An Approach for Optimizing Latency under Throughput
Constraints for Application Workflows on Clusters

N. VYDYANATHAN , U. CATALYUREK, T. KURC, P. SADAYAPPAN AND J. SALTZ

Technical Report
OSU-CISRC-1/07-TR03

An Approach for Optimizing Latency under Throughput
Constraints for Application Workflows on Clusters.*

N. Vydyanathan U. Catalyurek, T. Kurc’, P. SadayappanJ. Saltz
" Dept. of Computer Science and EngineerinBept. of Biomedical Informatics
The Ohio State University

Abstract

In many application domains, it is desirable to meet some user-defined performance requirement
while minimizing resource usage and optimizing additional performance parameters. For example, ap-
plication workflows with real-time constraints may have strict throughput requirements and desire a low
latency or response-time. The structure of these workflows can be represented as directed acyclic graphs
of coarse-grained application tasks with data dependences. In this paper, we develop a novel mapping
and scheduling algorithm that minimizes the latency of workflows that act on a stream of input data,
while satisfying throughput requirements. The algorithm employs pipelined parallelism and intelligent
clustering and replication of tasks to meet throughput requirements. Latency is minimized by exploiting
task parallelism and reducing communication overheads. Evaluation using synthetic benchmarks and
application task graphs shows that our algorithm 1) consistently meets throughput requirements, even
when other existing schemes fail, 2) produces lower-latency schedules, and 3) results in lesser resource
usage.

1 Introduction

Complex application workflows can often be modeled as directed acyclic graphs of coarse-grained
application components with precedence constraints and data dependences. The quality of execution of
these workflows is often gauged by two metrics: latency and throughput. Latency is the time to process
an individual data item through all the components of the workflow, while throughput is a measure of the
aggregate rate of processing of data. It is often desirable or necessary to meet a user-defined requirement
in one metric, while achieving higher performance value in the other metric and minimizing resource
usage. Workflows with real-time constraints, for example, can have strict throughput requirements, while
interactive query processing may have strict latency constraints. To be able to meet requirements and
minimize resource usage is also important especially in settings such as Supercomputer centers where
resources (e.g., a compute cluster) have an associated cost and are contended for by multiple clients.

*This research was supported in part by the National Science Foundation under Grants #CCF-0342615 and #CNS-
0403342.

Application workflows, such as those in the fields of image processing, computer vision, signal pro-
cessing, parallel query processing and scientific computing, act on a stream of input data [10, 4, 18].
Each task or application component repeatedly receives input data items from its predecessor tasks,
computes on them, and writes the output to its successors. Since multiple data items can be processed in
a parallel or pipelined manner and independent application components can be executed concurrently,
the two metrics, latency and throughput, are distinct.

In this paper, we present a novel approach for the scheduling of such workflows on clusters of homo-
geneous processors. Our algorithm employs pipelined, task and data parallelism in an integrated manner
to meet strict throughput constraints and minimize latency. The algorithm is designed to satisfy the
throughput requirements by leveraging pipelined parallelism and through intelligent clustering and/or
replication of tasks.Pipelined parallelisms the concurrent execution of dependent tasks on different
instances of the input data stream, widkga parallelismis the concurrent processing of multiple data
items by replicas of a task. Latency is minimized by exploitiagk parallelismwhich is the concurrent
execution of independent tasks on the same instance of the data stream, and minimizing communication
costs along the critical path of the task graph.

We compare the proposed approach against two previously proposed schemes: Filter Copy Pipeline
(FCP) [14] and EXPERT (EXploiting Pipeline Execution undeR Time constraints) [7]. Evaluations are
done using synthetic benchmarks and task graphs derived from real applications in the domains of Image
Analysis, Video Processing and Computer Vision [2, 7, 13, 1]. We show that our algorithm is able to
1) consistently meet throughput requirements, even when the other schemes fail, 2) generate schedules
with lower latency, and 3) reduce resource usage.

This paper is organized as follows. The next section gives an overview of the related work and sec-
tion 3 describes the task graph and execution model. Section 4 describes the proposed mapping and
scheduling algorithm and section 5 describes the experimental results. Section 6 presents our conclu-
sions and outlines possible directions for future research.

2 Related Work

Several researchers have addressed the problem of minimizing the parallel completion time (makespan
or latency) of applications in the form of directed acyclic task graphs. As this problem is NP-complete [6],
heuristics have been proposed and a good survey of these can be found in [11]. These algorithms typ-
ically prioritize the tasks using metrics like bottom-level and schedule the tasks in priority order to
processors that allow their earliest start or finish time.

Researchers have also proposed the use of pipelined scheduling for maximizing the throughput of
applications. Lee et al. [12] proposed a three-step mapping methodology for maximizing the through-
put of applications comprising of a sequence of computation stages, each consisting of a set of identical
tasks. Jonsson et al. [9] and Hary and Ozguner [8] discussed heuristics for maximizing the throughput of
directed acyclic task graphs on multiprocessor systems using point-to-point networks, while Yang [19]
presented an approach for resource optimization under throughput constraints. Benoit and Robert [3]
have addressed the problem of mapping pipeline skeletons of linear chains of tasks on heterogeneous
systems and Suhendra et al. [16] have proposed an integrated approach for task scheduling and scratch-
pad memory allocation based on integer linear programming for multiprocessor system-on-chip archi-
tectures. All of these techniques optimize the throughput metric and do not consider replication of tasks.

Though many papers focus on optimizing latency or throughput in isolation, very few address both.

