
An Approach for Optimizing Latency under Throughput
Constraints for Application Workflows on Clusters

N. VYDYANATHAN , U. CATALYUREK , T. KURC, P. SADAYAPPAN AND J. SALTZ

Technical Report
OSU-CISRC-1/07-TR03

An Approach for Optimizing Latency under Throughput
Constraints for Application Workflows on Clusters.∗

N. Vydyanathan†, U. Catalyurek‡, T. Kurc‡, P. Sadayappan†, J. Saltz‡
† Dept. of Computer Science and Engineering,‡ Dept. of Biomedical Informatics

The Ohio State University

Abstract

In many application domains, it is desirable to meet some user-defined performance requirement
while minimizing resource usage and optimizing additional performance parameters. For example, ap-
plication workflows with real-time constraints may have strict throughput requirements and desire a low
latency or response-time. The structure of these workflows can be represented as directed acyclic graphs
of coarse-grained application tasks with data dependences. In this paper, we develop a novel mapping
and scheduling algorithm that minimizes the latency of workflows that act on a stream of input data,
while satisfying throughput requirements. The algorithm employs pipelined parallelism and intelligent
clustering and replication of tasks to meet throughput requirements. Latency is minimized by exploiting
task parallelism and reducing communication overheads. Evaluation using synthetic benchmarks and
application task graphs shows that our algorithm 1) consistently meets throughput requirements, even
when other existing schemes fail, 2) produces lower-latency schedules, and 3) results in lesser resource
usage.

1 Introduction

Complex application workflows can often be modeled as directed acyclic graphs of coarse-grained
application components with precedence constraints and data dependences. The quality of execution of
these workflows is often gauged by two metrics: latency and throughput. Latency is the time to process
an individual data item through all the components of the workflow, while throughput is a measure of the
aggregate rate of processing of data. It is often desirable or necessary to meet a user-defined requirement
in one metric, while achieving higher performance value in the other metric and minimizing resource
usage. Workflows with real-time constraints, for example, can have strict throughput requirements, while
interactive query processing may have strict latency constraints. To be able to meet requirements and
minimize resource usage is also important especially in settings such as Supercomputer centers where
resources (e.g., a compute cluster) have an associated cost and are contended for by multiple clients.

∗This research was supported in part by the National Science Foundation under Grants #CCF-0342615 and #CNS-
0403342.

Application workflows, such as those in the fields of image processing, computer vision, signal pro-
cessing, parallel query processing and scientific computing, act on a stream of input data [10, 4, 18].
Each task or application component repeatedly receives input data items from its predecessor tasks,
computes on them, and writes the output to its successors. Since multiple data items can be processed in
a parallel or pipelined manner and independent application components can be executed concurrently,
the two metrics, latency and throughput, are distinct.

In this paper, we present a novel approach for the scheduling of such workflows on clusters of homo-
geneous processors. Our algorithm employs pipelined, task and data parallelism in an integrated manner
to meet strict throughput constraints and minimize latency. The algorithm is designed to satisfy the
throughput requirements by leveraging pipelined parallelism and through intelligent clustering and/or
replication of tasks.Pipelined parallelismis the concurrent execution of dependent tasks on different
instances of the input data stream, whiledata parallelismis the concurrent processing of multiple data
items by replicas of a task. Latency is minimized by exploitingtask parallelism, which is the concurrent
execution of independent tasks on the same instance of the data stream, and minimizing communication
costs along the critical path of the task graph.

We compare the proposed approach against two previously proposed schemes: Filter Copy Pipeline
(FCP) [14] and EXPERT (EXploiting Pipeline Execution undeR Time constraints) [7]. Evaluations are
done using synthetic benchmarks and task graphs derived from real applications in the domains of Image
Analysis, Video Processing and Computer Vision [2, 7, 13, 1]. We show that our algorithm is able to
1) consistently meet throughput requirements, even when the other schemes fail, 2) generate schedules
with lower latency, and 3) reduce resource usage.

This paper is organized as follows. The next section gives an overview of the related work and sec-
tion 3 describes the task graph and execution model. Section 4 describes the proposed mapping and
scheduling algorithm and section 5 describes the experimental results. Section 6 presents our conclu-
sions and outlines possible directions for future research.

2 Related Work

Several researchers have addressed the problem of minimizing the parallel completion time (makespan
or latency) of applications in the form of directed acyclic task graphs. As this problem is NP-complete [6],
heuristics have been proposed and a good survey of these can be found in [11]. These algorithms typ-
ically prioritize the tasks using metrics like bottom-level and schedule the tasks in priority order to
processors that allow their earliest start or finish time.

Researchers have also proposed the use of pipelined scheduling for maximizing the throughput of
applications. Lee et al. [12] proposed a three-step mapping methodology for maximizing the through-
put of applications comprising of a sequence of computation stages, each consisting of a set of identical
tasks. Jonsson et al. [9] and Hary and Ozguner [8] discussed heuristics for maximizing the throughput of
directed acyclic task graphs on multiprocessor systems using point-to-point networks, while Yang [19]
presented an approach for resource optimization under throughput constraints. Benoit and Robert [3]
have addressed the problem of mapping pipeline skeletons of linear chains of tasks on heterogeneous
systems and Suhendra et al. [16] have proposed an integrated approach for task scheduling and scratch-
pad memory allocation based on integer linear programming for multiprocessor system-on-chip archi-
tectures. All of these techniques optimize the throughput metric and do not consider replication of tasks.

Though many papers focus on optimizing latency or throughput in isolation, very few address both.

