s. The bandwidth in both cases seems

to saturate with increasing number of threads,

though the saturation in the case of the RDMA-

Write design takes place much earlier than in the

case of the Read-Read design.

Client CPU utilization was measured using the

IOzone [3] +u option. The utilization corre-

sponds to the percentage of the time the CPU

is busy over the lifetime of the throughput test.

Since the CPU utilization for different record

sizes is the same, we only show a single line for

the Read-Read and Read-Write designs in Fig-

ure 5 and Figure 6. Client CPU utilization is lower

for Read-Write than for Read-Read for the NFS

READ procedure. In addition, the CPU utiliza-

tion for the Read-Write iesign remains flat start-

ing at only 2% at 1 thread increasing to about 5%

at 8 threads. On the other hand, the CPU uti-

lization for the Read-Read design increases from

about 4% at 1 thread to about 24% at 8 threads.

This is primarily because of elimination of data

copies on the client direct I/O path.
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Figures 7 and 8 shows the IOzone Read and

Write performance respectively on Linux with the

same hardware configuration as described above

with regular memory registration and deregistra-

tion. The peak Read bandwidth is 440MB/s and

the peak Write bandwidth is 240MB/s.
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7. Understanding the overhead in the

Read-Write design

While the Read-Write design shows improved

performance over the Read-Read design, the im-

provement in performance is less than expected.

To investigate this further, we instrumented the
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RPC/RDMA layer to determine where the time

went for the IOzone Read bandwidth test in Sec-

tion 6. This instrumentation was done with the

help of the OpenSolaris dtrace tool [10]. The

instrumentation measured the breakdown in time

for the RPC/RDMA layer for each individual NFS

operation. These results are shown in Figure 10.

The registration points are shown Figure 9. The

x-axis shows a block of eight (1 to 8 threads) for

each record size. From the timing breakdown, we

can make the following observations. Registra-

tion is a considerable overhead on the server, tak-

ing up to 16% of the per operation time. At a

record size of 128KB, registration overhead in-

creases from about 5% at 1 thread to about 24%

at 4 threads and then decreases slightly to about

16% at 8 threads. A similar trend may be ob-

served for other record sizes. Comparatively the

server deregistration is about 1-2% of the time per

operation irrespective of the number of threads at

128KB. It decreases with increasing record sizes

and is less than 1% for a 1MB record size. The

share of the client registration and deregistration

overhead is much lower by comparison (less than

0.1% of the per operation time). The time spent in

tmpfs by comparison dominates starting at about

83% at 1 thread, decreasing to about 79% at 8

threads.
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Each block of bars on the x-axes shows the trend for

the record size when increasing the number of threads

from 1 (left) to 8 (right)

8. Registration Strategies

From Section 7, we see that registration can

constitute a substantial overhead in the RDMA

transport especially at the server. This overhead

comes about mainly because the transport has to

register the buffer and deregister the buffer on ev-

ery operation. The registration occurs once at the

client, and then at the server in the RPC call path.

The deregistration occurs once at the server and

then at the client in the RPC Reply path. To re-

duce the impact of the registration, we explore

several different registration strategies, namely

Fast Memory Registration (FMR) and a buffer

registration cache.

Fast Memory Registration (FMR): From our

earlier discussion in Section 3.2, we saw that Fast

Memory Registration (FMR), reduces the over-

head of memory registration by allocating entries

in the HCA’s TPT tables as well as protection

keys, at the time of initialization. These entries

are then mapped into the virtual space of the host
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and may be directly accessed without the inter-

vention of the HCA. As a result, virtual to physi-

cal memory address translations on the HCA can

be updated without having to wait for the HCA to

respond to a registration request. The limitations

of FMR include the requirement that the maxi-

mum registration area be fixed and the restriction

that this may only be used in the kernel (which is

acceptable for a NFS client/server kernel imple-

mentation).

To measure the impact of FMR on perfor-

mance, we have incorporated FMR calls (Mel-

lanox FMR [20]) in the regular registration path

in RPC/RDMA. To allow FMR to work transpar-

ently, there is a fall-back path to regular registra-

tion calls in case the memory region to be reg-

istered is too large. The maximum size of the

registered area was set to be 1MB. In addition,

the FMR pool size was set to 512, which is suf-

ficient for up to 512 parallel requests of 1MB.