Subhlok and Vondran [15] have proposed a dynamic programming solution for optimizing latency under
throughput constraints for applications composed of a chain of data-parallel tasks. In this paper, we
target more generic applications that can be modeled as arbitrary directed acyclic task graphs. In [14],
Spencer et al. presented the Filter Copy Pipeline (FCP) scheduling algorithm for optimizing latency and
throughput of data analysis application DAGs on heterogeneous resources. FCP computes the number
of copies of each task that is necessary to meet the aggregate production rate of its predecessors and
maps the copies to processors that yield their least completion time. Another closely related work is [7],
where Guirado et al. have proposed a task mapping algorithm called EXPERT (EXploiting Pipeline
Execution undeR Time constraints) that minimizes latency of streaming applications, while satisfying a
given throughput constraint. EXPERT identifies maximal clusters of tasks that can form synchronous
stages that meet the throughput constraint and maps tasks in each cluster to the same processor so as to
reduce communication overheads and minimize latency.

3 Task Graph and Execution Model

An application workflow can be represented as a connected, weighted directed acyclic graph (DAG),
G = (V, E), whereV/, the set of vertices, represents non-homogeneous sequential application compo-
nents (tasks) anf, the set of edges, represents precedence constraints and data dependences. There are
two distinguished vertices (tasks) in the task graph:siingrce taskvhich precedes all other tasks and
thesink taskwhich succeeds all other tasks.

The task grapld’ acts on a stream of data, where each task mrepeatedly receives input data items
from its predecessors, computes on them, and writes the output to its successors. The weight of a vertex
(task),t; € V, is its execution time to process a single data itetft,). The weight of an edge, ; € E,
wt(e; ;) is the communication cost measured as the time taken to transfer a single data itemipf size
betweent; andt;. The length of a path in a DAG is the sum of the weights of the tasks and edges
along that path. Theritical path of GG, denoted byC' P(G), is defined as the longest pathGh Thetop
level of a taskt in GG, denoted bytopL(t), is defined as the length of the longest path from the source
task tot, excluding the weight of. Thebottom levebf a taskt in G, denoted byottom L(t), is defined
as the length of the longest path frarto the sink, including the weight af Any taskt with maximum
value of the sum ofopL(t) andbottom L(t) belongs to a critical path 6.

The task graph is assumed to be executed on a homogeneous fully connected compute cluster, with
each compute node having local disks. Our algorithm assumes that the execution behavior of the tasks
in the workflow is not strongly dependent on the properties of the input data items. Hence, profiling
the workflow on a few sample data items, gives a reasonable measure of the execution times of the con-
stituent tasks. The system model assumes overlap of computation and communication, as most clusters
today are equipped with high performance interconnects which provide asynchronous communication
calls.

The latency of a task graph scheduled on a set of processors is defined as the time taken to process
a single data item through it. Lét’ denote the DAG that represents the schedule of task graph
P processorsG’ can be constructed frodd by adding zero-weighpseudo-edgelsetween concurrent
tasks inG that are mapped to the same processor. These pseudo-edges denote induced dependences.
The latency of this schedule is given by the critical path lengtfy'of

Let a task-cluster denote the group of all tasks that are mapped to the same processor. Tasks within
a task-cluster are run in a sequence in the decreasing order of their bottom-levels and iterate over the

instances of the input stream. Therefore, the time taken by a task-cluster to process a single data item
is given by the sum of the execution times of its constituent taskset(&;) = > vicc, et(t). If the
workflow is assumed to act on a stream of independent data items (i.e. processing of each data item is
independent of the processing of other data items), multiple copies (replicas) of a task/task-cluster can
be executed concurrently. #fr(C;) denotes the number of replicas of task-clugteandet(C;) is its
execution time, the aggregate processing rat€;ppr(C;) is given by’Z:((g)) data items per unit time.
Each replica of a task-cluster is assumed to be executed on a separate processor. For example, assume
that tasks/; andt, are mapped to task-clustér, andbottomL(t,) > bottomL(ty) in G'. Let nr(C)

be 2 and let the replicas be mapped to procesBpand P». et(t;) = 10 andet(ty) = 20. Then, on

each of these processots processes a data item followed By The processing rate of task-cluster

is

2
(10+20) "
The data transfer rate of an edgg, dr(e;;), is — data items per unit time, wherey; ; =

bw;

min(nr(t;), nr(t;)) x bandwidth. Here, bandwidth co?responds to the minimum of disk or memory
bandwidth of the system depending on the location of data and the network bandwigtf).denotes

the number of replicas of tagk As we assume that computation and communication can overlap, the
overall processing rate or throughput of the workflow is determined by the slowest task-cluster or edge,
and is given bymin(minyc, pr(C;), miny, ; dr(e;;)).

4 Workflow Mapping and Scheduling Heuristic

Given a workflow-DAGG, P homogeneous processors and a throughput constramur workflow
mapping and scheduling heuristic (WMSH) generates a mapping and sche@ubs éf that minimizes
the latency while satisfying’. The algorithm consists of three main heuristics, which are executed in
sequence: th&atisfy Throughput Heuristi(STH) to meet the user-defined throughput requirements,
theProcessor Reduction Heurist{ffRH) to ensure the resulting schedule does not require more proces-
sors than are available, and thatency Minimization Heuristi(LMH) to minimize the latency of the
workflow. In this section, we describe each of these heuristics.

Theorem 1 Given a workflow-DAGZ = (V, F) that acts on a stream of independent data items, the
maximum achievable throughpil},.., on P homogeneous processors is givenﬁ, where

tev (et

et(t) is the time taken by tagkto process a single data item.

Proof The minimum amount of work to be done to process one data item thrGughgiven by
Siev(et(t)). The minimum work to be done per unit time to procdss,, data items isT,,., X
> ev(et(t)). Since, we have atmogt processors in the system and all the tasks can be replicated
as they process a stream of independent data itBms1,,,.. X > ey (et(t)), which implies thatl;,,,.,

. . - p
the maximum achievable throughputm.

