
Scheduling File Transfers for Data-Intensive Jobs on
Heterogeneous Clusters

GAURAV KHANNA, UMIT CATALYUREK, TAHSIN KURC, P. SADAYAPPAN AND JOEL SALTZ

Technical Report
OSU-CISRC-1/07-TR05

Scheduling File Transfers for Data-Intensive Jobs on
Heterogeneous Clusters ∗

Gaurav Khanna†, Umit Catalyurek‡,
Tahsin Kurc‡, P. Sadayappan†, Joel Saltz‡

† Dept. of Computer Science and Engineering, ‡ Dept. of Biomedical Informatics
The Ohio State University

Abstract

This paper addresses the problem of efficient collective scheduling of file transfers re-
quested by a batch of tasks. Our work targets a heterogeneous collection of storage and com-
pute clusters. The goal is to minimize the overall time to transfer files to their respective des-
tination nodes. Two scheduling schemes are proposed and experimentally evaluated against
an existing approach, the Insertion Scheduling. The first is a 0-1 Integer Programming (IP)
based approach which is based on the idea of time-expanded networks. This scheme achieves
the minimum total file transfer time, but has significant scheduling overhead. To address this
issue, we propose a maximum weight graph matching based heuristic approach. This scheme
is able to perform as well as the insertion scheduling approach and has much lower schedul-
ing overhead. We conclude that the heuristic scheme is a better fit for larger workloads and
systems.

1 Introduction
Several scientific applications (e.g., biomedical imaging, satellite data processing) involve data-
analysis tasks that analyze the huge volumes of data generated via emerging experimentations
and simulations. These simulation datasets typically reside on storage archives which may be
centralized or distributed across multiple individual storage sites. Scientists perform data analysis
by downloading subsets of these large datasets. Simulations are then executed on ”local“ resources
to produce additional scientific data. However, unlike traditional compute intensive tasks, data
analysis tasks may require access to large numbers of files and high data volume.

Efficient execution of such data-intensive tasks is essentially a two phase process which in-
volves addressing two key problems. The first one involves the mapping of tasks to nodes such
that the volume of overall data transfer is minimized. In other words, task mapping needs to be
locality conscious. The second one involves the scheduling of file transfers by transferring them
from one of their multiple possible sources to the destination nodes where the tasks requesting
those files have been mapped. This staging of files should be carefully coordinated to minimize

∗This research was supported in part by the National Science Foundation under Grants #CCF-0342615, #ACI-
9619020 (UC Subcontract #10152408), #EIA-0121177, #ACI-0203846, #ACI-0130437, #ANI-0330612, #ACI-
9982087, Lawrence Livermore National Laboratory under Grant #B517095 (UC Subcontract #10184497), NIH NIBIB
BISTI #P20EB000591, Ohio Board of Regents BRTTC #BRTT02-0003.

1

the contention while accounting for the topology with which the nodes are connected and the het-
erogeneity of network and I/O bandwidths in the system.

In our past work, we have looked at the problem of scheduling a batch of tasks exhibiting shared
I/O behavior on homogeneous clusters [19]. We modeled the task-file sharing patterns using a
hypergraph and employ hypergraph partitioning to get a load-balanced cut-minimized partitioning
of tasks onto compute nodes. We have extended this work along multiple directions [18], [17], [24].
Naga et al. [24] proposes a K-way iterative mapping refinement heuristic to schedule a batch of
data sharing tasks onto a collection of heterogeneous clusters. In a very recent work, we have also
addressed the data-intensive task scheduling problem in a more generic online context where a set
of data-intensive tasks arrive over time and the scheduling needs to be done so as to minimize the
average response time [17]. We extend the aforesaid hypergraph partitioning based approach by
also taking into account the fact that prior task executions would have created replicas of files on
certain nodes and the future arriving tasks need to exploit this node to file locality information for
better task placement decisions. In all these prior works, our prime focus has been to address the
first phase of the overall problem that is to accomplish task mapping by taking into account the
global task-file affinity information.

This paper addresses the efficient collective scheduling of a set of file transfers requests made
by a batch of data-intensive tasks exhibiting batch-shared I/O behavior [22] on a heterogeneous
set of storage and compute clusters. In other words, it focuses on the second phase of the overall
problem. Batch-shared I/O simply means that the same file may be required by multiple tasks in
a batch. Each task may request multiple files which need to be staged onto the node on which
the task has been allocated. A file can be staged on a node by accessing one of the existing
replicas of the file which could be present either on the storage cluster or one of the compute
clusters. This should be done in a way to minimize the contention in the network or the end-points.
The target environment consists of a heterogeneous collection of compute clusters connected over
switched/shared network(s) to one or more storage clusters with different I/O bandwidths. We
expect that such configurations will increasingly be common in supercomputing centers as the
capacity of commodity disks continues to increase and their cost per gigabyte to decrease. The
topology of the network and the heterogeneity of the system govern the usefulness of each file
replica for the purpose of data staging. The problem therefore amounts to scheduling of a set of
file transfers to their respective destinations so as to minimize the overall completion time of file
transfers.

We propose two approaches to solve the file transfer scheduling problem. The first approach
formulates the problem using 0-1 Integer Programming by employing the idea of flows over time
and the concept of time-expanded networks [10]. The second approach employs max-weighted
graph matching to yield a schedule which tries to minimize contention and maximize the paral-
lelism in the system. We carry out an experimental evaluation of these algorithms, comparing them
against our previously proposed Insertion scheduling based heuristic [19]. Application emulators
from two application domains are used - analysis of remotely sensed data and biomedical imaging.