Subhlok and Vondran [15] have proposed a dynamic programming solution for optimizing latency under
throughput constraints for applications composed of a chain of data-parallel tasks. In this paper, we
target more generic applications that can be modeled as arbitrary directed acyclic task graphs. In [14],
Spencer et al. presented the Filter Copy Pipeline (FCP) scheduling algorithm for optimizing latency and
throughput of data analysis application DAGs on heterogeneous resources. FCP computes the number
of copies of each task that is necessary to meet the aggregate production rate of its predecessors and
maps the copies to processors that yield their least completion time. Another closely related work is [7],
where Guirado et al. have proposed a task mapping algorithm called EXPERT (EXploiting Pipeline
Execution undeR Time constraints) that minimizes latency of streaming applications, while satisfying a
given throughput constraint. EXPERT identifies maximal clusters of tasks that can form synchronous
stages that meet the throughput constraint and maps tasks in each cluster to the same processor so as to
reduce communication overheads and minimize latency.

3 Task Graph and Execution Model

An application workflow can be represented as a connected, weighted directed acyclic graph (DAG),
G = (V, E), whereV , the set of vertices, represents non-homogeneous sequential application compo-
nents (tasks) andE, the set of edges, represents precedence constraints and data dependences. There are
two distinguished vertices (tasks) in the task graph: thesource taskwhich precedes all other tasks and
thesink taskwhich succeeds all other tasks.

The task graphG acts on a stream of data, where each task inG repeatedly receives input data items
from its predecessors, computes on them, and writes the output to its successors. The weight of a vertex
(task),ti ∈ V , is its execution time to process a single data item,et(ti). The weight of an edgeei,j ∈ E,
wt(ei,j) is the communication cost measured as the time taken to transfer a single data item of sizedi,j

betweenti andtj. The length of a path in a DAGG is the sum of the weights of the tasks and edges
along that path. Thecritical path of G, denoted byCP (G), is defined as the longest path inG. Thetop
levelof a taskt in G, denoted bytopL(t), is defined as the length of the longest path from the source
task tot, excluding the weight oft. Thebottom levelof a taskt in G, denoted bybottomL(t), is defined
as the length of the longest path fromt to the sink, including the weight oft. Any taskt with maximum
value of the sum oftopL(t) andbottomL(t) belongs to a critical path inG.

The task graph is assumed to be executed on a homogeneous fully connected compute cluster, with
each compute node having local disks. Our algorithm assumes that the execution behavior of the tasks
in the workflow is not strongly dependent on the properties of the input data items. Hence, profiling
the workflow on a few sample data items, gives a reasonable measure of the execution times of the con-
stituent tasks. The system model assumes overlap of computation and communication, as most clusters
today are equipped with high performance interconnects which provide asynchronous communication
calls.

The latency of a task graph scheduled on a set of processors is defined as the time taken to process
a single data item through it. LetG′ denote the DAG that represents the schedule of task graphG on
P processors.G′ can be constructed fromG by adding zero-weightpseudo-edgesbetween concurrent
tasks inG that are mapped to the same processor. These pseudo-edges denote induced dependences.
The latency of this schedule is given by the critical path length ofG′.

Let a task-cluster denote the group of all tasks that are mapped to the same processor. Tasks within
a task-cluster are run in a sequence in the decreasing order of their bottom-levels and iterate over the

instances of the input stream. Therefore, the time taken by a task-cluster to process a single data item
is given by the sum of the execution times of its constituent tasks, i.e.et(Ci) =

∑
∀t∈Ci

et(t). If the
workflow is assumed to act on a stream of independent data items (i.e. processing of each data item is
independent of the processing of other data items), multiple copies (replicas) of a task/task-cluster can
be executed concurrently. Ifnr(Ci) denotes the number of replicas of task-clusterCi andet(Ci) is its
execution time, the aggregate processing rate ofCi, pr(Ci) is given bynr(Ci)

et(Ci)
data items per unit time.

Each replica of a task-cluster is assumed to be executed on a separate processor. For example, assume
that taskst1 andt2 are mapped to task-clusterC, andbottomL(t1) > bottomL(t2) in G′. Let nr(C)
be 2 and let the replicas be mapped to processorsP1 andP2. et(t1) = 10 andet(t2) = 20. Then, on
each of these processors,t1 processes a data item followed byt2. The processing rate of task-clusterC
is 2

(10+20)
.

The data transfer rate of an edgeei,j, dr(ei,j), is 1
di,j

bwi,j

data items per unit time, wherebwi,j =

min(nr(ti), nr(tj)) × bandwidth. Here, bandwidth corresponds to the minimum of disk or memory
bandwidth of the system depending on the location of data and the network bandwidth.nr(ti) denotes
the number of replicas of taskti. As we assume that computation and communication can overlap, the
overall processing rate or throughput of the workflow is determined by the slowest task-cluster or edge,
and is given bymin(min∀Ci

pr(Ci), min∀ei,j
dr(ei,j)).

4 Workflow Mapping and Scheduling Heuristic

Given a workflow-DAGG, P homogeneous processors and a throughput constraintT , our workflow
mapping and scheduling heuristic (WMSH) generates a mapping and schedule ofG onP that minimizes
the latency while satisfyingT . The algorithm consists of three main heuristics, which are executed in
sequence: theSatisfy Throughput Heuristic(STH) to meet the user-defined throughput requirements,
theProcessor Reduction Heuristic(PRH) to ensure the resulting schedule does not require more proces-
sors than are available, and theLatency Minimization Heuristic(LMH) to minimize the latency of the
workflow. In this section, we describe each of these heuristics.

Theorem 1 Given a workflow-DAGG = (V, E) that acts on a stream of independent data items, the
maximum achievable throughputTmax, on P homogeneous processors is given by P∑

t∈V
(et(t))

, where

et(t) is the time taken by taskt to process a single data item.

