
A COMBINATORIAL MODEL FOR

SELF-ORGANIZING NETWORKS

Yuri Dimitrov, (e-mail: yuri@math.ohio-state.edu)
Mario Lauria, (e-mail: lauria@cse.ohio-state.edu)

The Ohio State University,
Columbus, Ohio 43210, USA

1 Introduction

The organization of many complex biological and social systems has been ex-
plained in terms of the aggregations of a large number of autonomous entities
that behave according to simple rules. According to this theory, complicated
patterns can emerge from the interplay of many agents — despite the simplicity
of the rules [7, 5]. The existence of this mechanism, often referred to as emer-
gence, has been proposed to explain patterns such as shell motifs, animal coats,
neural structures, and social behavior. In particular, complex behaviors of colo-
nial organisms such as social insects (i.e. ants, bees) have been studied in detail,
and their applications to the solution of classic computer science problems such
as task scheduling and TSP has been proposed [6, 1].

We have developed a framework called the Organic Grid [3, 2, 4] for de-
ploying and scheduling computation on desktop grids in a decentralized and
self-organizing manner.

Our design is based on the following design assumptions. First, very few
assumptions (if any) can be made about the systems, in particular about the
amount of knowledge available about the system. Second, since the system is
constantly changing (in terms of operating parameters, resource availability),
self-adaption is the normal mode of operation and must be built in from the
start. Third, the deployment of the components of an infrastructure is a non-
trivial issue, and should be one of the fundamental aspects of the design. Fourth,
any dependence on specialized entities such as schedulers, masters nodes, etc.,
needs to be avoided unless such entities can be easily replicated in a way that
scales with the size of the system.

In our design we tried to address all these points simultaneously with a uni-
fied design methodology based on the principle of emergence. Nature provides
numerous examples of the emergence of complex patterns derived from the in-
teractions of millions of organisms that organize themselves in an autonomous,
adaptive way by following relatively simple behavioral rules. In order to apply
this concept to the organization of computation over large complex systems, a
computation must be broken into small self-contained chunks, each capable of
expressing autonomous behavior in its interaction with other chunks.

Our approach was to encapsulate computation and behavior into mobile
agents, which deliver the computation to available machines. These mobile

1



agents then communicate with one another and organize themselves in order
to use the resources effectively. Once an application is started at a node, e.g.,
the user’s laptop, other nodes are called in to contribute resources. New mobile
agents are created that, under their autonomous control, readily colonizes the
available resources and start computing. Only minimal support software is re-
quired on each node, since most of the scheduling infrastructure is encapsulated
along with the application code inside an agent. In our experiments we only
deployed a JVM and a mobile agent environment on each node.

Computation organizes itself on the available nodes according to a pattern
that emerges from agent-agent interaction. In the simplest case, this pattern
is an overlay tree rooted at the starting node; in the case of a data intensive
application, the tree can be rooted at one or more separate, presumably well-
connected machines at a supercomputer center. More complex patterns can be
developed as required by the applications requirements, either by using differ-
ent topologies than the tree, and/or by having multiple overlay networks each
specialized for a different task.

In our system, the only knowledge each agent relies upon is what it can derive
from its interaction with its neighbor and with the environment, plus an initial
friends list needed to bootstrap the system. The nature of the information re-
quired for successful operation is application dependent and can be customized.
E.g., for our first (data-intensive) application, both neighbor computing rate
and communication bandwidth of the intervening link were important; this in-
formation was obtained using feedback from the ongoing computation.

Agent behavior completely determines the way computation is organized. In
order to demonstrate the feasibility and generality of this approach, we built a
prototype Organic Grid. In the course of several experiments we designed and
tested agent behavior specific for two representative applications: the NCBI
BLAST code for sequence alignment, and Cannon’s algorithm for matrix mul-
tiplication. The results of these experiments are reported elsewhere [3, 2, 4].

The Organic Grid experiments taught us that it was crucial for our proto-
types to be able to dynamically reorganize themselves. The two most important
reasons for self-organization in massive systems are i) tolerance to faults, and ii)
independence from the initial conditions. One of the challenges we faced in im-
plementing a distributed reorganization scheme was how to study its behavior
for arbitrarily large and complex topologies. The limited size of our experi-
ments allowed us to adopt empirical design rules and a trial-and-error approach
to testing, but obviously more powerful methods of synthesis and analysis are
required for real world systems. As a consequence, we have embarked on a
project to provide some mathematical foundations to the field of self-organizing
computation based on emergent design.

In this document we report one of our efforts on developing methods for
correlating small scale agent behavior with large scale system patterns of orga-
nization.