2

C1

C2

C3

C4

C1

C2

C3

NETWORK

Repositories
Distributed StorageProcessors

Processors

F1 F2

F3 F4

F5 F6

F7 F8

F9

F1 F1

F10

F11

F12

F13

Data Transfer from remote storage

Data Transfer
across clusters

F4

Disks

Disks

Compute Cluster 1

Data Transfer from remote storage

F1 F2 F4

F4 F5 F7

F6 F8

Compute Cluster 2

F10

F13 F9

F12

F1

NETWORK

NETWORKF1 F3 F6

Figure 1: Scheduling problem.
2 Problem Definition
We target batches which consist of independent sequential programs. Each task requests a subset
of data files from a dataset and can be executed on any of the nodes in the compute cluster. The
data files required by a task should be staged to the node where the task is allocated for the task
to execute correctly. The tasks in the batch may share a number of files. Therefore, a file may
be required to be transferred to multiple different nodes. A file could be staged to a node by
transferring it from one of its multiple possible replicas. In other words, it may be retrieved either
from remote storage systems or from another compute node which already has the file. We assume
a single port model wherein multiple requests to the same node are serialized and that a node can
receive a file after it has finished storing the previously received file on local disk. Formally, the
scheduling problem can be stated as follows:

• Given a network topology which is basically a graph G = (V, E) where V represents the
nodes in the system and E represents the edges connecting them. The overall topology may
encompass multiple heterogeneous storage/ compute clusters but we hide the distinction
between nodes belonging to different clusters by abstracting them as vertices in the overall
platform graph. We assume that the Graph G is connected which means that there is a
path between every pair of nodes possibly spanning multiple other nodes. Furthermore we
employ a store and forward model of file transfer which implies that if a file f` needs to be
transferred from a node vi to a non-adjacent node vj , then the file would be routed along
one of the multiple possible paths between vi and vj . In our model, a copy of the file is left
in each intermediate node thereby increasing the number of replicas of each file leading to
potentially higher parallelism for other requests.

3

• The input to the system is a file transfer request set represented by the set R = {< f`, vi >} ,
which means that the file f` needs to be transferred to the node vi

• The scheduling system also has access to an initial mapping of files onto the nodes. The
mapping of files to nodes (storage and/or compute nodes, if the file has been replicated on
a compute node for a previous batch) is represented by the set D = {< f`, vj >} , which
means that the file f` is initially present on the node vj .

Our objective is, given a set of file transfers where each file request is a two tuple < f`, vi >

consisting of a file id and a destination node, and a network topology which is basically a graph
G = (V, E) where V represents the nodes in the system and E represents the edges connecting
them, to find the complete schedule which comprises of a set of four tuples < vi, vj, f`, t > , each
tuple consisting of a source node, a destination node, a file id corresponding to the file being
transferred and the file transfer start time. This has to be accomplished with the overall goal of
minimizing the overall file transfer completion time.

Fig 1 shows an illustration of the problem with two compute clusters and a set of distributed
storage repositories. The figure shows the existence of multiple replicas of each file at different
locations either of which can be used to stage the file to its associated destinations.

We have evaluated our approach using application scenarios from two application classes;
analysis of remote sensing data and biomedical image analysis: (1) Satellite data processing.
Remotely sensed data is either continuously acquired or captured on-demand via sensors attached
to satellites orbiting the earth [5]. Datasets of remotely sensed data can be organized into multiple
files. Each file contains a subset of data elements acquired within a time period and a region of the
earth. When multiple scientists access these datasets, there will likely be overlaps among the set of
files requested because of ”hot spots” such as a particular region or time period that scientists may
want to study. (2) Biomedical Image Analysis. Biomedical imaging is a powerful method for
disease diagnosis and for monitoring therapy. State-of-the-art studies make use of large datasets,
which consist of time dependent sequences of images from multiple imaging sessions. Systematic
development of image analysis techniques requires an ability to efficiently invoke candidate image
quantification methods on large collections of images. A researcher may apply several different
image analysis methods on image datasets to assess ability to predict outcome or effectiveness of
a treatment across patient groups.

3 Related Work
Jain et.al. [16] model scheduling of I/O operations (with certain assumptions) as a bipartite graph
coloring problem with two separate sets of nodes namely, disks and processors. However, they
consider a very simplistic model where all files are of the same size and all transfers take a unit
time. Our work is in the context of a generic platform consisting of a set of heterogeneous sites
with different interconnection bandwidths and does not have such assumptions on file sizes or
transfer times.

Kosar et al. [20] propose STORK, a specialized scheduler for data placement activities on the
Grid. The scheduler allows check-pointing and monitoring of data transfers as well as use of DAG
schedulers to encapsulate dependences between computation and data movement. In this paper,

4

we focus on modeling the system topology and heterogeneity as well as the global information of
a set of file requests to make efficient collective file transfer scheduling decisions. Therefore, our
work is complementary to STORK and can be applied in conjunction with it. The work of Giersch
et al. [12], [13] addressed the problem of scheduling a collection of tasks sharing files onto het-
erogeneous clusters. Their work focused mainly on task mapping and they proposed extensions to
the well-known MinMin heuristic [15] to lower the cost of scheduling while achieving scheduling
quality (i.e., batch execution time) similar to that of MinMin. In this paper, we focus on the file
transfer scheduling as opposed to task mapping and propose efficient ways to do it.

GridFTP [2] is a widely used protocol which enables secure, reliable and high performance data
movement. It facilitates efficient data transfer between end-systems by employing techniques like
multiple TCP streams per transfer , striped transfers from a set of hosts to another set of hosts and
partial file transfers. SRB [3] is a system which provides a uniform interface to access distributed,
heterogeneous storage resources. The storage resources could be anything ranging from filesys-
tems, databases to archival storage devices like tapes. The scheduling algorithms proposed in this
work can act as middlewares which lie between SRB and GridFTP in the hierarchy of the overall
data transfer mechanism. In other words, a scheduling system accepts a bunch of requests from a
user-interacting system like SRB and sends commands to a lower level protocol like GridFTP to
perform the data transfers.

4 Problem Complexity
Definition 1 The chromatic index of a graph G = (V, E) is defined as the minimum number of
colors required to color the edges of the graph such that no two adjacent edges have the same
color.

Theorem 1 Given an arbitrary graph G = (V, E) , determining its chromatic number is NP −
complete [14].

Theorem 2 The optimization problem defined in Section 2 is NP − complete .

