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Abstract
Commodity clusters are rapidly scaling up to

tens-of-thousands of processors. With the in-
creasing scale, providing scalable design and im-
plementation of the Message Passing Interface
(MPI) is a challenge. Current generation MPI
implementations provide scalable modes of op-
eration, but they lack adaptive mechanisms to
dynamically adapt resource consumption as per
application requirements. As a result, intimate
knowledge of application characteristics is re-
quired to minimize resource consumption by the
MPI layer. In this paper, we present a mech-
anism which dynamically adapts resource con-
sumption according to application runtime char-
acteristics enabling the MPI layer to consume
only minimum amounts of resources. We evalu-
ate this mechanism in the context of MVAPICH, a
high-performance, open-source MPI implemen-
tation over InfiniBand. Experimental evalua-
tion of our proposed design with NAS Parallel
Benchmarks and NAMD (apoa1 dataset) reveals
that the adaptive mechanism can provide the best
available performance while consuming around
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factor of two to three lesser amount of commu-
nication memory than the original non-adaptive
design. In addition, our experimental analysis
shows that the proposed adaptive mechanism can
achieve memory usage very close to the minimum
required by MVAPICH to deliver the best possi-
ble performance. Further, we provide analysis
of of our proposed design in combination with
the effect of of low-level InfiniBand flow-control
timers on end-application memory usage. To the
best of our knowledge, this is the first research
work which provides this kind of design and anal-
ysis for high-performance MPI over InfiniBand.

1 Introduction

Over the past decade, cluster computing has be-
come quite popular, owing largely to its cost ben-
efits from commodity components. The size of
clusters is increasing rapidly to tens-of-thousands
of processors. Generally clusters used for high-
performance computing are connected with a
high-performance, low-latency interconnect. In-
finiBand [2] is a popular high-performance in-
terconnect, offering low latency (1.5-3.0µs) and
high bandwidth (multiple GigaBytes/second). In
addition to high-performance, InfiniBand also
provides many advanced features such as Remote
Direct Memory Access (RDMA), atomic opera-
tions, multi-cast, and QoS. Several top clusters



in the Top500 list [14] have employed InfiniBand
as their primary interconnect. Sandia Thunder-
bird [10] and NASA/Ames Columbia [6] are two
such examples. The Message Passing Interface
(MPI) [5] is the de-facto standard in writing par-
allel scientific applications on large-scale clus-
ters. Hence, the performance and scalability of
MPI libraries is crucial for end-application per-
formance on large clusters.
Recently, memory consumption within MPI im-

plementations over InfiniBand have been subject
to much research [12, 13, 11]. Memory scala-
bility has been achieved primarily by using the
“Shared Receive Queue” (SRQ) feature of Infini-
Band. MVAPICH [7], a high-performance and
open-source MPI implementation is designed to
leverage the SRQ feature. However, current
mechanisms are not adaptive. As a result, in or-
der to reduce communication memory, the user
has to know up-front how much communication
memory is required for attaining the best possible
performance. This is often hard for the end user
to know. Thus, two open questions remain:

• Can we design an adaptive mechanism
which dynamically adjusts the amount of
memory required for an application during
runtime, using only minimal amounts of
memory?

• How close is the communication memory
consumption in the adaptive scheme com-
pared to the minimum required to attain the
best recorded performance?

In this paper, we aim to answer the above two
questions. We present a mechanism which dy-
namically adapts (at runtime) the amount of com-
munication memory used according to applica-
tion demands. We have evaluated our mechanism
with MVAPICH on a 32-node, dual-processor
cluster equipped with InfiniBand. Our experi-
mental evaluation with the NAS Parallel Bench-
marks [1] (Class B) and NAMD [9] (apoa1
dataset), shows that our new mechanism can
achieve the best possible performance with al-
most a factor of two to three lesser amount of
communication memory than the original de-
sign. In addition, our experiments reveal that

our mechanism consumes very close (within
500KB) to theminimumamount of memory re-
quired to run applications with the best possi-
ble performance. Further, we provide analysis of
our proposed design in combination with the ef-
fects of low-level InfiniBand flow control timers
on end-application memory usage.
The rest of the paper is organized as fol-

lows: Section 2 provides the required back-
ground about InfiniBand and MVAPICH. Sec-
tion 3 describes our adaptive mechanism. Sec-
tion 4 presents our experiments and their analy-
sis. Related research is described in Section 5,
and finally, the paper concludes in Section 6.