T« Can be achieved by mapping all taskgirto a single task-cluster and maki&greplicas, each
mapped to a unique processor. However, this mapping suffers from a large latency as it fails to exploit
parallelism betweegoncurrent taskén G. Concurrent tasks refers to independent tasks that can
be executed concurrently. For the sake of presentation, the rest of this section assudiescthain a
stream of independent data items and hence all tasks can be replicated. However, the heuristics described

Algorithm 1 STH: Satisfy Throughput Heuristic
1: function STH(G,T) > G «— workflow DAG, T' + throughput constraint 7,,,..
2. S « schedule of~ by priority based list-scheduling

3 L — Latency ofS

4 if > 1T then

5: return S

6: else

7: Map each task; € G to a separate task-clustey
8: M — {C; | C;is a task-clustér

9: if 7> 0then

10: For allC;, nr(C;) « T x et(C;)

11: else

12: For allC;, nr(C;) «— 1

13: E —{e;; € Gldr(e,;) <T}

14: while £’ not emptydo

15: e; j IS an edge int’

16: For all task-pairgt,, t,) € clusterOf (¢;)xclusterOf (¢;) | t, concurrent ta in
(7, add apseudo-edge G’ originating from the task with the larger bottom-level.
clusterOf (¢;) is the task-cluster that contains task

17: For all edges,;, € G | (t,, 1) € clusterOf (¢;)xclusterOf (¢;), wt(eqp) < 01n
G/

18: MergeclusterOf (¢;) andclusterOf (¢;), updateM

19: return < G, M >

here can be applied when processing of a data item is dependent on the processing of certain other data
items (i.e replication of tasks is not allowed), by enforcing the weight of every task-clusterito%be

for a given throughput constraifit < T,,.... Tma: IN this case, is the reciprocal of the weight of the
largest task irG.

Algorithm 1 illustrates STH. Given a throughput constraihk 7,,..., STH verifies whether a non-
pipelined low latency schedule, generated by priority-based list-scheduling [11], meets the throughput
requirement. The tasks (A are prioritized in the decreasing order of their bottom-levels and scheduled
in priority order to processors that yield their least completion timé. i the latency of this schedule,
the throughput achieved is. If £ > T, STH returns this schedule. Otherwise, the following steps are
executed to obtain a low-latency pipelined schedule that sati&fid® generate a pipelined schedule,
each task; € V is mapped to a separate task-cluster Let the mapping)M denote the set of all
the task-clusters. The number of replicas($f nr(C;), that is required to satisfy’ is computed as
nr(C;) = T x et(C;). When there is no throughput constraint,(C;) = 1. For all edges;; € E,
whose data transfer rate4s7’, STH avoids the communication overhead by merging the task-clusters
containing the incident tasks. When two task-clusters are merged, the®A&presenting the new
schedule is constructed fro by adding zero weighpseudo-edgesetween concurrent tasksdnthat
are now mapped to the same task-cluster. The pseudo-edges originate from the task with the larger
bottom-level. Edges between tasks mapped to the same task-cluster have zero wetighhicritical
path length ofZ’ represents the latency of this schedule. For example, figure 1 shows a workflow-DAG

Figure 1. (a) Workflow-DAG (@, (b) Modified DAG, G’ with tasks 71 and T'2 clustered, (c) Modified
DAG, G’ with tasks T'1, T2 and T'3 clustered and pseudo-edge between 713 and T°2.

G and the resulting modified DAG;’ that reflects the task-clustering and schedule. Figure 1(a) shows
the original workflow-DAG, while in figure 1(b), taskS1 and7'2 are mapped to the same task-cluster,
hence the edge between them is greyed indicating that it now has zero cost. Figure 1(cJ $ho®@s
and7'3 in the same cluster, which results ipseudo-edgbeing added frorfi'3 to 72, as7'3 is assumed
to have a larger bottom-level thark in G'. Edges betweeit'l, 72 andT'1, 73 are greyed, indicating
zero cost.

Following STH, PRH is executed. The total number of processors required to exe€atg copies
of each task-clustef’;, where each copy is mapped to a unique processar; is > ¢ cy [nr(C;)].
If P > P, PRH merges certain task-clusters and obtains a schedule that uBgsrocessors. Once
a feasible schedule is obtained, LMH is called to optimize the latency. PRH and LMH output a set of
task-clusters and the pipelined schedule is obtained by mapping each replica of a task-cluster to a unique
processor. Tasks within a task-cluster are run in the decreasing order of their bottom-levels and iterate
over the instances of the data stream. We now present PRH and LMH in greater detail.

4.1 Processor Reduction Heuristic (PRH)

PRH recursively merges pairs of task-clusters based on some metric until we get a mapping that uses
< P processors.

Theorem 2 If task-clusters”; andC; are merged and’; and P; are the number of processors required

to run the replicas ofC; and C; respectively, i.eP, = [nr(C;)] and P; = [nr(C;)], the number

of processors required to run the replicas of the new task-cluster formed that meets the throughput
constraint is either”; + P; or P, + P; — 1.

Definition 1 Task-clusterg”; and C; are “connected” if there exists some tagkin C; and some task
t, in C; such thate, ;, is an edge irG.

Definition 2 Task-clusterg’; and C; are “not concurrent” if for all pairs of tasks4,, ¢;), t, € C; and
t, € Cj, t, is not concurrent td,, in G.

Definition 3 Resource wastage of a task-clusters defined agnr(C)| — nr(C).

Algorithm 2 PRH: Processor Reduction Heuristic
1: function PRH(G', M) > G’ « schedule DAG returned by STH/ « set of task-clusters returned

by STH

22 P'=Ycem([nr(G)])

3 repeat

4. C {(CZ,CJ> | ;e M A Cj e M A (TZT‘(CL) + nr(C]ﬂ < ((TL’/‘(CZ)-‘ + [TLT’(OJ)—D}

5: while C' not emptyA(P’ > P) do

6: Pick the task-cluster paf;, C;) from C’ that yields the largest decrease in latency when
merged. Preference is given to task-clusters that are connected, not concurrent and
which produce the largest resource wastage when merged.