Proof The minimum amount of work to be done to process one data item throughG is given by∑
t∈V (et(t)). The minimum work to be done per unit time to processTmax data items isTmax ×∑
t∈V (et(t)). Since, we have atmostP processors in the system and all the tasks can be replicated

as they process a stream of independent data items,P = Tmax ×
∑

t∈V (et(t)), which implies thatTmax,
the maximum achievable throughput is P∑

t∈V
(et(t))

.

Tmax can be achieved by mapping all tasks inG to a single task-cluster and makingP replicas, each
mapped to a unique processor. However, this mapping suffers from a large latency as it fails to exploit
parallelism betweenconcurrent tasksin G. Concurrent tasks refers to independent tasks inG that can
be executed concurrently. For the sake of presentation, the rest of this section assumes thatG acts on a
stream of independent data items and hence all tasks can be replicated. However, the heuristics described

Algorithm 1 STH: Satisfy Throughput Heuristic
1: function STH(G, T) . G← workflow DAG, T ← throughput constraint≤ Tmax

2: S ← schedule ofG by priority based list-scheduling
3: L← Latency ofS
4: if 1

L
≥ T then

5: return S
6: else
7: Map each taskti ∈ G to a separate task-clusterCi

8: M ← {Ci | Ci is a task-cluster}
9: if T > 0 then

10: For allCi, nr(Ci)← T × et(Ci)
11: else
12: For allCi, nr(Ci)← 1
13: E ′ ← {ei,j ∈ G | dr(ei,j) < T}
14: while E ′ not emptydo
15: ei,j is an edge inE ′

16: For all task-pairs(ta, tb) ∈ clusterOf (ti)×clusterOf (tj) | ta concurrent totb in
G, add apseudo-edgein G′ originating from the task with the larger bottom-level..
clusterOf (ti) is the task-cluster that contains taskti.

17: For all edgesea,b ∈ G | (ta, tb) ∈ clusterOf (ti)×clusterOf (tj), wt(ea,b) ← 0 in
G′

18: MergeclusterOf (ti) andclusterOf (tj), updateM
19: return < G′, M >

here can be applied when processing of a data item is dependent on the processing of certain other data
items (i.e replication of tasks is not allowed), by enforcing the weight of every task-cluster to be≤ 1

T
,

for a given throughput constraintT ≤ Tmax. Tmax in this case, is the reciprocal of the weight of the
largest task inG.

Algorithm 1 illustrates STH. Given a throughput constraintT ≤ Tmax, STH verifies whether a non-
pipelined low latency schedule, generated by priority-based list-scheduling [11], meets the throughput
requirement. The tasks inG are prioritized in the decreasing order of their bottom-levels and scheduled
in priority order to processors that yield their least completion time. IfL is the latency of this schedule,
the throughput achieved is1

L
. If 1

L
≥ T , STH returns this schedule. Otherwise, the following steps are

executed to obtain a low-latency pipelined schedule that satisfiesT . To generate a pipelined schedule,
each taskti ∈ V is mapped to a separate task-clusterCi. Let the mapping,M denote the set of all
the task-clusters. The number of replicas ofCi, nr(Ci), that is required to satisfyT is computed as
nr(Ci) = T × et(Ci). When there is no throughput constraint,nr(Ci) = 1. For all edgesei,j ∈ E,
whose data transfer rate is< T , STH avoids the communication overhead by merging the task-clusters
containing the incident tasks. When two task-clusters are merged, the DAGG′ representing the new
schedule is constructed fromG by adding zero weightpseudo-edgesbetween concurrent tasks inG that
are now mapped to the same task-cluster. The pseudo-edges originate from the task with the larger
bottom-level. Edges between tasks mapped to the same task-cluster have zero weight inG′. The critical
path length ofG′ represents the latency of this schedule. For example, figure 1 shows a workflow-DAG

Figure 1. (a) Workflow-DAG G, (b) Modified DAG, G′ with tasks T1 and T2 clustered, (c) Modified
DAG, G′ with tasks T1, T2 and T3 clustered and pseudo-edge between T3 and T2.

G and the resulting modified DAG,G′ that reflects the task-clustering and schedule. Figure 1(a) shows
the original workflow-DAG, while in figure 1(b), tasksT1 andT2 are mapped to the same task-cluster,
hence the edge between them is greyed indicating that it now has zero cost. Figure 1(c) showsT1, T2
andT3 in the same cluster, which results in apseudo-edgebeing added fromT3 to T2, asT3 is assumed
to have a larger bottom-level thanT2 in G′. Edges betweenT1, T2 andT1, T3 are greyed, indicating
zero cost.

Following STH, PRH is executed. The total number of processors required to executenr(Ci) copies
of each task-clusterCi, where each copy is mapped to a unique processor, isP ′ =

∑
Ci∈M dnr(Ci)e.

If P ′ > P , PRH merges certain task-clusters and obtains a schedule that uses≤ P processors. Once
a feasible schedule is obtained, LMH is called to optimize the latency. PRH and LMH output a set of
task-clusters and the pipelined schedule is obtained by mapping each replica of a task-cluster to a unique
processor. Tasks within a task-cluster are run in the decreasing order of their bottom-levels and iterate
over the instances of the data stream. We now present PRH and LMH in greater detail.

4.1 Processor Reduction Heuristic (PRH)

PRH recursively merges pairs of task-clusters based on some metric until we get a mapping that uses
≤ P processors.

Theorem 2 If task-clustersCi andCj are merged andPi andPj are the number of processors required
to run the replicas ofCi and Cj respectively, i.ePi = dnr(Ci)e and Pj = dnr(Cj)e, the number
of processors required to run the replicas of the new task-cluster formed that meets the throughput
constraint is eitherPi + Pj or Pi + Pj − 1.