Proof We prove the theorem by considering a simplified version of the problem where all files
are of the same size and all the links have same bandwidth. Furthermore, let us assume that each
file transfer takes one unit of time to finish. We also assume that for every input request tuple
< f`, vi > , we have determined the path of file transfer from one of the multiple possible sources
of the file to the destination node. Let Path`i denote the file transfer path of the tuple < f`, vi >

in the set of pending input requests. Path`i consists of a set of nodes vi1 ,vi2 vik where the
first node in the path vi1 is one of the multiple possible sources of file and the last node is the
respective destination node for the corresponding tuple in the input request set. The optimization
problem is to schedule the set of file transfers for each input request to minimize the total file
transfer completion time. An edge coloring of a file transfer graph, where each edge of the graph
represents a file transfer, is equivalent to generating the entire schedule since edges with the same
color can start and finish at the same time. The makespan of the schedule, therefore, equals the
chromatic number of the file transfer graph. In other words, the aforesaid simplified version of the

5

F4 F2
Disk Disk Disk Disk

Node Node Node Node 1

1

1
1

2

2

2

4
3

3

3

0

File Transfer Request SetTopology of the system

Fileid Destination

F1F3

C0 C1 C2 C3

Figure 2: Topology of the system and the file transfer request set.
problem is equivalent to finding the chromatic number of a graph. Finding the chromatic number
of an arbitrary graph G = (V, E) has been proven to be NP − complete [14]. Therefore, the
given problem is also NP-complete. Since the simplified instance of the problem is NP-complete,
the general problem is also NP − complete .

5 Scheduling Schemes
In Sections 5.2 and 5.3, we talk about our proposed schemes for scheduling. Section 5.2 proposes
a 0-1 integer programming formulation of the scheduling problem. Section 5.3 proposes a graph
matching based heuristic for the file transfer scheduling problem. In the section 5.1, we discuss a
previously proposed scheduling scheme to solve the aforesaid scheduling problem.

5.1 Insertion Scheduling Based Approach
Giersch et al. [12] employ an insertion scheduling scheme to schedule file transfers. In our past
work [19], we developed a Gantt chart based heuristic based on a similar idea which is applied
in the conjunction with the task mapping schemes. The basic idea was to memorize the duration
and the start time of file transfers for each link and use this information to generate schedules for
pending requests.

The transfer completion time to transfer a file f` from a node vi to a node vj , TCT`ij is
estimated as the sum of the earliest time a transfer can start and the actual transfer time (size of
f` divided by the bandwidth of the link between vi and vj). At each step, the algorithm chooses
a fileid, destination pair < f`, vk > and schedules the transfer of file f` to the node vk . To
accomplish this, it finds the minimum transfer completion time TCT of each file in the input
request set on its respective destination node and among them chooses the < f`, vk > pair with
the minimum completion time. This is accompanied by reserving time slots on the selected source
of the file as well as the destination node. This process is then repeated until all the files have
been scheduled to their respective destinations. Note that this is the same principle as applied in
MinMin.

Fig 2 shows an example instance of the scheduling problem. It shows four sites connected to
each other in the form of a linear topology. Each of the sites has one file initially available on
it. The file transfer request set shows a set of file requests and their respective destinations. We

6

assume that the transfer time of each file on any of the links is 1 unit. Fig 3 (a) shows the schedule
obtained by running the Insertion scheduling algorithm on the aforesaid problem instance. The file
transfer completion time obtained is 7 units of time.

5.1.1 Complexity Analysis of Insertion Scheduling:

Consider the topology graph G = (V, E) representing the system. The input is a file transfer
request set which comprises of a set of two tuples. Each two tuple < f`, vi > denotes a fileid and
the corresponding destination node. The computation of the minimum transfer completion time of
a file on a destination node in a general topology network requires running a variant of Dijkstra’s
shortest path algorithm to find which one of the multiple possible sources to stage the file from.
We modify the Dijkstra’s algorithm suitably to take into account the wait times of the source and
the destination nodes as well as the bandwidth of the links. For a file f` under consideration, the
Dijkstra’s algorithm needs to be run from each of the nodes already containing the file by choosing
them as source nodes for the algorithm. The complexity of Dijkstra’s shortest path algorithm is
O(|E| + |V |log(|V |)) . The complexity of finding the minimum transfer completion time of a file
f` is therefore, equal to O(|V | × (|E| + |V |log(|V |))) . To find the < fileid, destination > pair
with the best transfer completion time, the computation of minimum transfer completion time has
to be done for all the pending file requests. Therefore, the complexity of each step in the algorithm
is O(|R|×|V |×(|E +|V |log(|V |))) . Finally, the complexity of the insertion scheduling algorithm
is O((|R|2) × |V | × (|E| + |V |log(|V |))) .

5.2 0-1 Integer Programming-based Approach
In the following discussion we use subscripts i and j for nodes, e for edges, ` for files and t

for time. We represent time in discrete units and the smallest unit of time represents the least
time taken to transfer a file from a source node to a destination node among all files and node
pairs. Before we present the IP formulation, we briefly discuss the concept of the time-expanded
network [10] and its construction in the context of our problem. Time-expanded networks have
been defined in the context of network flows over time. The simplest version of a flows over time
problem involves a network with capacities and transfer times assigned to its edges and the goal
is to push the maximum amount of flow from a source node to a sink node within a given time
T . A time-expanded network captures the temporal aspects of this problem in such a manner that
flows over time in the original network can be treated as just flows in the time-expanded network.
Our problem has a similar flavor to a multi-commodity flow over time problem in that it involves
transfer of multiple different files from multiple sources to multiple destinations so as to minimize
transfer completion time.