7: For all task-pairst,, t,) € C; x C; | t, concurrent t¢, in G, add apseudo-edgen G’
originating from the task with the larger bottom-level.

8: For all edges,;, € G | (ta,t) € C; x Cj, wt(eqp) < 0in G

9: MergeC; andC; and updatel/

10: P —P -1

11: UpdateC’

12: if P> P then

13: Pick the task-cluster pai(C;,C;) that yields the maximum value of(nr(C;) +
nr(C;))] — (nr(C;) + nr(C;)) and the largest decrease in latency wiigrandC}
are merged.

14: For all task-pairst,, t,) € C; x C; | t, concurrent t¢, in G, add apseudo-edgen G’
originating from the task with the larger bottom-level.

15: For all edges,;, € G | (ta,t) € C; x Cj, wt(eqp) < 0in G

16: MergeC; andC; and updatel/

17: until P/ < P
18: return < G', M >

The pseudo code of PRH is illustrated in Algorithm 2. Step 4 of the algorithm considers all pairs

of task-clusters that when merged would reduce the number of processors used by 1. Among these,
PRH picks the task-cluster pair that yields the largest decrease in latency when merged. To break ties,
preference is given to task-clusters that are connected, not concurrent, and which produce the largest
resource wastage, in that order (step 6). Merging connected task-clusters helps in avoiding some of
the communication costs and merging task-clusters that are not concurrent avoids serializing concurrent
tasks inGG. Giving preference to task-cluster pairs that yield a larger resource wastage reduces the
possibility of fragmentation. Steps 5-11 are repeated as long as there are task-cluster pairs that reduce
the processor count arfl > P. After all possible task clusterings, if the resource usage is still greater
thanP at step 12, defragmentation is done in steps 13-16 where the task-clusters that produce the largest
resource wastage are merged. To break ties, the one that causes the largest decrease in latency is chosen.
The outer-loop (steps 3-17) are repeated until the resource usage is lesser than orghathe end

of the processor reduction phase, a mapp@nd schedulé’ is obtained that meets the throughput
constraint and uses P processors.

4.2 Latency Minimization Heuristic (LMH)

LMH is called to refine the mapping obtained by PRH to further optimize the latency. Given a mapping
M and schedulé’ which meets the throughput constraint and use® processors, LMH optimizes
the latency by reducing communication overheads along the critical path. The task-clustéraren
considered by LMH as indivisible macro-tasks. A macro-task therefore, may contain one or more tasks.
The incoming and outgoing edges of a macro-task is the union of the incoming and outgoing edges,
respectively, of the tasks that it contains, without considering edges between tasks belonging to the
macro-task. Hence, the term task in Theorem 3 and Corollary 1 is the same as macro-task in the case
where multiple tasks are mapped to same task-cluster by PRH.

Theorem 3 Let G’ and M denote a schedule and mapping®@fthat meets the throughput constraint
and uses< P processors. Let;; be an edge inG’ from task/macro-task; to ¢; such that the in-
degre€t;) = in-degre€t;) = 1 and the out-degrde;) = out-degreét;) = 1 (i.e. t; andt; are connected
along a linear chain in that order). Lef, be the parent of; and ¢, be the child oft;. If wt(e; ;) >
wt(ex,;) + wt(e;;), it is optimal to merge; andt; to a single task-cluster, assuming that all tasks can
be replicated. If replication is not allowed; and ¢, can be merged to a single task-cluster only if
et(t;) + et(t;) < 7 ande; ; satisfies the above condition.

Proof Let us assume that in the optimal mappihg,, that minimizes the latency while meeting the
throughput constraint; and¢; are mapped to different task-clusters. Consider an alternative mapping
M', wheret; andt; are pulled out from their respective task-clusters and mapped to a new one. Replica-
tion ensures that the mappiddg’ meets the throughput constraint. For the case when replication is not
allowed, ag:t(t;)+et(t;) < 7, throughput constraint is satisfied. As the replicas of each task/macro-task
in M, the mapping generated by PRH (the number of replicas of a task/macro-task is 1 when replica-
tion is not allowed) could be run on disjoint subsets of processors ysifgprocessors, by applying
theorem 2, any clustering among the tasks/macro-tasks will use < P processors and will meet the
throughput constraint. Therefor&/’ uses< P processors and meets the throughput constraint:; As
andt; are mapped to the same task-clustekdh the length of the longest path through them is reduced
by atleastvt(e; ;) — (wt(ex;) +wt(e;;)). Thus,M" always yields lower latency (i; ; lies on the critical

path) or same latency (if ; does not lie on the critical path) &s,,,, which contradicts our assumption

that M,,, was optimal. Hence, mergingandt; to a single task-cluster is optimal.

Definition 4 The lower bound on the latency of a DAGS the length of the critical path i, assuming
all edges have zero weights.

Definition 5 An edge is non-critical if it cannot lie on a critical path 1. An edgee; ; in G is non-
critical if the length of the longest path through; is < the lower bound on the latency 6t Any edge
that is not non-critical is called a critical edge.