Definition 1 Task-clustersCi andCj are “connected” if there exists some taskta in Ci and some task
tb in Cj such thatea,b is an edge inG.

Definition 2 Task-clustersCi andCj are “not concurrent” if for all pairs of tasks (ta, tb), ta ∈ Ci and
tb ∈ Cj, ta is not concurrent totb in G.

Definition 3 Resource wastage of a task-clusterC is defined asdnr(C)e − nr(C).

Algorithm 2 PRH: Processor Reduction Heuristic
1: function PRH(G′, M) . G′ ← schedule DAG returned by STH,M ← set of task-clusters returned

by STH
2: P ′ =

∑
Ci∈M(dnr(Ci)e)

3: repeat
4: C ′ ← {(Ci, Cj) | Ci ∈M ∧ Cj ∈M ∧ dnr(Ci) + nr(Cj)e < (dnr(Ci)e+ dnr(Cj)e)}
5: while C ′ not empty∧(P ′ > P) do
6: Pick the task-cluster pair(Ci, Cj) from C ′ that yields the largest decrease in latency when

merged. Preference is given to task-clusters that are connected, not concurrent and
which produce the largest resource wastage when merged.

7: For all task-pairs(ta, tb) ∈ Ci × Cj | ta concurrent totb in G, add apseudo-edgein G′

originating from the task with the larger bottom-level.
8: For all edgesea,b ∈ G | (ta, tb) ∈ Ci × Cj, wt(ea,b)← 0 in G′

9: MergeCi andCj and updateM
10: P ′ ← P ′ − 1
11: UpdateC ′
12: if P ′ > P then
13: Pick the task-cluster pair(Ci, Cj) that yields the maximum value ofd(nr(Ci) +

nr(Cj))e − (nr(Ci) + nr(Cj)) and the largest decrease in latency whenCi andCj

are merged.
14: For all task-pairs(ta, tb) ∈ Ci × Cj | ta concurrent totb in G, add apseudo-edgein G′

originating from the task with the larger bottom-level.
15: For all edgesea,b ∈ G | (ta, tb) ∈ Ci × Cj, wt(ea,b)← 0 in G′

16: MergeCi andCj and updateM
17: until P ′ ≤ P
18: return < G′, M >

The pseudo code of PRH is illustrated in Algorithm 2. Step 4 of the algorithm considers all pairs
of task-clusters that when merged would reduce the number of processors used by 1. Among these,
PRH picks the task-cluster pair that yields the largest decrease in latency when merged. To break ties,
preference is given to task-clusters that are connected, not concurrent, and which produce the largest
resource wastage, in that order (step 6). Merging connected task-clusters helps in avoiding some of
the communication costs and merging task-clusters that are not concurrent avoids serializing concurrent
tasks inG. Giving preference to task-cluster pairs that yield a larger resource wastage reduces the
possibility of fragmentation. Steps 5-11 are repeated as long as there are task-cluster pairs that reduce
the processor count andP ′ > P . After all possible task clusterings, if the resource usage is still greater
thanP at step 12, defragmentation is done in steps 13-16 where the task-clusters that produce the largest
resource wastage are merged. To break ties, the one that causes the largest decrease in latency is chosen.
The outer-loop (steps 3-17) are repeated until the resource usage is lesser than or equal toP . At the end
of the processor reduction phase, a mappingM and scheduleG′ is obtained that meets the throughput
constraint and uses≤ P processors.

4.2 Latency Minimization Heuristic (LMH)

LMH is called to refine the mapping obtained by PRH to further optimize the latency. Given a mapping
M and scheduleG′ which meets the throughput constraint and uses≤ P processors, LMH optimizes
the latency by reducing communication overheads along the critical path. The task-clusters inM are
considered by LMH as indivisible macro-tasks. A macro-task therefore, may contain one or more tasks.
The incoming and outgoing edges of a macro-task is the union of the incoming and outgoing edges,
respectively, of the tasks that it contains, without considering edges between tasks belonging to the
macro-task. Hence, the term task in Theorem 3 and Corollary 1 is the same as macro-task in the case
where multiple tasks are mapped to same task-cluster by PRH.

Theorem 3 Let G′ andM denote a schedule and mapping ofG that meets the throughput constraint
and uses≤ P processors. Letei,j be an edge inG′ from task/macro-taskti to tj such that the in-
degree(ti) = in-degree(tj) = 1 and the out-degree(ti) = out-degree(tj) = 1 (i.e. ti andtj are connected
along a linear chain in that order). Lettk be the parent ofti and tl be the child oftj. If wt(ei,j) >
wt(ek,i) + wt(ej,l), it is optimal to mergeti and tj to a single task-cluster, assuming that all tasks can
be replicated. If replication is not allowed,ti and tj can be merged to a single task-cluster only if
et(ti) + et(tj) ≤ 1

T
andei,j satisfies the above condition.

Proof Let us assume that in the optimal mappingMopt that minimizes the latency while meeting the
throughput constraint,ti andtj are mapped to different task-clusters. Consider an alternative mapping
M ′, whereti andtj are pulled out from their respective task-clusters and mapped to a new one. Replica-
tion ensures that the mappingM ′ meets the throughput constraint. For the case when replication is not
allowed, aset(ti)+et(tj) ≤ 1

T
, throughput constraint is satisfied. As the replicas of each task/macro-task

in M , the mapping generated by PRH (the number of replicas of a task/macro-task is 1 when replica-
tion is not allowed) could be run on disjoint subsets of processors using≤ P processors, by applying
theorem 2, any clustering among the tasks/macro-tasks inM will use≤ P processors and will meet the
throughput constraint. Therefore,M ′ uses≤ P processors and meets the throughput constraint. Asti
andtj are mapped to the same task-cluster inM ′, the length of the longest path through them is reduced
by atleastwt(ei,j)−(wt(ek,i)+wt(ej,l)). Thus,M ′ always yields lower latency (ifei,j lies on the critical
path) or same latency (ifei,j does not lie on the critical path) asMopt, which contradicts our assumption
thatMopt was optimal. Hence, mergingti andtj to a single task-cluster is optimal.