Specifically, during our Organic Grid experiments we asked ourselves if it
were possible to forecast the distribution of node performance at every level of
the tree, given i) the rule of tree reorganization built into the agent behavior and
given ii) an initial distribution of node performance. We have approached this
problem by performing a combinatorial analysis of possible tree configurations;
given the complexity of this type of analysis, we have started considering very
regular tree topologies (complete symmetric binary trees; only two levels of node

2



performance, low (“0”) and high (“1”)) and a simplified parent-child exchange
rule. In other words, we have been able to solve the following problem:

The binary tree with N = 2d − 1 nodes has a number 0 or 1 assigned at
random to each node. An edge is chosen at random and the numbers at the
nodes for this edge are switched if the lower node has value 1 and the higher
node has value 0. The values are switched with probability p if the lower node
has value 0 and the higher has value 1.

Find the steady state distribution of the 1s at all d levels of the tree.

In this report we describe the solution to this problem and the approach we
followed. Even with these simplifications, the number of configurations with n

nodes and k “ones” is
(

n
k

)

. We have been able to tackle this complexity by ex-
haustively studying small trees of increasing depth, and then deriving a general
formula through induction. The formula has been validated by comparing its
value with those obtained through simulation performed on Matlab.

This approach is reminiscent of the analysis of thermodynamic ensembles
using Boltzmann statistics, and in fact our final closed formula is in the form of
a Boltzmann sum if the probability p is replaced with the exponential function
of the energy (in our case a configuration of the tree represent a microstate, and
a microstate is the subset of configurations with the same number of “ones” in
a level.)

It is our hope that in the future we will be able to generalize these initial
findings by studying more complex topologies and with increasing levels of node
performance, and validating the results with those obtained through simulation.

2 Configurations

Let’s denote by Td the balanced tree with d levels and N = 2d − 1 nodes. First
we assign to each node a number 0 or 1 at random. The nodes with number 1
have more computational power than the nodes with number 0. The number of
nodes which have number 1 is a random variable which has binomial distribution
with probability for success 0.5 and takes values 0, 1, ..., 2d − 1. Let n be the
number of nodes which have number 1. The total number of nodes is N and
there are

(

N

n

)

possible states of the system. We call each state ”configuration”.

Let Gd(n) for n = 1, 2, ..., 2d − 1
be the graphs of configurations of
Td with n ones. The graph Gd(n)
has

(

N

n

)

vertices corresponding
to the configurations with n ones.
Two configurations C1 and C2

are adjacent if they are consec-
utive states of the system. Then
there exists an edge e = {v1, v2}
of Td where the vertex v1 has
number 0 in C1 and v1 is 1 in
C2. The vertex v2 has number
1 in C1 and v2 is 0 in C2. The

12 13

14 15 23 16 17

24 25 34 35 26 27 36 37

45 46 47 56 57 67

Figure 1: The graph G3(2).

3



numbers of all other vertices is the same in both configurations C1 and C2.
The graph Gd(1) is the same as the initial graph Td and the graph Gd(2

d − 1)
consists of a single vertex. The graph G3(2) is given in Figure 1. The vertices
of G3(2) correspond to the configurations of T3 with two ones. The top level
has two configurations C1 and C2 where C1 has ones at vertices 1 and 2 and C2

has ones at vertices 1 and 3. We denote the levels of Td with 0, 1, ..., d − 1 and
enumerate the nodes of Td with numbers 1, 2, ..., 2d − 1. The root has a number
1 and the nodes on row i have numbers 2i, ..., 2i+1 − 1 from left to right.

Definition 2.1. The maximal configuration
with n ones is the configuration where the
ones are in the nodes 1, 2, ..., n. The min-
imal configuration with n ones is the con-
figuration where the ones are in the nodes
2d − n, 2d − n + 1, ..., 2d − 1.

The maximal and minimal configurations of
Td with three ones is given in Figure 2. Let’s
denote by (i1, i2, ..., in) the configuration in Td

where nodes i1, i2, ..., in have number 1.

4 5 6 7

2 3

1

Figure 2: The maximal and
minimal configurations with
three 1s in T3

Claim 2.1. The graphs Gd(n) are connected for all d ≥ 2 and n = 1, ..., 2d − 2.

Proof. We use Induction on the number of levels d. When d = 2 the graph
G2(1) has three vertices corresponding to the configurations (1), (2) and (3) and
two edges {(1), (2)} and {(1), (3)}. Therefore G2(1) is connected. The graph
G2(2) also has three vertices (1, 2), (1, 3), (2, 3) and two edges {(1, 2), (2, 3)}
and {(1, 3), (2, 3)}. Therefore G2(2) is connected as well. Suppose that the
graphs Gd(n) are connected for all n = 1, ..., 2d − 2. Let C1 and C2 be two
configurations with n nodes with number 1 in Td+1. Let’s denote by T ′

d and T ′′
d

the subtrees of Td+1 with d levels and roots at nodes 2 and 3 respectively. Let
k1 and l1 be the number of nodes of C1 and C2 with number 1 in the subtree
T ′

d and k2 and l2 be the number of nodes of C1 and C2 with number 1 in T ′′
d .