Corollary 1 Let G’ and M denote a schedule and mapping®@fthat satisfies/” and uses< P pro-
cessors. Let; ; be an edge ir;’ from task/macro-task; to ¢; such that all outgoing edges frotnare
non-critical excepk; ; and all incoming edges tg are non-critical except,,;, for some task/macro-
taskt,. Similarly, all incoming edges tg are non-critical except; ; and all outgoing edges froi) are
non-critical except;; for some task/macro-task If wt(e; ;) > wt(ex;) + wt(e;;) and no sub-task of

Algorithm 3 LMH: Latency Minimization Heuristic
1: function LMH(G’, M) > G’ «+ schedule DAG returned by PRHA/ «— mapping returned by PRH.
2: E* — {e;; € G' | e; ; satisfies Theorem 3 or Corollary 1
3 repeat
4: while E* not emptydo
5
6

e; j Is an edge inE”

For all task-pairgt,,t,) € clusterOf (¢;) xclusterOf (¢;) | ¢, concurrent ta; in
(G, add apseudo-edge G’ originating from the task with the larger bottom-level.
clusterOf (t;) is the task-cluster that contains task

7: For all edges,;, € G | (t., %) € clusterOf (t;)xclusterOf (¢;), wt(eqp) < 01in
Gl
8: MergeclusterOf (¢;) andclusterOf (¢;), update)M/
9: UpdateE*
10: Pick edge e;; in CP(G') that does not increase the Ilatency when

clusterOf (¢;) and clusterOf (¢;) are merged and has maximum value
of min (wt(e;;), CPL(G') — LBL(G)) and minimum value of (|critical-
edgest;)| + |critical-edge§t;)|) > CPL(G") — Critical Path Length ot’, LBL(G) «—
Lower Bound on Latency ofr

11: For all task-pairgt,, t,) € clusterOf (¢;)x clusterOf (t;) | t, concurrent ta in G,
add apseudo-edge G’ originating from the task with the larger bottom-level.
12: For all edges,;, € G | (ta,ts) € ClusterOf (¢;)xclusterOf (¢;), wt(eqp) < 0in G
13: MergeclusterOf (¢;) andclusterOf (¢;) and update\/
14: UpdateFE*
15: until For all edges; ; in CP(G’), latency increases whefusterOf (¢;) andclusterOf (¢;)
are merged

16: return < G', M >

t; is concurrent to that of;, it is optimal to merge; and¢;, assuming that all tasks can be replicated.
If replication is not allowed{; and¢; can be merged to a single task-cluster onlytift;) + et(t;) < =
ande; ; satisfies the above condition.

Algorithm 3 describes LMH. LMH identifies the sét of edges that satisfy Theorem 3 or Corollary 1
(step 2) and merges the task-clusters of the incident tasks (steps 6-8). After mérgiisgupdated
(step 9). Steps 4-9 are repeated utilis empty. In steps 10-14, among the edges aloijG’) that
do not cause an increase in latency when zeroed-in, LMH zeroes-in the edge with the largest maximum
possible decrease in latency. To break ties, the edgeith the minimum value of the sum of number
of critical edges ta; and number of critical edges tg is chosen. After mergingly* is updated. The
outer-loop of steps 3-15 is repeated until all edgeS iA(G’) cause an increase in latency when zeroed-
in.

LMH in the worse case takes(|V'| + | E|) steps to choose the set of optimal edges,andO(|V|?)
steps to merge the incident tasks for each edde&inChoosing the best edge in the critical path for zero-
in and merging the incident tasks take§|V'|(|V'|? + | E|). Hence overall, LMH take® |V |*(|V|? +
|E|)) steps in the worst case. In PRH, there are atmost as many task-clusters as tasks and estimating
the decrease in latency when two task-clusters are merged®dkeég + |E|) steps. In the worst case,

all task-clusters are merged (i.e. all tasks are mapped to a single task-cluster and replicated) and hence
PRH takes atmosD(|V'|?(|V|* + |E|)) steps, which is independent 8f Thus, the overall worst case
complexity of WMSH isO(|V |*(|V|?+|E|)). For small throughput constraints, if WMSH uses priority-
based list scheduling technique to get a low-latency non-pipelined schedule, the worst case complexity
isO(|V|P+ |E|+|V]log|V]) (O(]V| + |E|) steps to compute the bottom-levels of tagk§,V |log|V|)

steps to sort them ar@(|V' | P) steps to schedule each task in priority order to the best processor).

5 Performance Analysis

This section evaluates the performance of the proposed workflow mapping and scheduling heuristic
(WMSH) against previously proposed schemes: Filter Copy Pipeline (FCP) [14] and EXPERT (EXploit-
ing Pipeline Execution undeR Time constraints) [7], and FCP-e and EXPERT-e, modified versions of
the above schemes. When FCP and EXPERT fail to utilize all processors and do not meet the through-
put requirement’, FCP-e recursively calls FCP on the remaining processors’linsilsatisfied or all
processors are used, while EXPERT-e replicates the task-clusters by dividing the remaining processors
among them in the ratio of their weights. The performance of these algorithms is evaluated using both
synthetic task graphs and those derived from applications, using simulations.

5.1 Synthetic Task Graphs

The algorithms were evaluated using two sets of synthetic benchmarks: 1) Benchmark-I: a set of
randomly generated task graphs with communication delays from [5], and 2) Benchmark-I1l: synthetic
graphs generated using the DAG generation tool in [17]. Benchmark-I comprises of task graphs with
50 tasks each and comparable computation and communication costs. Benchmark-11 comprises of 30
synthetic graphs with number of tasks per task graph varying from 10 to 50. The average out-degree
and in-degree per task was 4. The computation time of each task was generated as a uniform random
variable with mean equal to 30. The communication to computation ratio (CCR) was varied as 0.1, 1
and 10 and the communication cost of an edge was randomly selected from a uniform distribution with
mean equal to 30 (the average computation time) times the specified value of CCR. The data volume
associated with an edge was determined as the product of the communication cost of the edge and the
bandwidth of the underlying network, which was assumed to be a 100 Mbps fast ethernet network.

Figure 2 plots the relative performance of the algorithms for benchmark-1 on 32 and 64 processors.
The x-axis is the throughput constraint, which is decreased from the maximum achievable throughput
(Tnaz) In steps of 0.25.~ 0 refers to the case when there is no throughput constraint (or negligibly
small). The y-axis is the average latency ratio. Latency ratio is the ratio of the latency of the schedule
generated by an algorithm to that of WMSH. The missing bars in the graphs indicate that the corre-
sponding algorithm could not meet the throughput requirement.