We again evaluated the IOzone read and write

bandwidth. Since the bandwidth from the dif-

ferent record sizes are similar, we only present

number with a 128KB record size and a 128 MB

file size. The results are shown in Figure 11 and

figure 12 1. FMR can help improve Read band-

width from about 350 MB/s to approximately 400

MB/s though this comes at the cost of increased

client CPU utilization (Figure 11 shows an upper

bound to CPU utilization shown by the legend

CPU-Cache-Solaris. CPU Utilization for FMR

is between that of CPU-Cache-Solaris and CPU-

Register-Solaris). This increased client CPU uti-

lization is to be expected since the client is able to

place more operations per second on the wire as a

result of the better operation response time from

the server. FMR also helps improve IOzone write

bandwidth.

Buffer Registration Cache: Another registra-

tion strategy is to create a buffer registration

1Problems in the FMR implementation on OpenSolaris

prevent us from getting a full set of numbers at higher num-

ber of threads
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cache. A registration cache [46] has been shown

to considerably improve communication perfor-

mance. Most registration caches have been

implemented at the user level and cache vir-

tual addresses. Caching virtual addresses has

been shown to cause incorrect behavior in some

cases [37]. In addition, unless static limits are

placed on the amount of entries in the registration

cache, the cache tends to grow endlessly, particu-

larly in the face of applications with poor buffer

reuse patterns. Finally, static limits may perform

poorly depending on the dynamics of the applica-

tion.

To alleviate some of these deficiencies, we have

implemented a buffer registration cache on the

server. As discussed earlier in Section 4, the NFS

server state machine is split into two parts. The

first part in on the RPC Call receive path where

the NFS call is received and is issued to the file

system. The second component is on return of

control from the file system. Buffer allocation is

done when the request is received on the server

side and registration is performed when control

is returned from the file system. To model this

behavior, we override the buffer allocation and

registration calls and feed them to the registra-

tion cache module. This module allocates buffers

from a slab cache [25], for the request and then

registers them when the registration request is

made. If the buffer from the cache is already reg-

istered, no registration cost is encountered. The

advantages of this setup are that the cache is no

longer based on virtual address, and it is also

linked to the systems slab cache, which may re-

claim memory as needed. Since the server never

sends a virtual address or steering tag to the client

for any buffers in the registration cache, this is as

secure as regular registration.

The performance impact of the server registra-

tion cache on the IOzone Read and Write band-

width is shown in Figure 11 and Figure 12 respec-

tively. The registration cache dramatically im-

proves performance for both the Read and Write

bandwidth which goes up to 730 MB/s and 515

MB/s respectively. The CPU utilization is also

increased, though this is to be expected with an

increasing op rate at the client.

The server registration cache scheme described

above can also be applied to the client side. How-

ever, in order to use the system slab cache, data

needs to be copied from the application buffer

to an intermediate NFS buffer. Therefore, com-

pared with the zero-copy path mentioned in Sec-

tion 5, there is an extra data movement involved

in the registration cache scheme, and we need to

carefully study the trade-off between data copy

and memory registration. Since a malfunctioning

server may compromise the integrity of the clients

buffers, this approach should be used in which the

server buffers are well tested.

Figure 13 shows the performance of the client

registration cache scheme when doing IOzone

multi-thread Read test. From the figure, we can

see that if the record size is small, it is more

beneficial to use the registration cache to get

higher throughput. The peak READ through-

put when using the registration cache scheme is

100% higher than that when using the zero-copy

scheme. If the record size is large, memory copy

is more expensive than registration, so for a small

number of threads the zero-copy scheme yields

higher throughput. But as long as the client has

enough number of requests, the data copy time

can be overlapped by network transaction time,

so the registration cache scheme can achieve the

same throughput as the zero-copy scheme. Of

course since there is an extra data movement in-

volved, the client registration cache scheme con-

sumes more CPU cycles as expected. Therefore,

it depends on the application characteristics (CPU

intensive vs. IO intensive) and system configura-

tion (plenty vs. limited CPU resources) to deter-

mine which scheme is beneficial to use.