Then k1 + k2 = n and l1 + l2 = n when C1 and C2 do not contain the root.
First we define configurations K1 and K2 which have n ones and don’t contain
the root in the following way. If C1 doesn’t contain the root then K1 = C1.
Suppose that C1 contains the root. Let C ′

1 be the configuration with n nodes
which contains the root and is a minimal configuration with k1 nodes in T ′

d and
minimal configuration with k2 nodes in T ′′

d . Then there is a path between C1

and C ′
1, because the graphs of configurations of T ′

d and T ′′
d are connected. At

least one of the nodes 2 or 3 doesn’t belong to C ′
1 because n ≤ 2d − 2. Suppose

that node 2 is not in C ′
1. Then define K1 to be the configuration obtained from

C ′
1 by removing the root and adding node 2. Then configuration K1 doesn’t

contain the root and C1 and K1 are connected. We define configuration K2 from
C2 in a similar way. Now we want to show that K1 and K2 are connected. Let
K ′

1 be the configuration with n ones which consists of a maximal configuration
with k1 nodes in T ′

d and a minimal configuration with k2 nodes in T ′′
d . There

exists a path between K1 and K ′
1 because by the inductive assumption the

graphs of configurations of the subtrees T ′
d and T ′′

d are connected. Suppose
that k1 > l1. Let us apply k1 − l1 times the following algorithm. Take the
smallest node of T ′

d with number 1 and move it to the largest node in T ′′
d with

number 0. This is possible because the nodes on the path between these two

4



nodes consists of nodes with number 0. Let’s denote by K ′
2 the configuration

that we obtain after applying this algorithm. The configuration K ′
2 consists of

a minimal configuration with l2 nodes in T ′′
d and K ′

2 has l1 nodes in T ′
d. Then

there exists a path between K ′
2 and K2. Therefore there exists a path between

C1 and C2 in Gd+1(n).

Now we give a recursive definition for the levels of the graphs Gd(n). Let CM

be the maximal configuration with n ones. We assign level 0 to the maximal
configuration: l(CM ) = 0. Let L be a list of configurations which contains
initially only the maximal configuration CM . We apply repeatedly the following
algorithm on the graph of configurations Gd(n).

Algorithm. Choose a configuration C which is not in L and there is a configu-
ration C ′ ∈ L adjacent to C. Let e = {v1, v2}, where l(v1) < l(v2) be the edge of
Td such that the numbers of C and C ′ at the vertices v1 and v2 are different. If
the number of v1 in configuration C is 1 we assign l(C) = l(C ′)− 1. Otherwise
we assign l(C) = l(C ′) + 1. Then we add configuration C to L.

By Claim 1.1 the graph Gd(n) is connected and the algorithm assigns a
level to each node. In Section 3 we assign weights to the nodes of Td and the
configurations of Gd(n). The configurations on the levels of Gd(n) have equal
weight. Note that if two configurations with n ones are adjacent then their dual
configurations with 2d − n − 1 ones are also adjacent. The graphs Gd(n) and
Gd(2

d − n − 1) are dual. They are the same graph with their levels reversed.

Lemma 2.1. Let Ck and Ck−1 be two adjacent configurations in Gn(d) such
that l(Ck) = k and l(Ck−1) = k − 1. Then the probability of Ck is p times
smaller than the probability of Ck−1.

Proof. Let {v1, v2}, be the edge of Td such that the numbers of Ck and Ck−1 at
the vertices v1 and v2 are different and p(Ck) and p(Ck−1) be the probabilities
that the network is in configurations Ck and Ck−1. The probability to choose

edge {v1, v2} at each step of the process is q =
1

2d − 1
. Let’s consider the

probability for the transition from configuration Ck to Ck−1. Suppose that the
network is in configuration Ck. Then it will move to Ck−1 only when edge
{v1, v2} is chosen. Therefore the probability for the transition from Ck to Ck−1

is qp(Ck). Suppose that the network is in configuration Ck−1 and consider the
probability that the network was in configuration Ck on the previous step. This
is possible only if edge {v1, v2} is chosen. The the probability for the transition
is pqp(Ck−1). Therefore p(Ck) = pp(Ck−1).

Corollary 2.1. Let C and C ′ be two configurations in Gd(n) with l(C) = l(C ′).
Then p(C) = p(C ′).