The results show that WMSH is consistently able to generate schedules that meet the throughput con-
straint. On the other hand, at large throughput requiremé&his. (@nd 0.75%,,,...), FCP and EXPERT
fail. Though FCP replicates tasks, it computes the number of replicas independent of the number of
processors and fails to refine the number of replicas when it maps multiple tasks to the same proces-
sor. EXPERT does not replicate tasks. The modified versions are designed to overcome some of these
limitations and hence, meet the constraint in some of the cases where FCP or EXPERT fail.

With respect to latencies, we find that WMSH generates lower latency schedules than the other

Average Latency Ratio
-

Average Latency Ratio
(9]

Oovininl trorendd

Tmax 0.75*Tmax 0.5*Tmax 0.25"Tmax ~0 Tmax 0.75*Tmax 0.5*Tmax 0.25"Tmax ~0
Throughput Constraint Throughput Constraint

EOWMSH m FCP OFCP-e O EXPERT B EXPERT-e OWMSH m FCP OFCP-e O EXPERT W EXPERT-e

(@) (b)

Figure 2. Performance on Benchmark-l on (a) 32 processors, (b) 64 processors. The missing bars
indicate that the corresponding algorithm could not meet the throughput requirement.

[T [WMSH | FCP [FCP-e| EXPERT | EXPERT-e] [T | WMSH | FCP | FCP-e | EXPERT | EXPERT¢|
Trmas 1 [031] 035 04 0.68 Tras 1 [093] 1 0.49 0.94
0.75 T mas 1 |041| 055 | 053 1 0.75Tmae | 091 | 0.86| 1 0.49 0.94
0.5 T mas 1 o059 1 0.8 1 05Tmaz | 073 | 074| 1 0.49 0.94
(@) (b)

Figure 3. Performance on Benchmark-I on 64 processors (a) Average Throughput Ratio, (b) Average
Utilization Ratio

schemes. On 32 processors, FCP generates 27%-29% longer latencies than WMSH, while EXPERT
generates 20%-30% longer latencies when throughput constraint is varied:fono 0.25*7},,,.. As

EXPERT creates maximal task-clusters with Weigﬁt$, for negligible throughput constraint, it groups

all tasks to a single task-cluster and hence generates large latency schedules. For FCP-e, we used the
smallest of the latencies of all the workflow instances it creates and hence it is similar to that of FCP.
Latency in EXPERT-e is similar to EXPERT, since EXPERT-e only replicates tasks; this improves the
throughput but does not alter the latency. Rss increased],,.. increases, and hence, there are more
instances where FCP and EXPERT do not safisfyVe noticed similar trends at 128 processors.

Figure 3(a) shows the average throughput ratio for the schemes for benchmark-I on 64 processors.
The throughput ratio is the ratio of the throughput achieved by an algorithm to the throughput constraint.
If the achieved throughput is greater than the constraint, the ratio is taken to be 1. We do not show
values for throughput constraints lesser than 0,5%, as all algorithms meet the requirement. We see
that when FCP and EXPERT fail to meet the throughput requirement, they generate schedules with
throughput atleast 40% and 20% lesser than the constraint, respectively. Figure 3(b) shows the average
utilization ratio for the schemes. The utilization ratio is given by the ratio of the number of processors
used by an algorithm to the total number of available processors. FCP and EXPERT have low resource
utilization, but do not meet the throughput constraint. Among the schemes that generate schedules that
meet the throughput requirement, WMSH is able to produce lower-latency schedules while using lesser
number of processors. For example, at throughput constraint of Q),5; utilization of WMSH is 27%
lower than that of FCP-e and 19% lower than EXPERT-e, and it produces latencies 15% and 19% shorter
than FCP-e and EXPERT-e respectively.

As EXPERT does not replicate tasks, we compared its performance with that of WMSH with replica-

- bR B
P
a W o »

o
o
- 0N

Average Latency Ratio
° o o

»]

Average Latency Ratio

o
N
o
2]

o
o

32 64 128 Tmax 0.75*Tmax 0.5*Tmax 0.25"Tmax ~0
Number of Processors Throughput Constraint
EWMSH B WMSH-noreplication 0 EXPERT OWMSH m FCP OFCP-e O EXPERT W EXPERT-e

(@) (b)

Figure 4. (a) Relative Performance of WMSH, WMSH with replication disabled and EXPERT when
throughput constraint is m (b) Performance on Benchmark-1l on 32 processors and
CCR=0.1. The missing bars in (b) indicate that the corresponding algorithm could not meet the

throughput requirement.

®
o

4
3]
»

1.2

N

Average Latency Ratio
- o

Average Latency Ratio

o o ©o

» o ®

o

2]
o
N

Tmax 0.75*Tmax 0.5*Tmax 0.25"Tmax ~0 Tmax 0.75*Tmax 0.5*Tmax 0.25*Tmax ~0
Throughput Constraint Throughput Constraint

o
o

EOWMSH m FCP OFCP-e O EXPERT B EXPERT-e OWMSH m FCP OFCP-e O EXPERT W EXPERT-e

(a) (b)

Figure 5. Performance on Benchmark-1l on 32 processors and (a) CCR=1, (b) CCR=10. The missing
bars indicate that the corresponding algorithm could not meet the throughput requirement.

tion disabled. Figure 4(a) shows the performance of WMSH, WMSH with no replication and EXPERT
for benchmark-1 when the throughput constraint was taken to be the reciprocal of the weight of the
largest task in the DAG. We see that even with no replication, WMSH produces lower latencies than
EXPERT. WMSH with replication shows the least latency as tasks connected by edges with heavy com-
munication cost can be mapped to the same task-cluster and replicated to meet the throughput constraint.
Thus replication not only helps in improving throughput but also minimizing the latency.