Definition 4 The lower bound on the latency of a DAGG is the length of the critical path inG, assuming
all edges have zero weights.

Definition 5 An edge is non-critical if it cannot lie on a critical path inG. An edgeei,j in G is non-
critical if the length of the longest path throughei,j is≤ the lower bound on the latency ofG. Any edge
that is not non-critical is called a critical edge.

Corollary 1 Let G′ and M denote a schedule and mapping ofG that satisfiesT and uses≤ P pro-
cessors. Letei,j be an edge inG′ from task/macro-taskti to tj such that all outgoing edges fromti are
non-critical exceptei,j and all incoming edges toti are non-critical exceptek,i, for some task/macro-
tasktk. Similarly, all incoming edges totj are non-critical exceptei,j and all outgoing edges fromtj are
non-critical exceptej,l for some task/macro-tasktl. If wt(ei,j) > wt(ek,i) + wt(ej,l) and no sub-task of

Algorithm 3 LMH: Latency Minimization Heuristic
1: function LMH(G′, M) . G′ ← schedule DAG returned by PRH,M ← mapping returned by PRH.
2: E∗ ← {ei,j ∈ G′ | ei,j satisfies Theorem 3 or Corollary 1}
3: repeat
4: while E∗ not emptydo
5: ei,j is an edge inE∗

6: For all task-pairs(ta, tb) ∈ clusterOf (ti)×clusterOf (tj) | ta concurrent totb in
G, add apseudo-edgein G′ originating from the task with the larger bottom-level..
clusterOf (ti) is the task-cluster that contains taskti.

7: For all edgesea,b ∈ G | (ta, tb) ∈ clusterOf (ti)×clusterOf (tj), wt(ea,b) ← 0 in
G′

8: MergeclusterOf (ti) andclusterOf (tj), updateM
9: UpdateE∗

10: Pick edge ei,j in CP (G′) that does not increase the latency when
clusterOf (ti) and clusterOf (tj) are merged and has maximum value
of min (wt(ei,j), CPL(G′)− LBL(G)) and minimum value of (|critical-
edges(ti)|+ |critical-edges(tj)|) . CPL(G′)← Critical Path Length ofG′, LBL(G)←
Lower Bound on Latency ofG

11: For all task-pairs(ta, tb) ∈ clusterOf (ti)× clusterOf (tj) | ta concurrent totb in G,
add apseudo-edgein G′ originating from the task with the larger bottom-level.

12: For all edgesea,b ∈ G | (ta, tb) ∈ clusterOf (ti)×clusterOf (tj), wt(ea,b)← 0 in G′

13: MergeclusterOf (ti) andclusterOf (tj) and updateM
14: UpdateE∗

15: until For all edgesei,j in CP (G′), latency increases whenclusterOf (ti) andclusterOf (tj)
are merged

16: return < G′, M >

ti is concurrent to that oftj, it is optimal to mergeti and tj, assuming that all tasks can be replicated.
If replication is not allowed,ti andtj can be merged to a single task-cluster only ifet(ti) + et(tj) ≤ 1

T

andei,j satisfies the above condition.

Algorithm 3 describes LMH. LMH identifies the setE∗ of edges that satisfy Theorem 3 or Corollary 1
(step 2) and merges the task-clusters of the incident tasks (steps 6-8). After merging,E∗ is updated
(step 9). Steps 4-9 are repeated untilE∗ is empty. In steps 10-14, among the edges alongCP (G′) that
do not cause an increase in latency when zeroed-in, LMH zeroes-in the edge with the largest maximum
possible decrease in latency. To break ties, the edgeei,j with the minimum value of the sum of number
of critical edges toti and number of critical edges totj is chosen. After merging,E∗ is updated. The
outer-loop of steps 3-15 is repeated until all edges inCP (G′) cause an increase in latency when zeroed-
in.

LMH in the worse case takesO(|V |+ |E|) steps to choose the set of optimal edges,E∗, andO(|V |2)
steps to merge the incident tasks for each edge inE∗. Choosing the best edge in the critical path for zero-
in and merging the incident tasks takesO(|V |(|V |2 + |E|). Hence overall, LMH takesO(|V |2(|V |2 +
|E|)) steps in the worst case. In PRH, there are atmost as many task-clusters as tasks and estimating
the decrease in latency when two task-clusters are merged takesO(|V |2 + |E|) steps. In the worst case,

all task-clusters are merged (i.e. all tasks are mapped to a single task-cluster and replicated) and hence
PRH takes atmostO(|V |2(|V |2 + |E|)) steps, which is independent ofP . Thus, the overall worst case
complexity of WMSH isO(|V |2(|V |2 + |E|)). For small throughput constraints, if WMSH uses priority-
based list scheduling technique to get a low-latency non-pipelined schedule, the worst case complexity
is O(|V |P + |E|+ |V |log|V |) (O(|V |+ |E|) steps to compute the bottom-levels of tasks,O(|V |log|V |)
steps to sort them andO(|V |P) steps to schedule each task in priority order to the best processor).