Proof. By Claim 1.1 there exists a path {C, C1, ..., C2n−1, C
′} in Gd(n) between

configurations C and C ′. The levels of the configurations on the path increase
n times and decrease n times because l(C) = l(C ′). By Lemma 1.1 every time
the level increases the probability for the configuration decreases by p and when
the level decreases the probability of the configuration on the path increases by

a factor of
1

p
. Therefore p(C) = p(C ′).

5



We want to determine the steady-state distribution of 0s and 1s on each
level of Td. Let probd,n,r,w(p) be the probability to have w ones on row r in Td

from the configurations with n ones . Then

probd,n,r,w(p) =
numd,n,r,w(p)

dend,n(p)

where numd,n,r,w(p) and dend,n(p) are polynomials of p. Let D be the number
of levels of the graph Gd(n). The polynomial dend,n(p) has degree D − 1 and
the coefficients the number of elements on each level of Gd(n). The coefficients
of numd,n,r,w(p) are determined by the number of configurations on the levels of
Gd(n) which have w ones on row r. We want to find formulas for numd,n,r,w(p)
and dend,n(p). In section 3 we show that numd,n,r,w(p) and dend,n(p) are co-
efficients of the polynomials q(x, y) and qr,w(x, y) defined by formulas 3.4 and
3.5. In section 4 we find recursive formulas to compute these probabilities. The
probability to have w points on row r is

probd,r,w(p) =

2d−1
∑

n=0

(

2d−1
n

)

probd,n,r,w(p)

22d−1
=

2d−1
∑

n=0

(

2d−1
n

)

numd,n,r,w(p)

22d−1dend,n(p)

3 Polynomial Solutions

In section 2 we described the states of the system as configurations of n nodes
where n is the number of the nodes which have number one. We showed that
the configurations on each level of the graph Gn(d) have equal probability. The
graph Td has d levels 0, 1, ..., d− 1 where the root is on level 0. Let’s now assign
weights 1, 2, ..., d on the nodes of Td so that the nodes on level i have weight
d− i. Let M(d, x) be the sum of the weights of the nodes of the first x levels of
Td.

M(d, x) =

x−1
∑

k=0

2k(d − k) = 2x(d − x + 2) − d − 2

When x = d we obtain that the sum of the weights of all nodes of Td is

M(d) = 2d+1 − d − 2

The weight of a configuration is the sum of its nodes. In this way the configu-
rations on each level of Gd(n) have equal weight. The number of configurations
on each level of Gd(n) is given by the solutions of the following problem.

Problem 1. Let xi = 0 or xi = 1 for i = 1, 2, ..., 2d − 1 and rt =
2t+1−1
∑

i=2t

xi for

t = 0, 1, ..., d− 1. Let s(d, n, k) be the number of sequences xi such that

d−1
∑

i=0

ri = n and
d−1
∑

i=0

(d − i)ri = k (3.1)

Determine the numbers s(d, n, k).

Lemma 3.1.

s(d, n, k) = s(d, 2d − n − 1, M(d) − k)

6



Proof. Let C be a configuration with n ones and weight k. Then the dual
configuration of C has 2d − n − 1 ones and weight M(d) − k.

For each sequence of numbers ri which satisfy 3.1 there are

d−1
∏

i=0

(

2i

ri

)

solutions

of Problem 1 because ri is the number of nodes which have number one on row i

and row i has 2i nodes. Now we show that the numbers s(d, n, k) are coefficients
of the polynomials pd(x, y) defined bellow.

pd(x, y) =

d−1
∏

i=0

(1 + xyd−i)2
i

Claim 3.1. The coefficient of pd(x, y) of the term xnyk is s(d, n, k).

Proof. We have that

pd(x, y) =

d−1
∏

i=0

2i

∑

r=0

(

2i

r

)

xryr(d−i)

The coefficient of xnyk is

d−1
∏

i=0

(

2i

ri

)

where

d
∑

i=1

ri = n and

d
∑

i=1

ri(d − i) = k.

Therefore the coefficient of xnyk is s(d, n, k).

For given values of d and n let k(d, n) and K(d, n) be the minimal and the
maximal values of k for which s(d, n, k) is not equal to 0. Let l be the largest
integer such that 2l−1 < n. The maximal value of k is attained at the maximal
configuration. Then 2l − 1 of the nodes occupy the first l levels of the tree and
the remaining n − 2l + 1 nodes are on level l. Then

K(d, n) = M(d, l) + (d − l)(n − 2l + 1)

K(d, n) = 2(2l − 1) + dn − l(1 + n)

The minimum value of k is attained at the minimal configuration with n ones.
The dual configuration of the minimal configuration with n ones is the maximal
configuration with 2d − n − 1 ones. Then

k(d, n) = M(d) − K(d, 2d − n − 1)

k(d, n) = 2(2d − 2l) + d(n − 2d) + l(2d − n)

In Claim 3.3 we show that the solutions of Problem 1 are the coefficients of
dend,n(x). In Claim 3.4 we derive a formula for numd,n,r,w(x) using the numbers
s(d, n, t, k) defined in Problem 2.