All Physical Memory Registration: The

Linux NFS/RDMA implementation provides

another registration mode called all physical

memory registration. As discussed in Section 3.2,
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Figure 13. Performance Impact of Client Registration

Cache

the memory registration process involves two

main steps: pinning down the buffers and doing

address translation. Since the buffers used for

IO operations are anyway required to be pinned

down, only address translation is needed when

doing memory registration. Linux provides an

interface that allows us to register all the physical

pages in one operation. Therefore, we can regis-

ter all the physical memory in the initialization

phase, and only need to do virtual to physical

address translation when actually registering

memory.

From figure 14 we can see that the all physical

memory registration mode yields the best READ

throughput on Linux. It degrades the WRITE

performance compared with the FMR mode as

shown in figure 15 because in all-physical mode

the client cannot do local scatter/gather and so

has to build more read chunks, therefore, each

write request issues multiple RDMA Reads from

the server that hits the limit of incoming/outgoing

RDMA Reads in InfiniBand.

9. Related Work

There have been numerous studies in the op-

timization of NFS protocols. In this section, we
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discuss about some of the most related work in

the evolution of NFS, as well as its relation to the

advances in high performance networks and other

network-based storage protocols.

Xu et. al. [49] investigated the performance

benefits of client caching to concurrent read shar-

ing over NFS. Peng et. al. [36] showed that a

network-centric reorganization of the buffer cache

can improve the NFS performance. Radkov

et. al. [34] compared the performance of file-

based NFS protocol and block-based iSCSI pro-

tocol and noted that aggressive meta-data caching

can benefit the NFS protocol.

Martin et. al. [29] studied the sensitivity of

NFS to high performance networks by introduc-

ing controlled delays into live systems in the late

90’s. They observed that NFS was more sensitive

to processor overhead rather than networking la-

tency and bandwidth. However, the emergence of

high speed networks with direct access protocols

such as RDMA lead to both the design of new

network file system and the revision of traditional

network file systems to enable file accesses over

RDMA-capable networks. For example, iSER

was recently proposed by IETF as an extension

for Internet Small Computer Systems Interface

(iSCSI) protocol [26, 44]. DAFS [19, 27] de-

signed a user space file system library that al-

lows applications to bypass operating system ker-

nel and take advantage of high performance user-

level network directly. Goglin et. al. [22] replaced

the RPC protocol of NFS with Myrinet GM proto-

col to achieve Optimized Remote File System Ac-

cesses (ORFA). Callaghan et. al. [12] provided an

initial implementation NFS over RDMA on So-

laris. An RDMA read based RPC transport is im-

plemented as a proof of concept to show the per-

formance benefit of NFS over RDMA compared

to TCP.

This work has identified the performance

shortcomings in the work done by Callaghan

et. al. [12]. In addition, this work attempts to pro-

vide an implementation for OpenSolaris which

is compliant with the IETF drafts [14, 15] for

wide interoperability with available implementa-

tions for Linux [45].

10 Conclusions and Future Work

In this paper, we have designed and imple-

mented NFS/RDMA protocols for high perfor-

mance RDMA networks like InfiniBand. Our

implementations include clients and servers for

both Linux and OpenSolaris as well interoper-

ability mechanisms between these two implemen-

tations. We have also compared the trade-offs

and measured the performance of a design which

exclusively uses RDMA Read as well as a de-

sign which uses a combination of RDMA Reads

and RDMA Writes. These results show that

the RDMA/Read RDMA Write based design per-

forms better than the RDMA Read only based de-

sign in terms of IOzone Read bandwidth and CPU

utilization. In addition, the RDMA Read/RDMA

Write design exhibits better security characteris-

tics as compared to the RDMA Read only based

design. In addition, we show that the peculiar na-

ture of communication in NFS protocols, force

registration overhead in InfiniBand to the surface,

limiting performance. Special registration modes

as well as a buffer cache can considerably help

enhance performance, though these mechanisms

themselves have their own limitations, particu-

larly in terms of security.

As part of the future work, we would like

to study how support for upcoming registration

modes like memory windows will impact perfor-

mance. In addition we would like to study how

the shared receive queue (SRQ) support in Infini-

Band will impact performance. Finally, we would

like to investigate how RDMA operations in high

speed networks will help improve performance in

implementations of pNFS.
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