Construction of the time-expanded network in our context. Let F is the set of files belong-
ing to the file transfer request set R . Let T ∗ denote the upper bound on the total completion time
of all the file transfers. For each file f` ∈ F , we construct a time expanded network G′

l = (V ′
l , E

′
l)

as follows. For each node vi ∈ V and each time t = 0, ..., T ∗ , we add a vertex vit to the graph
G′

l . For each undirected edge e = {vi, vj}, e ∈ E connecting any two nodes vi and vj , T imelij

represents the transfer time of file f` on the link e = {vi, vj} . For each edge e = {vi, vj} and

7

t=1

t=2

t=3

t=0

t=4

t=5

t=6

F1 F2 F3 F4

2 3

3 2

1 2

denotes the file transfer from node a to node b

1 0

ba

0 1

1 2

12

12

t=1

t=2

t=3

t=0

t=4

t=5

t=6

F1 F2 F3 F4

denotes the file transfer from node a to node b

1 2

2 3

1 0

ba

0 123

12

12

1 2

(a) (b)
Figure 3: (a) Schedule obtained by Insertion scheduling. and (b) Schedule obtained by the match-
ing based approach.

time instants t and t′ such that t′ = t + T imelij , we add the directed edge (vit, vjt′) to the time
expanded network G′

l if t′ ≤ T ∗ .

5.2.1 0-1 IP formulation

The objective function of the IP formulation is to the minimize the overall file transfer time under
a set of constraints. It solves for the following set of variables. Let X`it be a binary variable where
X`it = 1 , if file f` is available on node vi at time t , and 0 otherwise. Let Y`e be a binary variable
where Y`e = 1 , if the edge e in the time expanded network G′

l is used to transfer the file f` , and
0 otherwise. Let Busyt be a binary variable where Busyt = 1 , if there is a file transfer which is
finished at time t or a later point in time.

Constraints
At t=0, certain files are present on certain nodes.

(∀`)(∀i, < f`, vi >∈ D)X`i0 = 1 (1)
Let I`it be the set of directed edges incident on the node vit in the time-expanded network G′

l .
Let O`it be the set of directed edges outgoing from the node vit in the time-expanded network G′

l .

I`it = (∀j, j 6= i)(∀t′, t′ ≤ t)(e = (vjt′ , vit), e ∈ Eexp,l) (2)

O`it = (∀j, j 6= i)(∀t′, t′ ≥ t)(e = (vit, vjt′), e ∈ Eexp,l) (3)
A file f` is present on a node vi at time t either if its already present on the node at time t − 1

or due to the file transfer of the file f` to the node vi from one of the nodes vj already having the
file such that the file transfer is finished at time t .

(∀`)(∀i)(∀t)X`it = (
∑

(∀e,e∈I`it)

Y`e) + X`it−1 (4)

8

At time t = T ∗ , each file must be present at its respective destination nodes.

(∀`)(∀i, < f`, vi >∈ R)X`iT ∗ = 1 (5)

A file f` can be transferred from the node vi at time t only if its present on the node vi at time
t . In addition, atmost one outgoing arc is allowed from a node vi at time t .

(∀`)(∀t)(
∑

(∀e,e∈O`it)

Y`e) ≤ X`it (6)

A file f` once staged to a node vi remains available on the node.

(∀`)(∀i)(∀t)X`it ≤ X`it+1 (7)

The aforementioned constraints are defined for each of the time-expanded network correspond-
ing to each unique file. The interaction between the different time-expanded networks comes from
the following capacity constraints.

Each node vi can be involved in atmost one send or receive at a time t . Let C`it be the set
of all incoming and outgoing arcs of the time-expanded network G′

l that would make the node vi

busy during the time [t, t + 1) . Note that this includes all arcs that start at time t′ ≤ t , end at a
time t′ ≥ (t + 1) , and having vi as its source or target node.

(∀t)(∀i)(
∑

(∀`)(∀e,e∈C`it)

Y`e) ≤ Busyt (8)

Objective function.
The objective is to minimize the total file transfer time FileT ransferT ime .

FileT ransferT ime =
∑

(∀t)

Busyt (9)

The objective function is such that the network may be busy for, say, 5 time steps with Busy1 =
... = Busy5 = 1 , be idle for the next 10 time steps, Busy6 = ... = Busy15 = 0 , and finishing
the transfer in the next 2 time steps, Busy16 = Busy17 = 1 . This would lead to objective value 7,
which is seemingly wrong since the network is busy even at time t = 17 . To address this problem,
we introduce the following constraint.

(∀t)Busyt ≥ Busyt+1 (10)

The IP formulation effectively exploits the global information comprising of the files to be
transferred and the topology of the network to yield the entire schedule. Figure 4(a) shows the
directed time-expanded network for file F1 for the problem instance of Figure 2. Since the overall
file transfer completion time obtained by the Insertion scheduling heuristic is 7 time units, therefore
we set T ∗ to be 7. The IP formulation gives an overall completion time of 6 units as shown by the
resultant schedule in the Figure 4(b).

9

C3

C0 C1 C2 C3

Time t=0

Time t=1

Time t=2

Time t=5

Time t=3

Time t=4

Time t=6

Time t=7

C3C2C1C0

C0 C1 C2 C3

C0 C1 C2 C3

C0 C1 C2 C3

C0 C1 C2 C3

C0 C1 C2

C3C2C1C0

t=1

t=2

t=3

t=0

t=4

t=5

F1 F2 F3 F4

2 3

1 2

3 2

01

12

1 2

ba denotes the file transfer from node a to node b

12

0 1

(a) (b)
Figure 4: (a) Time expanded Network for file F1. and (b) Schedule obtained by the IP based
approach.

5.3 Max-Weighted Matching Based Scheduling Scheme (MMSS)
The MMSS is an iterative, dynamic algorithm and employs max-weighted matching heuristic as
illustrated in Algorithm 1. For a given undirected graph G = (V, E) , we define the set M ∈ E as
a matching of Graph G , if no two edges in M have a common vertex. For edge-weighted graphs,
the weight of the matching is the sum of the weights of the edges which form the matching. A
maximum weighted matching is defined as the matching of maximum weight.

The proposed scheduling algorithm is a dynamic scheduling algorithm that uses max-weighted
matching as a building block to realize the schedule. The input as mentioned in Section 5.1 is a file
transfer request set which comprises of a set of two tuples . Each two tuple < f`, vi > denotes a
< fileid, destination > . Algorithm 1 outlines the matching heuristic. The goal of the algorithm
is to minimize the overall file transfer completion time.