Problem 2. Let xi = 0 or xi = 1 for i = 1, 2, ..., 2d − 1 and rt =

2t+1−1
∑

i=2t

xi for

t = 0, 1, ..., d − 1. Let s(d, t, n, k) be the number of sequences xi which satisfy
(3.1) and rt = 0. Determine the numbers s(d, t, n, k).

7



Lemma 3.2.

s(d, t, n, k) = s(d, t, 2d − 2t − n − 1, M(d) − 2t(d − t) − k)

Proof. If C is a configuration of Gd(n) with n ones and weight k which is a
solution of Problem 2, its dual configuration has 2d − 2t − n− 1 ones and zeros
on level t and weight M(d) − 2t(d − t) − k.

Similarly to Problem 1, the number of solutions of Problem 2 are coefficients
of the following polynomials.

pd,t(x, y) =

d−1
∏

k=0

(1 + xyd−k)2
k

(1 + xyd−t)2t

Claim 3.2. The coefficient of pd,t(x, y) of the term xnyk is equal to s(d, t, n, k).

Proof. We have that pd,t(x, y) =
pd(x, y)

(1 + xyd−t)2t
. Therefore the coefficient of

xnyk is equal to the number of the solutions of Problem 1 where rt = 0. Hence
the coefficient of xnyk is s(d, t, n, k).

Claim 3.3.

dend,n(x) =

K(d,n)
∑

k=k(d,n)

s(d, n, K(d, n) + k(d, n) − k)xk−k(d,n) (3.2)

Proof. The coefficients of the polynomial dend,n(x) are the number of nodes on
the levels of Gd(n). The number of nodes on level k of Gd(n) is s(d, n, k+1).

Claim 3.4.

numd,n,r,w(x) =

(

2r−1

w

)

xK(d,n)−K(d,r−1,n−w)−w(d−r+1) (3.3)

K(d,r−1,n−w)
∑

k=k(d,r−1,n−w)

s(d, r−1, n−w, K(d, r−1, n−w)+k(d, r−1, n−w)−k)xk−k(d,r−1,n−w)

Proof. There are
(

2r−1

w

)

s(d, r − 1, n − w, K(d, r − 1, n − w) − k) with weight
K(d, r−1, n−w)−k +w(d−r +1). The maximal weight for the configurations
with w nodes on row r is K(d, r − 1, n − w) + w(d − r + 1) so we adjust the
numerators with xK(d,n)−K(d,r−1,n−w)−w(d−r+1).

Now we express the polynomials dend,n(x) and numd,n,r,w(x) as coefficients
of the polynomials q(x, y) and qr,w(x, y) defined bellow. Let

q(x, y) =
d

∏

s=1

(y + xs)2
d−s

(3.4)

8



and

qr,w(x, y) =

(

2r−1

w

)

ywx(d−r+1)(2r−1−w)

d
∏

s=1

(y + xs)2
d−s

(y + xd−r+1)2r−1
(3.5)

The polynomials q(x, y) and qr,w(x, y) are polynomials in two variables. The
coefficient of yn is a polynomial of x.

Claim 3.5. The coefficient of yn in q(x, y) is xk(d,2d−n−1)dend,n(x).

Proof. We have that

q(x, y) =

d
∏

s=1

(y + xs)2
d−s

=

d
∏

s=1

2d−s

∑

i=0

(

2d−s

2d−s − i

)

yixs(2d−s−i)

The coefficient of ynxk is equal to

d
∏

s=1

(

2d−s

2d−s − is

)

where

d
∑

s=1

is = n and
d

∑

s=1

s(2d−s − is) = k

Let j = d − s and rj = 2d−s − is = 2j − id−j . Then s = d − j and

d−1
∑

j=0

rj = 2d − n − 1 and

d−1
∑

j=0

(d − j)rj = k

Therefore the coefficient of ynxk is s(d, 2d − n − 1, k). The coefficient of yn is
K(d,2d−n−1)

∑

k=k(d,2d−n−1)

s(d, 2d − n − 1, k)xk. We have that

K(d,2d−n−1)
∑

k=k(d,2d−n−1)

s(d, 2d − n − 1, k)xk =

K(d,2d−n−1)
∑

k=k(d,2d−n−1)

s(d, n, M(d) − k)xk

=

K(d,n)−k(d,n)
∑

r=0

s(d, n, M(d) − k(d, 2d − n − 1) − r)xk(d,2d−n−1)+r

= xk(d,2d−n−1)

K(d,n)−k(d,n)
∑

r=0

s(d, n, K(d, n) − r)xr

= xk(d,2d−n−1)

K(d,n)
∑

r=k(d,n)

s(d, n, K(d, n) + k(d, n) − k)xk−k(d,n)

K(d,2d−n−1)
∑

k=k(d,2d−n−1)

s(d, 2d − n − 1, k)xk = xk(d,2d−n−1)dend,n(x)

9



Claim 3.6. The coefficient of yn in qr,w(x, y) is xk(d,2d−n−1)numd,n,r,w(x).