To study the impact of communication costs, we evaluated the schemes using bench-mark-Il by vary-
ing the communication to computation ratio (CCR) as 0.1, 1 and 10. Figure 4(b) and 5 show the per-
formance of the schemes as the communication to computation ratio is increased. We find that as CCR
increases, there are more instances where FCP, EXPERT and their modified versions do not meet the
throughput constraint, while WMSH always does. This is because, WMSH intelligently avoids heavy
communication costs, by folding the incident tasks to the same task-cluster and replicating this cluster
such that the throughput requirement is met. Though FCP minimizes communication costs in some ca-

pacity by mapping copies of tasks to processors that yield their least completion time, it would still incur
the cost when the processor to which the parent task is mapped is heavily loaded (as mapping the task
to this processor would cause a larger completion time). EXPERT does not replicate and hence cannot
cluster heavy tasks that also have a huge communication cost. The modified versions of the schemes
also cannot completely avoid the communication overheads as they only replicate tasks. Similar to
benchmark-I, we find that WMSH generates the lowest latency schedules. Please note that the average
latency ratios of the modified versions is different from that of the original schemes, since there are some
cases where the original schemes do not meet the throughput constraint while the modified versions do.
With respect to processor utilization and throughput ratio we see similar trends as for benchmark-I.

5.2 Application Task Graphs

We evaluated the schemes using task graphs from applications in the domains of computer vision,
multimedia and medical imaging. We assumed the target system to be a cluster of 2.4 GHz machines
connected by a 10 GigE network. The first in this group is a video-based surveillance application [2]
that analyzes multiple camera feeds from a region to extract information such that “motion”, or detect
suspicious activity. The DAG for this application can be found in [2].

Figure 6 shows the latency ratio and utilization ratio on 32 processors for the video-based surveillance

application. We find that when the throughput requirement is large, only WMSH meets the requirement.
In cases where FCP and FCP-e meet the constraint, they generate schedules with similar latency as
WMSH. As described earlier, when the throughput constraint is negligible, EXPERT and EXPERT-
e map all tasks to the same task-cluster and hence show a larger latency. With respect to resource
utilization, we find that WMSH uses upto 13% lesser processors than the other approaches. Please note
that the blanks in the utilization ratio table are for cases where an algorithm does not generate a schedule
that satisfies the throughput constraint.

Figure 7 shows the performance for the Darpa Vision Benchmark (DVB) [13]. The task graph for DVB
is given in [13]. We find that FCP, EXPERT and their modified versions do not meet the throughput
requirementl’, in many instances. In cases where they satiSfifWMSH produces schedules with
shorter latencies and lower resource utilization than FCP. Whismegligible, the schedule generated
by WMSH uses 22% fewer processors than that of FCP and has 4% lower latency. WMSH also produces
latencies 15% lower than that of EXPERT.

The third application we considered is an MPEG video compression application [7] (results shown
in figure 8). Details of the task graph, computation and communication costs are given in [7]. Due to
frame encoding dependences, the MPEG frames have to processed in order of arrival. Hence, replication
is not possible. We assumed the throughput constraint to be the reciprocal of the weight of the largest
task. Though replication is not possible, the input frames can be dividedvirgegments, that can be
processed in parallel. We variédfrom 2 to 16 in our experiments.

Figure 8 shows the latency and utilization ratio of the MPEG application on 32 processors, as we vary
the number of divisions. We find that FCP and WMSH generate schedules with similar latencies, but
WMSH has upto 28% lower resource utilization. Though EXPERT shows lower utilization, it generates
schedules with 21%-41% longer latencies than WMSH or FCP.

We also evaluated the schemes using a workflow from medical imaging - Placenta Workflow [1].
The execution times of the tasks in this workflow was obtained by profiling them on a dual processor
Opteron 250 (single core) with 8GB of RAM and 2x250GB SATA disk. The network bandwidth was

25

[T [WMSH [FCP | FCP-e| EXPERT | EXPERT-e

g 1.5 Tomax 1 N - -
g 0.75Tmax | 094 | - - - 1
3 0.5*T 0z 078 | 091 | 091 - 1
05 0.25Taz | 053 | 0.66 | 0.66 - 1
~ 0.38 | 047 | 047 0.03 1
o Tmax 0.75*Tmax 0.5*"Tmax 0.25"Tmax ~0
Throughput Constraint
EWMSH mFCP OFCP-e OEXPERT mEXPERT-e
(a) (b)
Figure 6. Performance of Video-Based Surveillance application on 32 processors (a) Latency Ratio, (b)
Utilization Ratio. The missing bars in (a) and blanks in (b) indicate that the corresponding algorithm
could not meet the throughput requirement
1.4
1.2
L | T [WMSH | FCP | FCP-e | EXPERT | EXPERT-¢€ |
E os Trmas 1 N - - -
5 oe 0.75*T 0z 0.75 - - - -
¥ 0s 05T mas | 053 | - ;]]
0.25Tyaz | 0.31 - 1 - -
o2 ~ 0.25 | 0.47 | 047 0.03 1

o

Tmax 0.75*Tmax 0.5"Tmax 0.25"Tmax ~0
Throughput Constraint

EWMSH m FCP OO FCP-e OO EXPERT B EXPERT-e

() (b)

Figure 7. Performance of Darpa Vision Benchmark on 32 processors (a) Latency Ratio, (b) Utilization
Ratio. The missing bars in (a) and blanks in (b) indicate that the corresponding algorithm could not
meet the throughput requirement

[Divisions [WMSH | FCP | EXPERT | [Divisions [WMSH | FCP | EXPERT |
2 1 1 121 2 013 [013] 0.09
4 1 1 1.36 4 025 |041| 0.22
8 1 1 1.41 8 05 | 078 047
16 1 1 124 16 1 1 1
(@) (b)

Figure 8. Performance of MPEG video compression on 32 processors (a) Latency Ratio, (b) Utilization
Ratio.