The algorithm proceeds in iterations. In each iteration, the algorithm creates a file transfer
graph G′ = (V, E ′) whose vertices v′ ∈ V correspond to the nodes in the system and whose
edges e′ correspond to file transfers. Each input request can possibly consist of multiple hops,
i.e., a set of intermediate nodes can be used to transfer the file to its final destination. An input
request < f`, vi > is considered as pending, if the file f` is not yet present on the node vi . For
each such pending request, the algorithm computes the path Path`i of file transfer which yields
the minimum transfer time for the file f` onto the node vi . This step requires running a variant
of Dijkstra’s shortest path algorithm on the graph G to find which one of the multiple possible
sources to stage the file from. We modify the Dijkstra’s algorithm to take into account the wait
times of the source and the destination nodes as well as the bandwidth of the links. The file
transfer corresponding to the first hop of the path Path`i is then added as an edge to G′ between
the corresponding pair of vertices in G′ . Note that for a multi-hop request, the first hop changes
with time as the file gets closer to its destination node. Since multiple file transfer requests can be

10

associated with the same source and destination node, therefore, each pair of vertices in the file
transfer graph can possibly have multiple edges between them. The weight of an edge in the file
transfer graph corresponding to an input request is 1

TCT
where TCT is the expected minimum

completion time of the request. The idea behind this weight assignment is to give higher priority to
file transfers which can finish early. Finally, the algorithm employs max-weighted graph matching
on the file transfer graph to obtain a set of non-contending ready file transfers and schedules them.
This procedure works iteratively until all the file transfers have been scheduled.

Algorithm 1 Maximum Weighted Matching based Scheduling Heuristic
Require: Topology denoted by G = (V, E) and an input request set consisting of < f`, vi >

pairs
1: while there exists a pending request do
2: for each pending request < f`, vi > do
3: Run the Modified Dijkstra’s algorithm. Let Path`i denote the file transfer path which

yields the earliest completion time for the request < f`, vi > .
4: Create a file transfer graph G′ = (V ′, E ′) as follows.
5: for each pending request < f`, vi > do
6: Let nodes vi1 and vi2 comprise the first hop of the file transfer path Path`i .
7: V ′ = V ′ ∪ {vi1, vi2} .
8: Add an edge with weight 1

TCT
between vi1 and vi2 in G′ . Here, TCT denotes the

minimum completion time of the request
9: Run the Max-weighted matching algorithm on the Graph G′ to get a Matching

10: Schedule the chosen set of edges belonging to the Matching

Fig 3(b) shows the schedule obtained by running the matching based algorithm on the aforesaid
problem instance. The file transfer completion time obtained is 7 units of time.

5.3.1 Complexity Analysis of the Matching Heuristic:

Edmonds et al. [7] proposes a O(|V |4) algorithm for finding maximal matchings in graphs. We
employ Gabow’s implementation of the Edmond’s algorithm for computing maximal matching on
graphs [11]. The complexity of the Gabow’s implementation is O(|V |3) .

Before we go furthur, we analyze an iterative graph matching procedure for a Graph G . The
analysis is used to compute the run-time complexity of the matching based scheduling approach.

Algorithm 2 shows an iterative matching algorithm which at each step, chooses a different set
of edges of a Graph G such that those edges constitute a matching and marks all those edges. The
set of edges e ∈ E chosen at each step constitute disjoint sets.

Theorem 3 Given a Graph G = (V, E) with atmost one edge for every vertex pair , the number of
times a maximal matching algorithm needs to be run on the Graph G in order to cover all its edges
is O(|V |) . In other words, the number of iterations of the while loop in Algorithm 2 is O(|V |) .

Proof Consider a specific instance where the Graph G = (V, E) is a clique. A clique consists of
|V |×(|V |−1)

2
edges. The set of edges of a clique is basically the union of |V |−1 sets of |V |

2
edges each

11

Algorithm 2 Iterative Matching
Require: Graph G = (V, E)

1: Unmark all the edges of the graph G

2: while There exists an edge e ∈ E which is unmarked do
3: Create a Graph G′ = (V ′, E ′) where V ′ = V and E ′ consists of edges e ∈ E such that e

is unmarked
4: Run a maximal matching algorithm on the Graph G′ to get a Matching M

5: Set the chosen set of edges which constitute the Matching M as marked

such that for each edge set of size |V |
2

, no two edges belonging to it share a common vertex. Each
such edge set, therefore, constitutes a matching. Each step of the algorithm 2, therefore, chooses
|V |
2

edges which form a matching. Since the number of such edge sets is |V | − 1 , therefore, the
number of steps required to cover all its edges is |V | − 1 . For general graphs G = (V, E) , where
E ≤ |V |2 , the complexity can therefore be atmost O(|V |) .

Corollary 1 Given a Graph G = (V, E) with atmost |K| edges for every vertex pair , the number
of times a maximal matching algorithm needs to be run on the Graph G in order to cover all its
edges is O(|K| × |V |) .

For a file transfer input request set R and a platform graph G = (V, E) , each input request can
atmost require O(|V |) hops in the platform graph. Therefore, the total number of file transfer edges
can atmost be O(|R|×|V |) . In the worst case, each file transfer request can involve the the transfer
of files through the same set of edges in the graph G . Therefore, there can be atmost O(|R|) file
transfer request edges between any pair of vertices in the worst case. By applying the aforesaid
theorem and the corollary, we can prove that the matching algorithm is run atmost O(|R|× |V |) to
cover all the file transfer request edges thereby obtain the complete schedule. Therefore, the worst
case complexity of the matching based scheduling heuristic is O((|R|) × (|V |4)) .

The number of file transfer requests |R| is typically orders of magnitude higher than the number
of vertices |V | in the platform graph G . Therefore, in practice, the matching based heuristic is
expected to perform much faster as compared to the Insertion scheduling approach explained in
Section 5.1.