5 Performance Analysis

This section evaluates the performance of the proposed workflow mapping and scheduling heuristic
(WMSH) against previously proposed schemes: Filter Copy Pipeline (FCP) [14] and EXPERT (EXploit-
ing Pipeline Execution undeR Time constraints) [7], and FCP-e and EXPERT-e, modified versions of
the above schemes. When FCP and EXPERT fail to utilize all processors and do not meet the through-
put requirementT , FCP-e recursively calls FCP on the remaining processors untilT is satisfied or all
processors are used, while EXPERT-e replicates the task-clusters by dividing the remaining processors
among them in the ratio of their weights. The performance of these algorithms is evaluated using both
synthetic task graphs and those derived from applications, using simulations.

5.1 Synthetic Task Graphs

The algorithms were evaluated using two sets of synthetic benchmarks: 1) Benchmark-I: a set of
randomly generated task graphs with communication delays from [5], and 2) Benchmark-II: synthetic
graphs generated using the DAG generation tool in [17]. Benchmark-I comprises of task graphs with
50 tasks each and comparable computation and communication costs. Benchmark-II comprises of 30
synthetic graphs with number of tasks per task graph varying from 10 to 50. The average out-degree
and in-degree per task was 4. The computation time of each task was generated as a uniform random
variable with mean equal to 30. The communication to computation ratio (CCR) was varied as 0.1, 1
and 10 and the communication cost of an edge was randomly selected from a uniform distribution with
mean equal to 30 (the average computation time) times the specified value of CCR. The data volume
associated with an edge was determined as the product of the communication cost of the edge and the
bandwidth of the underlying network, which was assumed to be a 100 Mbps fast ethernet network.

Figure 2 plots the relative performance of the algorithms for benchmark-I on 32 and 64 processors.
The x-axis is the throughput constraint, which is decreased from the maximum achievable throughput
(Tmax) in steps of 0.25.≈ 0 refers to the case when there is no throughput constraint (or negligibly
small). The y-axis is the average latency ratio. Latency ratio is the ratio of the latency of the schedule
generated by an algorithm to that of WMSH. The missing bars in the graphs indicate that the corre-
sponding algorithm could not meet the throughput requirement.

The results show that WMSH is consistently able to generate schedules that meet the throughput con-
straint. On the other hand, at large throughput requirements (Tmax and 0.75*Tmax), FCP and EXPERT
fail. Though FCP replicates tasks, it computes the number of replicas independent of the number of
processors and fails to refine the number of replicas when it maps multiple tasks to the same proces-
sor. EXPERT does not replicate tasks. The modified versions are designed to overcome some of these
limitations and hence, meet the constraint in some of the cases where FCP or EXPERT fail.

With respect to latencies, we find that WMSH generates lower latency schedules than the other

(a) (b)

Figure 2. Performance on Benchmark-I on (a) 32 processors, (b) 64 processors. The missing bars
indicate that the corresponding algorithm could not meet the throughput requirement.

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1 0.31 0.35 0.4 0.68
0.75*Tmax 1 0.41 0.55 0.53 1
0.5*Tmax 1 0.59 1 0.8 1

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1 0.93 1 0.49 0.94
0.75*Tmax 0.91 0.86 1 0.49 0.94
0.5*Tmax 0.73 0.74 1 0.49 0.94

(a) (b)

Figure 3. Performance on Benchmark-I on 64 processors (a) Average Throughput Ratio, (b) Average
Utilization Ratio

schemes. On 32 processors, FCP generates 27%-29% longer latencies than WMSH, while EXPERT
generates 20%-30% longer latencies when throughput constraint is varied fromTmax to 0.25*Tmax. As
EXPERT creates maximal task-clusters with weights≤ 1

T
, for negligible throughput constraint, it groups

all tasks to a single task-cluster and hence generates large latency schedules. For FCP-e, we used the
smallest of the latencies of all the workflow instances it creates and hence it is similar to that of FCP.
Latency in EXPERT-e is similar to EXPERT, since EXPERT-e only replicates tasks; this improves the
throughput but does not alter the latency. AsP is increased,Tmax increases, and hence, there are more
instances where FCP and EXPERT do not satisfyT . We noticed similar trends at 128 processors.

Figure 3(a) shows the average throughput ratio for the schemes for benchmark-I on 64 processors.
The throughput ratio is the ratio of the throughput achieved by an algorithm to the throughput constraint.
If the achieved throughput is greater than the constraint, the ratio is taken to be 1. We do not show
values for throughput constraints lesser than 0.5*Tmax, as all algorithms meet the requirement. We see
that when FCP and EXPERT fail to meet the throughput requirement, they generate schedules with
throughput atleast 40% and 20% lesser than the constraint, respectively. Figure 3(b) shows the average
utilization ratio for the schemes. The utilization ratio is given by the ratio of the number of processors
used by an algorithm to the total number of available processors. FCP and EXPERT have low resource
utilization, but do not meet the throughput constraint. Among the schemes that generate schedules that
meet the throughput requirement, WMSH is able to produce lower-latency schedules while using lesser
number of processors. For example, at throughput constraint of 0.5*Tmax, utilization of WMSH is 27%
lower than that of FCP-e and 19% lower than EXPERT-e, and it produces latencies 15% and 19% shorter
than FCP-e and EXPERT-e respectively.

As EXPERT does not replicate tasks, we compared its performance with that of WMSH with replica-

(a) (b)

Figure 4. (a) Relative Performance of WMSH, WMSH with replication disabled and EXPERT when
throughput constraint is 1

maxt∈V (et(t))
, (b) Performance on Benchmark-II on 32 processors and

CCR=0.1. The missing bars in (b) indicate that the corresponding algorithm could not meet the
throughput requirement.