Proof. Let

q′r,w(x, y) =

d
∏

s=1

(y + xs)2
d−s

(y + xd−r+1)2r−1
=

∏

1≤s≤d
s6=d−r+1

2d−s

∑

i=0

(

2d−s

2d−s − i

)

yixs(2d−s−i)

The coefficient of yn−wxk in q′r,w(x, y) is equal to
∏

1≤s≤d

(

2d−s

2d−s − is

)

, where

∑

1≤s≤d

is = n − w and
∑

1≤s≤d

s(2d−s − is) = k and id−r+1 = 2r−1

Let j = d − s and qj = 2d−s − is = 2j − id−j . Then

qr−1 = 2r−1 − id−r+1 = 2r−1 − 2r−1 = 0

and
d−1
∑

j=0

qj =

d
∑

s=1

(2d−s − is) = 2d − n + w − 1

d
∑

j=0

(d − j)qj =
d

∑

s=1

s(2d−s − is) = k

Therefore the coefficient of yn−wxk in q′r,w(x, y) is s(d, r−1, 2d−nw −1, k). Let
An be the coefficient of yn in qr,w(x, y). Then

An =

(

2r−1

w

)

x(d−r+1)(2r−1−w)

K(d,r−1,2d−2r−n+w−1)
∑

k=k(d,r−1,2d−2r−n+w−1)

s(d, r−1, 2d−2r−1−n+w−1, k)xk

Let

An =

(

2r−1

w

)

x−w(d−r+1)Bn

where

Bn =

K(d,r−1,2d−2r−n+w−1)
∑

k=k(d,r−1,2d−2r−n+w−1)

s(d, r − 1, 2d − 2r−1 − n + w − 1, k)xk+2r−1(d−r+1)

By Lemma 3.2 we have that

s(d, r−1, 2d−2r−1−n+w−1, k) = s(d, r−1, n−w, M(d)−2r−1(d−r+1)−k)

Then

Bn =

K(d,r−1,2d−2r−n+w−1)
∑

k=k(d,r−1,2d−2r−n+w−1)

s(d, r−1, n−w, M(d)−2r−1(d−r+1)−k)xk+2r−1(d−r+1)

10



Let’s substitute

M(d) − 2r−1(d − r + 1) − k = K(d, r − 1, n − w) + k(d, r − 1, n− w) − l

Then

k + 2r−1(d − r + 1) = l + M(d) − K(d, r − 1, n − w) − k(d, r − 1, n− w)

and

Bn =

∗∗
∑

l=∗

s(d, r−1, n−w, K(d, r−1, n−w)+k(d, r−1, n−w)−l)xl−k(d,r−1,n−w)+dl

where dl = M(d) − K(d, r − 1, n − w). We have that

k(d, r − 1, 2d − 2r − n + w − 1) + K(d, r − 1, n − w) = M(d) − 2r−1(d − r + 1)

Then ∗ = k(d, r − 1, n − w) and ∗∗ = K(d, r − 1, n − w). Therefore

Bn =
numd,n,r,w(x)xM(d)−K(d,r−1,n−w)

(

2r−1

w

)

xK(d,n)−K(d,r−1,n−w)−w(d−r+1)

Bn =
numd,n,r,w(x)

(

2r−1

w

)
xM(d)−K(d,n)+w(d−r+1)

Bn =
numd,n,r,w(x)

(

2r−1

w

)
xk(d,2d−n−1)+w(d−r+1)

Hence

An =

(

2r−1

w

)

x−w(d−r+1)Bn

An =

(

2r−1

w

)

x−w(d−r+1) numd,n,r,w(x)
(

2r−1

w

)
xk(d,2d−n−1)+w(d−r+1)

An = numd,n,r,w(x)xk(d,2d−n−1)

4 Recursive Algorithm

In section 3 we described the solutions of Problem 1 and Problem 2 as well
as numerator and the denominator of the probability function probd,r,w(p) as
polynomial coefficients. In Claim 4.1 and Claim 4.4 we find recursive formulas
to calculate the number of the solutions of Problem 1 and Problem 2. We
calculate the numerator and the denominator of the probability function with
formulas 3.2 and 3.3.