6 Experimental Results
In this section, IP refers to the integer programming approach proposed in Section 5.2, Matching

refers to the graph matching based approach proposed in Section 5.3 and Insertion refers to the
insertion scheduling approach explained in Section 5.1. We implement another heuristic which
acts as a baseline scheduling scheme for comparison. The heuristic is called as Indep Local and
is a relatively simpler scheduling scheme where each destination node knows the the set of files it
needs and makes requests for each of them one by one. The destination nodes acting as clients do
not interact with each other before making their respective requests and the centralized scheduler
ensures that contending requests are serialized.

The proposed IP approach used an optimization technique [9] in conjunction with the well
known solver called ILOG-CPLEX [1] available through the NEOS Optimization Server [6]. For

12

the purpose of the experiments, the upper bound on the overall file transfer completion time T ∗

was set to be value obtained by the Matching approach. For fair comparison, the scheduling time
of the Integer Programming approach equals the sum of the time taken by the Matching approach
and the time taken by the IP solver. Since the feaspump solver gives feasible solutions which need
not be optimal, therefore we apply binary search in conjunction with the solver to get the optimal
value of the objective function.

For evaluation, we compared the performance of the various scheduling schemes under a vary-
ing set of scenarios covering multiple job-file sharing patterns and different topologies. We con-
sider three different kinds of topologies, namely fully connected topologies which can be com-
posed with Infiniband fabrics, bipartite topologies and random topologies. For the workloads, we
employ both randomly generated workloads as well as workloads derived from two application
classes: satellite data processing and biomedical image analysis. To generate datasets for the satel-
lite data processing application (referred to here as SAT), we employed an emulator developed
in [23]. The application [5] operates on data chunks that are formed by grouping subsets of sensor
readings that are close to each other in spatial and temporal dimensions. These chunks can be
organized into multiple files. In our emulation, we assigned one data chunk per file. A satellite
data analysis task specifies the data of interest via a spatio-temporal window. For the image analy-
sis application (referred to here as IA), we implemented a program to emulate studies that involve
analysis on images obtained from MRI and CT scans (captured on multiple days as follow-up stud-
ies). An image dataset consists of a series of 2D images obtained for a patient and is associated
with meta-data describing patient and study related information (in our case, we used patient id
and study id as the meta-data). Each image in a dataset is associated with an imaging modality and
the date of image acquisition, and is stored in a separate file. An image analysis program can select
a subset of images based on a set of patient ids and study ids, image modality, and a date range.

For SAT, the 250GB dataset was distributed across the storage nodes using a Hilbert-curve
based declustering method [8]. Each file in the dataset was 50 MB. For IA, the 1 Terabyte dataset
corresponded to a dataset of 2000 patients and images acquired over several days from MRI and
CT scans. The sizes of images were 10 MB and 100 MB for MRI and CT scans, respectively.
Images for each patient were distributed among all the storage nodes in a round robin fashion.

To generate the input file request set for the two application domains, we apply the hypergraph
partitioning based task-mapping technique [19] to map a batch of tasks onto a set of compute
nodes. Since each task is associated with a set of files it needs, therefore, the task mapping pro-
vides information about the respective destination nodes for each file. Moreover, since the task
partitioning is locality conscious, therefore, the number of different destination nodes for each file
is very low.

We conducted our experiments using a memory/storage cluster at the Department of Biomed-
ical Informatics at the Ohio State University. The cluster consists of 64 nodes with an aggre-
gate 0.5 TBytes of physical memory and 48TB of disk storage. These nodes are connected to
each other through Infiniband. We also used simulations to understand the performance of the
various scheduling schemes on different topologies. We ran our simulations using the Simgrid
Toolkit [4, 21]. This toolkit implements event-driven simulation of applications on heterogeneous
distributed systems. It models a resource by two performance characteristics: latency (time to

13

 0

 100

 200

 300

 400

 500

 600

 700

 800

To
ta

l t
ra

ns
fe

r t
im

e
(s

ec
)

#nodes

Random Workload

4 8 12

IP
Matching
Insertion

Indep_local

Figure 5: Performance of all schemes for a randomly generated workload

 0

 50

 100

 150

 200

 250

 300

 350

To
ta

l t
ra

ns
fe

r t
im

e
(s

ec
)

Level of Heterogeniety

Varying Network Heterogeniety

1:1 1:2 1:3

IP
Matching
Insertion

Indep_local

 0

 100

 200

 300

 400

 500

 600

 700

 800

To
ta

l t
ra

ns
fe

r t
im

e
(s

ec
)

#nodes

Bipartite topology

8 12 16

IP
Matching
Insertion

Indep_local

(a) (b)
Figure 6: (a) Performance of all schemes with varying network heterogeneity, (b) Performance of
all schemes by employing a bipartite platform graph

access the resource) and service rate (number of work units performed per time unit.
Fig 5 shows the comparison across the scheduling schemes in terms of the overall file transfer

time(secs). These experiments were conducted using 4, 8, 12 compute nodes on randomly gener-
ated file request workloads by employing Mpich via tcp(ethernet). The initial distribution of files
on the nodes was also chosen as random. The input request set consisted of around 50 file transfers
each involving 1GB files. The results show that the IP scheme performs the best. This is because
the IP formulation is able to integrate the global information of the file transfer request set and the
platform topology information by incorporating it into its goal function of minimizing the overall
file transfer time. It therefore, acts as a lower bound on the overall file transfer time. The matching
based approach Matching performs quite similar to the previously proposed insertion scheduling
approach Insertion . This is because, the matching based approach leads to a contention mini-
mizing schedule since the graph matching ensures that each at step, a set of non-conflicting file
transfers are chosen to execute. Indep local performs the worst as expected.