(a) (b)

Figure 5. Performance on Benchmark-II on 32 processors and (a) CCR=1, (b) CCR=10. The missing
bars indicate that the corresponding algorithm could not meet the throughput requirement.

tion disabled. Figure 4(a) shows the performance of WMSH, WMSH with no replication and EXPERT
for benchmark-I when the throughput constraint was taken to be the reciprocal of the weight of the
largest task in the DAG. We see that even with no replication, WMSH produces lower latencies than
EXPERT. WMSH with replication shows the least latency as tasks connected by edges with heavy com-
munication cost can be mapped to the same task-cluster and replicated to meet the throughput constraint.
Thus replication not only helps in improving throughput but also minimizing the latency.

To study the impact of communication costs, we evaluated the schemes using bench-mark-II by vary-
ing the communication to computation ratio (CCR) as 0.1, 1 and 10. Figure 4(b) and 5 show the per-
formance of the schemes as the communication to computation ratio is increased. We find that as CCR
increases, there are more instances where FCP, EXPERT and their modified versions do not meet the
throughput constraint, while WMSH always does. This is because, WMSH intelligently avoids heavy
communication costs, by folding the incident tasks to the same task-cluster and replicating this cluster
such that the throughput requirement is met. Though FCP minimizes communication costs in some ca-

pacity by mapping copies of tasks to processors that yield their least completion time, it would still incur
the cost when the processor to which the parent task is mapped is heavily loaded (as mapping the task
to this processor would cause a larger completion time). EXPERT does not replicate and hence cannot
cluster heavy tasks that also have a huge communication cost. The modified versions of the schemes
also cannot completely avoid the communication overheads as they only replicate tasks. Similar to
benchmark-I, we find that WMSH generates the lowest latency schedules. Please note that the average
latency ratios of the modified versions is different from that of the original schemes, since there are some
cases where the original schemes do not meet the throughput constraint while the modified versions do.
With respect to processor utilization and throughput ratio we see similar trends as for benchmark-I.

5.2 Application Task Graphs

We evaluated the schemes using task graphs from applications in the domains of computer vision,
multimedia and medical imaging. We assumed the target system to be a cluster of 2.4 GHz machines
connected by a 10 GigE network. The first in this group is a video-based surveillance application [2]
that analyzes multiple camera feeds from a region to extract information such that “motion”, or detect
suspicious activity. The DAG for this application can be found in [2].

Figure 6 shows the latency ratio and utilization ratio on 32 processors for the video-based surveillance
application. We find that when the throughput requirement is large, only WMSH meets the requirement.
In cases where FCP and FCP-e meet the constraint, they generate schedules with similar latency as
WMSH. As described earlier, when the throughput constraint is negligible, EXPERT and EXPERT-
e map all tasks to the same task-cluster and hence show a larger latency. With respect to resource
utilization, we find that WMSH uses upto 13% lesser processors than the other approaches. Please note
that the blanks in the utilization ratio table are for cases where an algorithm does not generate a schedule
that satisfies the throughput constraint.

Figure 7 shows the performance for the Darpa Vision Benchmark (DVB) [13]. The task graph for DVB
is given in [13]. We find that FCP, EXPERT and their modified versions do not meet the throughput
requirementT , in many instances. In cases where they satisfyT , WMSH produces schedules with
shorter latencies and lower resource utilization than FCP. WhenT is negligible, the schedule generated
by WMSH uses 22% fewer processors than that of FCP and has 4% lower latency. WMSH also produces
latencies 15% lower than that of EXPERT.

The third application we considered is an MPEG video compression application [7] (results shown
in figure 8). Details of the task graph, computation and communication costs are given in [7]. Due to
frame encoding dependences, the MPEG frames have to processed in order of arrival. Hence, replication
is not possible. We assumed the throughput constraint to be the reciprocal of the weight of the largest
task. Though replication is not possible, the input frames can be divided intoN segments, that can be
processed in parallel. We variedN from 2 to 16 in our experiments.

Figure 8 shows the latency and utilization ratio of the MPEG application on 32 processors, as we vary
the number of divisions. We find that FCP and WMSH generate schedules with similar latencies, but
WMSH has upto 28% lower resource utilization. Though EXPERT shows lower utilization, it generates
schedules with 21%-41% longer latencies than WMSH or FCP.

We also evaluated the schemes using a workflow from medical imaging - Placenta Workflow [1].
The execution times of the tasks in this workflow was obtained by profiling them on a dual processor
Opteron 250 (single core) with 8GB of RAM and 2x250GB SATA disk. The network bandwidth was

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1 - - - -
0.75*Tmax 0.94 - - - 1
0.5*Tmax 0.78 0.91 0.91 - 1
0.25*Tmax 0.53 0.66 0.66 - 1

≈0 0.38 0.47 0.47 0.03 1

(a) (b)

Figure 6. Performance of Video-Based Surveillance application on 32 processors (a) Latency Ratio, (b)
Utilization Ratio. The missing bars in (a) and blanks in (b) indicate that the corresponding algorithm
could not meet the throughput requirement

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1 - - - -
0.75*Tmax 0.75 - - - -
0.5*Tmax 0.53 - - - -
0.25*Tmax 0.31 - 1 - -

≈0 0.25 0.47 0.47 0.03 1

(a) (b)

Figure 7. Performance of Darpa Vision Benchmark on 32 processors (a) Latency Ratio, (b) Utilization
Ratio. The missing bars in (a) and blanks in (b) indicate that the corresponding algorithm could not
meet the throughput requirement

Divisions WMSH FCP EXPERT

2 1 1 1.21
4 1 1 1.36
8 1 1 1.41
16 1 1 1.24

Divisions WMSH FCP EXPERT

2 0.13 0.13 0.09
4 0.25 0.41 0.22
8 0.5 0.78 0.47
16 1 1 1

(a) (b)

Figure 8. Performance of MPEG video compression on 32 processors (a) Latency Ratio, (b) Utilization
Ratio.