Claim 4.1.

s(d, n, k) =

n
∑

r=0

(

2d−1

r

)

s(d − 1, n− r, k − n)ε(r)

where

ε(r) =

{

1 if k(d − 1, n − r) ≤ k − n ≤ K(d − 1, n − r)
0 otherwise

11



Proof. The bottom level of the tree contains 2d−1 points corresponding to the
numbers x2d−1 , ..., x2d−1. When r of them are equal to 1, the points of the top
d − 1 levels satisfy

d−1
∑

i=1

ri = n − r and

d−1
∑

i=1

(d − i − 1)ri = k − n

The above equations have s(d − 1, n − r, k − n) solutions when

k(d − 1, n − r) ≤ k − n ≤ K(d − 1, n− r)

We defined the sum of the weights of all nodes as M(d) = 2d+1 − d− 2. Let
Mt(d) be the sum of the weights of the nodes of the tree except the nodes on
level t. Then

Mt(d) = M(d) − 2t(d − t)

Mt(d) = 2d+1 − 2t(d − t) − d − 2

Let Kt(d, n) and kt(d, n) be the maximal and minimal values of k for which
s(d, t, n, k) 6= 0. The function Kt(d, n) is determined from K(d, n) in the fol-
lowing way.

Claim 4.2.

Kt(d, n) =

{

K(d, n) if n < 2t

K(d, n + 2t) − 2t(d − t), if n ≥ 2t

Proof. The maximal value of k =

d
∑

i=1

(d−i)ri occurs when the nodes which have

a number 1 are on the top levels of the tree. When n < 2t r the nodes with
number 1 are in the top t − 1 levels and we have that Kt(d, n) = K(d, n). The
tree has 2t − 1 nodes on levels 1, 2, ..., t − 1. When n ≥ 2t some of the nodes
with number 1 will be on levels t + 1, t + 2, ..., d. The sum of the weights of the
points on level t is 2t(d − t). Then Kt(d, n) = K(d, n + 2t) − 2t(d − t).

Claim 4.3.

kt(d, n) = Mt(d) − Kt(d, 2d − 2t − n − 1)

Proof. The minimum of k =

d
∑

i=1

(d− i)ri occurs when the n nodes with number

1 are in the bottom levels of the tree. Then the remaining 2d − 2t −n− 1 nodes
with number 0 occupy the top levels of the tree. The sum of the weights of all
points is Mt(d). Then kt(d, n) = Mt(d) − Kt(d, 2d − 2t − n − 1).

Claim 4.4. The numbers s(d, t, n, k) are calculated recursively as follows

s(d, d − 1, n, k) = s(d − 1, n, k − n)

s(d, t, n, k) =
n

∑

r=0

(

2d−1

r

)

s(d − 1, t, n− r, k − n)ε(r)

12



where ε(r) = 1 when

k(d − 1, t, n − r) ≤ k − n ≤ K(d − 1, t, n− r)&n < 2d−1 − 2t + r

and ε(r) = 0 otherwise.

Proof. When t = d− 1 the nodes with number are on the top d− 1 levels of the
tree. In this case the solutions of Problem 2 satisfy:

d
∑

i=1

ri = n and
d

∑

i=1

(d − i)ri = k and rd = 0

Then

d
∑

i=1

(d − i)ri =

d−1
∑

i=1

(d − i)ri =

d−1
∑

i=1

(d − 1 − i)ri +

d
∑

i=1

ri =

d−1
∑

i=1

(d − 1 − i)ri + n

d−1
∑

i=1

(d − 1 − i)ri = k − n

because
∑d

i=1(d− i)ri = k. Therefore when t = d−1 the solutions of Problem 2
correspond to the solutions of Problem 1 for the tree with d−1 levels which has
n nodes with number 1 and sum of the weights k − n. Then s(d, d − 1, n, k) =
s(d−1, n, k−n). Let t < d−1 and r be the number of nodes with number 1 on
level d − 1. The remaining n − r nodes are on the top d − 1 levels of the tree.
These configurations are solutions of Problem 1 for the tree with d − 1 levels
and n − r nodes with number 1 which have total weight k − n. Problem 1 has
a solution with these parameters when n − r < 2d−1 − 2t and