Fig 6(a) shows the performance of the algorithms in terms of overall file transfer time (secs)

14

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Ti
m

e
(s

ec
)

#compute nodes: #storage nodes

IA - Varying number of nodes

4:6 8:6 12:6 16:6

Matching: Non-overlapped sched time
Matching: Transfer time

Insertion: Non-overlapped sched time
Insertion: Transfer time

Indep_local: Non-overlapped sched time
Indep_local: Transfer time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Ti
m

e
(s

ec
)

Number of file transfers

IA - Varying number of transfers

300 600 900 1200 1600

Matching: Non-overlapped sched time
Matching: Transfer time

Insertion: Non-overlapped sched time
Insertion: Transfer time

Indep_local: Non-overlapped sched time
Indep_local: Transfer time

(a) (b)
Figure 7: (a) Performance of different schemes for IA workload with varying number of nodes, (b)
Performance of different schemes for IA workload with varying number of file transfers

on configurations with different degrees of network heterogeneity. This experiment was conducted
over 12 nodes of the cluster by employing Mpich via tcp(ethernet). The workload used for this
experiment is the same one corresponding to the results shown in Fig 5. Since the workload was
random, each of the 12 nodes could possibly act as sources for some files and destinations for
others. (1 : 1) corresponds to the network homogeneous case while (1 : 2) and (1 : 3) correspond
to network heterogeneity cases. We abstracted the platform graph as a fully-connected network
and emulated heterogeneity by randomly choosing half of the links to have double and triple the
communication bandwidth as compared to the remaining links, respectively for the (1 : 2) and the
(1 : 3) cases. The emulation is achieved by transferring proportionally smaller amounts of data
on the faster links followed by locally padding the rest of bytes to the file. The results show that
the performance gap between the IP approach and the other approaches decreases with increasing
levels of network heterogeneity. At low heterogeneity, IP performs better because it explores a
much larger search space of efficient solutions thereby achieving a better global solution. However,
as the extent of heterogeneity increases, the search space of efficient solutions becomes more and
more restricted to faster links and all the schemes take that into account.

Fig 6(b) shows the performance of the scheduling schemes on a bipartite topology platform
graph. This experiment was conducted over 8, 12, 16 nodes of the cluster by employing the
Infiniband interconnect. The bipartite topology was emulated by abstracting the topology as two
distinct subsets of nodes with interconnection links only across the two sets. The workload for
this experiment was a randomly chosen workload with the input request set consisting of multiple
destination node mappings for each file. The size of each file in the workload was equal to 1GB.
The result show expected trends except that the performance of Indep Local is much worse than
the other approaches. This is because each file needs to be sent to multiple different destinations,
thereby leading to increased end-point contention due to multiple simultaneous requests for the
same file.

Figure 7 shows the scalability results with varying number of compute nodes and varying
number of input requests for IA. Since IP takes too long to execute even for moderately-sized

15

 0

 100

 200

 300

 400

 500

 600

Ti
m

e
(s

ec
)

#compute nodes: #storage nodes

SAT - Varying number of nodes

4:6 8:6 12:6 16:6

Matching: Non-overlapped sched time
Matching: Transfer time

Insertion: Non-overlapped sched time
Insertion: Transfer time

Indep_local: Non-overlapped sched time
Indep_local: Transfer time

 0

 500

 1000

 1500

 2000

 2500

Ti
m

e
(s

ec
)

#compute nodes: #storage nodes

IA(Large files) - Varying number of nodes

4:12 8:12 12:12 16:12

Matching: Non-overlapped sched time
Matching: Transfer time

Insertion: Non-overlapped sched time
Insertion: Transfer time

Indep_local: Non-overlapped sched time
Indep_local: Transfer time

(a) (b)
Figure 8: (a) Performance of different schemes for SAT workload with varying number of nodes,
(b) Performance of different schemes for IA workload (large files)with varying number of nodes

workloads, therefore in this figures, we show results only for the other three schemes. To analyze
the scalability of Matching with respect to the number of compute nodes, we ran experiments
with an IA workload consisting of around 250 tasks over 4, 8, 12 compute nodes and 6 storage
nodes. Note that the Figure 7 shows the performance in terms of two metrics, namely the total
file transfer time and the non-overlapped scheduling time. The non-overlapped scheduling time is
the difference between the end-to-end execution time and the total file transfer time, where end-to-
end execution time is defined as the elapsed time between the instant when the scheduler accepts
a batch of requests to the instant when all the requests have been finished. In other words, the
non-overlapped scheduling time is the perceived scheduling overhead.

For Insertion , the end-to-end execution time is simply the sum of the scheduling time and
the total file transfer time. This is because, for Insertion , the centralized scheduler generates the
entire schedule once at the beginning followed by the transfer of files. However, Matching is a
dynamic scheduling approach wherein the scheduler generates the schedule in an iterative fashion
while the file transfers are taking place. Therefore, the non-overlapped scheduling time is negli-
gible and the end-to-end execution time closely matches the overall file transfer time. The base
heuristic Indep local also has negligible scheduling overhead. Figure 7(a) shows that Matching

performs significantly better than Insertion in terms of the end-to-end execution time. This is
because, non-overlapped scheduling time in Matching is very small. In terms of the total file
transfer time, the performance of Matching is quite close to Insertion . Figure 7(b) shows the
results with increasing number of requests for an IA workload. We observe that Matching is able
to perform much better than Insertion . This is because Insertion has a quadratic dependence of
its complexity on the number of requests as opposed to Matching which has a linear dependence.

Fig 8(a) shows the performance results for a SAT workload in terms of the total file transfer
time and the non-overlapped scheduling time. We observe that the Matching scheme outperforms
Insertion by upon 20% in terms of the total file transfer time. In terms of the end-to-end execution
time, Matching does significantly better than Insertion . Fig 8(b) shows the performance results
for a larger IA workload involving transfer of 1GB and 200MB files initially distributed over 12

16

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

To
ta

l t
ra

ns
fe

r t
im

e
(s

ec
)

#nodes

Random topology

8 12 16

IP
Matching
Insertion

Indep_local

 0

 500

 1000

 1500

 2000

Sc
he

du
lin

g
tim

e
(s

ec
)

Number of file transfers

Scheduling overhead

50 100 300 600 900 1200

IP
Matching
Insertion

(a) (b)
Figure 9: (a) Performance of all schemes by employing a random platform graph, (b) Scheduling
overhead for all schemes

storage nodes. The number of compute nodes is varied from 4, 8, 12 to 16 nodes. The results show
expected trends.