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1 - - - -
0.75*Tmax 1 1 1 - 1
0.5*Tmax 1 1 1 - 1
0.25*Tmax 1 1 1 - 1

≈0 1 1 1 1.69 1.69

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1 - - - -
0.75*Tmax 0.91 1 1 - 1
0.5*Tmax 0.66 0.75 0.75 - 1
0.25*Tmax 0.41 0.5 0.5 - 1

≈0 0.13 0.28 0.28 0.03 1

(a) (b)

Figure 9. Performance of Placenta workflow on 32 processors (a) Latency Ratio, (b) Utilization Ra-
tio. The missing values indicate that the corresponding algorithm could not meet the throughput
requirement

assumed to be 10 Gbps ethernet. Figure 9 shows the performance results. We find similar trends in the
performance as for the other applications. FCP and WMSH generated similar latencies, while EXPERT
created longer schedules. WMSH uses lesser resources than FCP.

In the above experiments, the scheduling time for all the schemes was less than a second suggesting
that scheduling is not a time critical operation for these applications.

6 Conclusions and Future Work

This paper presents a mapping and scheduling heuristic for application workflows with stringent per-
formance requirements. The proposed algorithm minimizes the latency of workflows that operate on
a stream of data, while satisfying strict throughput requirements. Our algorithm meets the throughput
constraints through pipelined parallelism and replication of tasks. Latency is minimized by exploiting
task parallelism and reducing communication overheads. Evaluation using synthetic and application task
graphs indicate that our heuristic is always guaranteed to meet the throughput requirement and hence
can be deployed for scheduling workflows with real-time constraints. Further, it produces lower latency
schedules and utilizes lesser resources. Our future work will be focused on 1) scheduling workflows on
heterogeneous systems and 2) scheduling workflows where each application component or task is a data
parallel program.

Acknowledgments We would like to thank Dr. Yves Robert and Dr. Anne Benoit for their valuable
discussions and constructive reviews on the paper.

References

[1] The placenta image analysis pipeline. http://bmi.osu.edu/∼vijayskumar/placenta1.htm.
[2] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran. Streamline: A Scheduling Heuristic for Stream-

ing Application on the Grid. InMMCN ’06: Proc. of the Multimedia Computing and Networking Conf.,
2006.

[3] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. Technical Report LIP
RR-2006-40, 2006.

[4] A. Choudhary, W. Lio, D. Weiner, P. Varshney, R. Linderman, and M. Linderman. Design, implementation
and evaluation of parallel pipelined stap on parallel computers. InIPPS ’98: Proc. of the 12th. Intl. Par.
Proc. Symp., page 220, 1998.

[5] T. Davidovic and T. G. Crainic. Benchmark-problem instances for static scheduling of task graphs with
communication delays on homogeneous multiprocessor systems.Computers & OR, 33(8):2155–2177, Aug
2006.

[6] M. R. Garey and D. S. Johnson.Computers and Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990.

[7] F. Guirado, A.Ripoll, C. Roig, and E. Luque. Optimizing latency under throughput requirements for stream-
ing applications on cluster execution. InCluster ’05: Proc. of the IEEE Intl. Conf. on Cluster Computing,
2005.

[8] S. L. Hary and F. Ozguner. Precedence-constrained task allocation onto point-to-point networks for pipelined
execution.IEEE Trans. Par. Distrib. Syst., 10(8):838–851, 1999.

[9] J. Jonsson and J. Vasell. Real-time scheduling for pipelined execution of data flow graphs on a realistic
multiprocessor architecture. InICASSP-96: Proc. of the 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 6, pages 3314–3317, 1996.

[10] V. S. Kumar, B. Rutt, T. Kurc, U. Catalyurek, J. Saltz, S. Chow, S. Lamont, and M. Martone. Imaging and
visual analysis—large image correction and warping in a cluster environment. InSC ’06: Proc. of the 2006
ACM/IEEE conf. on Supercomputing, page 79, 2006.

[11] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to multiproces-
sors.ACM Comput. Surv., 31(4):406–471, 1999.

[12] M. Lee, W. Liu, and V. K. Prasanna. A mapping methodology for designing software task pipelines for
embedded signal processing. InProc. of the Workshop on Embedded HPC Systems and Applications of
IPPS/SPDP, pages 937–944, 1998.

[13] S. B. Shukla and D. P. Agrawal. Scheduling pipelined communication in distributed memory multiprocessors
for real-time applications.SIGARCH Comput. Archit. News, 19(3), 1991.

[14] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz. Executing multiple
pipelined data analysis operations in the grid. InSC ’02: Proc. of the 2002 ACM/IEEE conf. on Supercom-
puting, pages 1–18, 2002.

[15] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel pipelines. InSPAA ’96:
Proc. of the 8th ACM Symp. on Par. Algorithms and Arch., pages 62–71, 1996.

[16] V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization and task scheduling
for mpsoc architectures. InCASES ’05: ACM/IEEE International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, Oct 2005.

[17] K. Vallerio. Task graphs for free. http://ziyang.ece.northwestern.edu/tgff/maindoc.pdf (2003).
[18] M. Yang, T. Gandhi, R. Kasturi, L. Coraror, O. Camps, and J. McCandless. Real-time obstacle detection

system for high speed civil transport supersonic aircraft. InProc. of the IEEE National Aerospace and
Electronics Conf., pages 595–601, 2000.

[19] M.-T. Yang, R. Kasturi, and A. Sivasubramaniam. A pipeline-based approach for scheduling video process-
ing algorithms on now.IEEE Trans. Par. Distrib. Syst., 14(2):119–130, 2003.