k(d − 1, t, n − r) ≤ k − n ≤ K(d − 1, t, n− r)&n < 2d−1 − 2t + r

5 Final Remarks

In section 4 we found recursive formulas to compute the values of the probability
function for the number of 0s and 1s on the levels of the tree Td. In the
appendix we give the values of the probabilities for the first three levels for
d = 1, 2, 3, 4, 5, 6, 7 and p = 0.25, 0.5. The probability that all nodes have
number 1 is the rectangle in the barplots colored in black. This probability
increases and approaches 1 as n increases. In section 2 we used the tree structure
of the network to show that the graphs Gd(n) are connected. In sections 3 and
4 we developed polynomial and recursive formulas for the probability function
probd,,r,w(p). These formulas use only the connectivity of the graphs Gd(n).
This observation suggests that we can extend our results to much wider class
of networks with arbitrary number of nodes on each level and arbitrary number
of connections between the neighboring levels provided that they are connected
and there are no connections within each level. The model of self-organizing
networks that we proposed here can be generalized to more realistic one by
considering networks with arbitrary number of nodes on each level as well as
assigning different probabilities for the computational power of the nodes.

13



6 Appendix

d = 3, p = .25 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.1237 0.8763

Level 2 0.1316 0.4347 0.4336

Level 3 0.2222 0.3736 0.2812 0.1065 0.01654

d = 4, p = .25 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.0393 0.9607

Level 2 0.0213 0.2347 0.7440

Level 3 0.0286 0.1448 0.3185 0.3498 0.1584

d = 5, p = .25 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.0107 0.9893

Level 2 0.0018 0.0792 0.9190

Level 3 0.0006 0.0122 0.0951 0.3561 0.5359

d = 6, p = .25 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.0028 0.9972

Level 2 0.0001 0.0217 0.9781

Level 3 < 10−5 0.0003 0.0102 0.1486 0.8409

d = 7, p = .25 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.0007 0.9993

Level 2 < 10−5 0.0056 0.9944

Level 3 < 10−5 < 10−5 0.0007 0.0430 0.9563

Table 1: The values of the probability function for the first three levels of the
tree for p = 0.25 and d = 3, 4, 5, 6, 7.

14



Level 1 Level 2 Level 3

d = 3

88 % 43 % 2 %

d = 4

96 % 74 % 16 %

d = 5

99 % 92 % 54 %

d = 6

100 % 98 % 84 %

d = 7

100 % 99 % 96 %

Figure 3: The graphs of the probability function from Table 1 for p = 0.25.

15



d = 3, p = .5 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.2712 0.7288

Level 2 0.1832 0.4835 0.3333

Level 3 0.1304 0.3372 0.3425 0.1607 0.0292

d = 4, p = .5 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.1706 0.8294

Level 2 0.0858 0.4098 0.5044

Level 3 0.0430 0.2006 0.3621 0.2992 0.0952

d = 5, p = .5 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.0981 0.9019

Level 2 0.0323 0.2924 0.6753

Level 3 0.0088 0.0783 0.2657 0.4081 0.2391

d = 6, p = .5 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.0530 0.9470

Level 2 0.0102 0.1810 0.8088

Level 3 0.0012 0.0203 0.1341 0.3977 0.4468

d = 7, p = .5 X = 0 X = 1 X = 2 X = 3 X = 4

Level 1 0.0276 0.9724

Level 2 0.0029 0.1018 0.8953

Level 3 0.0001 0.0039 0.0505 0.2952 0.6503

Table 2: The values of the probability function for the first three levels of the
tree for p = 0.5 and d = 3, 4, 5, 6, 7.

16



Level 1 Level 2 Level 3

d = 3

73 % 33 % 3 %

d = 4

83 % 50 % 10 %

d = 5

90 % 68 % 24 %

d = 6

95 % 81 % 45 %

d = 7

97 % 90 % 65 %

Figure 4: The graphs of the probability function from Table 2 for p = 0.5.

17



References

[1] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press, Santa Fe In-
stitute Studies in the Sciences of Complexity, 1999.

[2] Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria. Application-
specific scheduling for the Organic Grid. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing (GRID 2004),
pages 146–155, Pittsburgh, November 2004.

[3] Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria. The Organic
Grid: Self-organizing computation on a peer-to-peer network. In Proceedings
of the International Conference on Autonomic Computing, pages 96–103.
IEEE Computer Society, May 2004.

[4] Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria. The organic
grid: self-organizing computation on a peer-to-peer network. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part A, 35(3):373–384, 2005.

[5] A. Gierer and H. Meinhardt. A theory of biological pattern formation. Ky-
bernetik, 12:30–39, 1972.

[6] A. Montresor, H. Meling, and O. Babaoglu. Messor: Load-balancing through
a swarm of autonomous agents. In Proceedings of 1st Workshop on Agent
and Peer-to-Peer Systems, number 2530 in Lecture Notes in Artificial Intel-
ligence, pages 125–137. Springer-Verlag, July 2002.

[7] A. Turing. The chemical basis of morphogenesis. Philos. Trans. R. Soc.
London, 237(B):37–72, 1952.

18