Fig 9(a) shows the performance in terms of total file transfer time of the scheduling schemes
on a random topology platform graph consisting of 8, 12 and 16 nodes respectively. These were
obtained by using simulations involving transfer of 1GB files over 100Mbit/sec fast ethernet. The
results show that IP approach performs the best as expected. The performance of the Matching

heuristic is able to match the performance of the Insertion scheduling approach. Fig 9(b) shows the
scheduling times for various schemes. The scheduling time shown is the actual time spent in gen-
erating the schedule. Essentially, it is the sum of the overlapped and the non-overlapped scheduling
times.IP has a high scheduling overhead for larger configurations, due to the exponential com-
plexity of the search. The scheduling time of Insertion is higher than that of Matching for larger
sized workloads, as expected.

7 Conclusions
The paper developed two strategies for collectively scheduling a set of file transfer requests made
by a batch of data-intensive tasks on heterogeneous systems - one approach formulates the prob-
lem using 0-1 Integer Programming by employing the concept of time-expanded networks and
another based on using max-weighted graph matching. The performance results show that the IP
formulation results in the best overall file transfer time. However, it suffers from high scheduling
time. The graph matching based approach results in slightly higher file transfer completion times,
but is much faster than the IP based approach. Moreover, the matching based approach is able to
match the performance of a previously proposed Insertion scheduling approach and at the same
time is much faster than it. Our conclusion is that the IP based approach is attractive for small
workloads, while the matching based approach is preferable for large scale workloads and system
configurations.

17

References
[1] Ilog cplex 9.1. 2004. http://www.ilog.com/.

[2] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link. The globus striped gridftp framework and
server. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, Washington,
DC, USA, 2005. IEEE Computer Society.

[3] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The sdsc storage resource broker. In CASCON ’98:
Proceedings of the 1998 conference of the Centre for Advanced Studies on Collaborative research,
page 5. IBM Press, 1998.

[4] H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. In Proc. of the
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001), pages 430–
441, 2001.

[5] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and J. H. Saltz. Titan: A high-performance
remote sensing database. In Proc. of the 13th International Conference on Data Engineering (ICDE
1997), pages 375–384, Washington, DC, USA, 1997. IEEE Computer Society.

[6] J. Czyzyk, M. P. Mesnier, and J. J. Moré. The neos server. IEEE Comput. Sci. Eng., 5(3):68–75, 1998.

[7] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

[8] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Proc. of the 8th ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems (PODS 1989), pages 247–252, New
York, USA, 1989.

[9] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Math. Program., 104(1):91–104, 2005.

[10] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static flows. Operations
Research, 6(3):419–433, 1958.

[11] H. N. Gabow. An efficient implementation of edmonds’ algorithm for maximum matching on graphs.
J. ACM, 23(2):221–234, 1976.

[12] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks sharing files from distributed repositories. In
Euro-Par 2004: Parallel Processing: 10th International Euro-Par Conference, volume 3149 of Lecture
Notes in Computer Science, pages 246–253, Sept. 2004.

[13] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks sharing files on heterogeneous master-slave
platforms. In PDP’2004, 12th Euromicro Workshop on Parallel, Distributed and Network-based Pro-
cessing, pages 364–371, 2004.

[14] I. Holyer. The np-completeness of edge-colouring. SIAM Journal on Computing, 10(4):718–720,
1981.

[15] O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent tasks on nonindentical proces-
sors. Journal of the ACM, 24(2):280–289, Apr 1977.

18

[16] R. Jain, K. Somalwar, J. Werth, and J. Browne. Heuristics for scheduling I/O operations. IEEE
Transactions on Parallel and Distributed Systems, 8(3):310–320, Mar 1997.

[17] G. Khanna, T. Kurc, U. Catalyurek, P. Sadayappan, and J. Saltz. A data locality aware online schedul-
ing approach for i/o-intensive jobs with file sharing. In Proceedings of the 12th International Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP 2006), 2006.

[18] G. Khanna, N. Vydyanathan, U. Catalyurek, T. Kurc, S. Krishnamoorthy, J. Saltz, and P. Sadayappan.
Task scheduling and file replication for data-intensive jobs with batch-shared i/o. In Proceedings of
the The 15th IEEE International Symposium on High Performance Distributed Computing (HPDC’06),
2006.

[19] G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek, P. Wyckoff, J. Saltz, and P. Sadayappan. A
hypergraph partitioning based approach for scheduling of tasks with batch-shared i/o. In CCGRID
’05: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’05) - Volume 2, pages 792–799, Washington, DC, USA, 2005. IEEE Computer Society.

[20] T. Kosar and M. Livny. Stork: Making data placement a first class citizen in the grid. In ICDCS
’04: Proc.of the 24th International Conference on Distributed Computing Systems (ICDCS’04), pages
342–349, Washington, DC, USA, 2004. IEEE Computer Society.

[21] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applications: the simgrid simulation
framework. In Proc. of the IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid 2003), pages 138–145, 2003.

[22] D. Thain, J. Bent, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny. Pipeline and batch
sharing in grid workloads. In Proc. of the 12th International Symposium on High-Performance Dis-
tributed Computing (HPDC 2003), Seattle, USA, pages 152–161, 2003.

[23] M. Uysal, T. M. Kurc, A. Sussman, and J. Saltz. A performance prediction framework for data intensive
applications on large scale parallel machines. In Proc. of the 4th Workshop on Languages, Compilers
and Run-time Systems for Scalable Computers, Lecture Notes in Computer Science, Vol. 1511, pages
243–258. Springer-Verlag, May 1998.

[24] N. Vydyanathan, G. Khanna, T. Kurc, U. Catalyurek, P. Wyckoff, J. Saltz, and P. Sadayappan. Schedul-
ing of tasks with batch-shared I/O on heterogeneous systems. In Heterogeneous Computing Workshop
(HCW’06), Apr. 2006.

19