[T [WMSH | FCP [FCP-e| EXPERT | EXPERT-e] [T | WMSH | FCP | FCP-e | EXPERT | EXPERT-¢|

Tmaa: 1 - Tmaz 1 - - -
0.75"Tmax 1 1 1 1 0.75Tmax 0.91 1 1 1
0.5*Tmax 1 1 1 1 0.5*Tmax 0.66 0.75| 0.75 1
0.25"Tmax 1 1 1 - 1 0.25Tmax 0.41 0.5 0.5 - 1

~ 1 1 1 1.69 1.69 ~0 0.13 0.28 | 0.28 0.03 1
(@) (b)

Figure 9. Performance of Placenta workflow on 32 processors (a) Latency Ratio, (b) Utilization Ra-
tio. The missing values indicate that the corresponding algorithm could not meet the throughput
requirement

assumed to be 10 Gbps ethernet. Figure 9 shows the performance results. We find similar trends in the
performance as for the other applications. FCP and WMSH generated similar latencies, while EXPERT
created longer schedules. WMSH uses lesser resources than FCP.

In the above experiments, the scheduling time for all the schemes was less than a second suggesting
that scheduling is not a time critical operation for these applications.

6 Conclusions and Future Work

This paper presents a mapping and scheduling heuristic for application workflows with stringent per-
formance requirements. The proposed algorithm minimizes the latency of workflows that operate on
a stream of data, while satisfying strict throughput requirements. Our algorithm meets the throughput
constraints through pipelined parallelism and replication of tasks. Latency is minimized by exploiting
task parallelism and reducing communication overheads. Evaluation using synthetic and application task
graphs indicate that our heuristic is always guaranteed to meet the throughput requirement and hence
can be deployed for scheduling workflows with real-time constraints. Further, it produces lower latency
schedules and utilizes lesser resources. Our future work will be focused on 1) scheduling workflows on
heterogeneous systems and 2) scheduling workflows where each application component or task is a data
parallel program.

Acknowledgments We would like to thank Dr. Yves Robert and Dr. Anne Benoit for their valuable
discussions and constructive reviews on the paper.

References

[1] The placenta image analysis pipeline. http://bmi.osuedijdyskumar/placental.htm.

[2] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran. Streamline: A Scheduling Heuristic for Stream-
ing Application on the Grid. IfMMMCN '06: Proc. of the Multimedia Computing and Networking Conf.
2006.

[3] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. Technical Report LIP
RR-2006-40, 2006.

[4] A. Choudhary, W. Lio, D. Weiner, P. Varshney, R. Linderman, and M. Linderman. Design, implementation
and evaluation of parallel pipelined stap on parallel computerdPRS '98: Proc. of the 12th. Intl. Par.

Proc. Symp.page 220, 1998.

[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

T. Davidovic and T. G. Crainic. Benchmark-problem instances for static scheduling of task graphs with
communication delays on homogeneous multiprocessor systeomsputers & OR33(8):2155-2177, Aug

2006.

M. R. Garey and D. S. Johnso@omputers and Intractability; A Guide to the Theory of NP-Completeness

W. H. Freeman & Co., New York, NY, USA, 1990.

F. Guirado, A.Ripoll, C. Roig, and E. Luque. Optimizing latency under throughput requirements for stream-
ing applications on cluster execution. Gluster '05: Proc. of the IEEE Intl. Conf. on Cluster Computing
2005.

S. L. Hary and F. Ozguner. Precedence-constrained task allocation onto point-to-point networks for pipelined
execution.|[EEE Trans. Par. Distrib. Syst10(8):838—-851, 1999.

J. Jonsson and J. Vasell. Real-time scheduling for pipelined execution of data flow graphs on a realistic
multiprocessor architecture. IGASSP-96: Proc. of the 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processjnglume 6, pages 3314-3317, 1996.

V. S. Kumar, B. Rutt, T. Kurc, U. Catalyurek, J. Saltz, S. Chow, S. Lamont, and M. Martone. Imaging and
visual analysis—Ilarge image correction and warping in a cluster environme8C 186: Proc. of the 2006
ACM/IEEE conf. on Supercomputingage 79, 2006.

Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to multiproces-
sors.ACM Comput. Sury31(4):406—-471, 1999.

M. Lee, W. Liu, and V. K. Prasanna. A mapping methodology for designing software task pipelines for
embedded signal processing. Pnoc. of the Workshop on Embedded HPC Systems and Applications of
IPPS/SPDPpages 937-944, 1998.

S. B. Shukla and D. P. Agrawal. Scheduling pipelined communication in distributed memory multiprocessors
for real-time applicationsSIGARCH Comput. Archit. Newt9(3), 1991.

M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz. Executing multiple
pipelined data analysis operations in the gridSkn '02: Proc. of the 2002 ACM/IEEE conf. on Supercom-
puting pages 1-18, 2002.

J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel pipelif@BAR’96:

Proc. of the 8th ACM Symp. on Par. Algorithms and Arglages 62—71, 1996.

V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization and task scheduling
for mpsoc architectures. IBASES '05. ACM/IEEE International Conference on Compilers, Architecture,
and Synthesis for Embedded Syste@tg 2005.

K. Vallerio. Task graphs for free. http://ziyang.ece.northwestern.edu/tgff/maindoc.pdf (2003).

M. Yang, T. Gandhi, R. Kasturi, L. Coraror, O. Camps, and J. McCandless. Real-time obstacle detection
system for high speed civil transport supersonic aircraft.Ploc. of the IEEE National Aerospace and
Electronics Conf.pages 595-601, 2000.

M.-T. Yang, R. Kasturi, and A. Sivasubramaniam. A pipeline-based approach for scheduling video process-
ing algorithms on nowlEEE Trans. Par. Distrib. Syst14(2):119-130, 2003.