2 Background
In this section we provide the required back-

ground for the work done in this paper. First,
we discuss the features and properties of Infini-
Band as applicable to this research work. Second,
we describe the design of the MPI layer (namely,
MVAPICH [7]) on top of these InfiniBand prim-
itives.

2.1 InfiniBand Overview

InfiniBand is a high-performance and feature-
rich network architecture. In this section we dis-
cuss a subset of these features which are directly
applicable to our research work. Details relating
to other InfiniBand features can be obtained from
IBA specification [2].
InfiniBand Communication Model: The

InfiniBand Architecture [2] (IBA) defines a
switched network fabric for interconnecting
compute and I/O nodes. In an InfiniBand net-
work, hosts are connected to the fabric by Host
Channel Adapters (HCAs). A queue based model
is used in InfiniBand. A Queue Pair (QP) con-
sists of a send queue and a receive queue. Com-
munication operations are described in the Work
Queue Requests/Entries (WQR/WQE), or de-
scriptors, and submitted to the work queue. It
is a requirement that all communication buffers
be posted into receive work queues before any
message can be placed into them. In addition,
all communication buffers need to be registered
(locked in physical memory) before InfiniBand
can either send from or receive data into that
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Figure 1. IBA Flow Control Mechanisms for Shared Receive Que ues

memory location. This restriction is imposed to
ensure that memory is present when HCA ac-
cesses the memory. Finally, the completion of
WQRs is reported through Completion Queues
(CQ).
InfiniBand Transport Services: IBA provides

several types of transport services: Reliable Con-
nection (RC), Unreliable Connection (UC), Re-
liable Datagram (RD), and Unreliable Datagram
(UD). On current-generation hardware, the RC
transport provides the best performance and most
features. It supports two-sided send/receive oper-
ations as well as one-sided RDMA Read/Write
operations. In addition, it supports one-sided
atomic operations and QoS features. In this pa-
per, we focus on the RC transport exclusively.
Shared Receive Queue (SRQ):SRQ is a fea-

ture of IBA which allows sharing of one receive
queue for multiple QPs. Using this feature, QPs
have their individual send queues, but have only
one receive queue. This feature allows efficient
sharing of receive buffers amongst multiple QPs,
especially when the incoming message rate on
any QP cannot be predicted in advance. This fea-
ture maps very well to the requirement of MPI
implementations, and is currently used by both
MVAPICH [7] and OpenMPI [11].
Flow Control Mechanism for SRQ: Although

the SRQ feature provides very efficient buffer
sharing mechanism amongst multiple QPs, it suf-
fers from inherent flow control related issues
since shared buffers are consumed in a First-
come-first-served (FCFS) fashion. For exam-
ple, a sending process can no longer be guar-
anteed to find a receive buffer once its message

reaches the receiver. IBA provides a NAK based
flow-control mechanism to handle the case where
there are incoming messages and no WQEs in the
SRQ. The receiver side HCA sends a Receiver
not Ready NAK (RNR-NAK) to the sender in-
dicating that this message should be retried af-
ter a certain time intervalt. The value oft can
be user supplied at the time of QP initializa-
tion. Possible values oft range from0.1ms to
around655ms. This protocol is shown in Fig-
ure 1(a). Another mechanism provided to avoid
keeping the SRQ empty for extended periods of
time is theSRQ LIMIT REACHED event. When
the number of available SRQ buffers drops be-
low a configurable limit, then the HCA gener-
ates an interrupt which can be handled by up-
per level software to refill the SRQ. This is il-
lustrated in Figure 1(b). Both the RNR-NAK
and SRQ LIMIT REACHED event mechanisms
are complementary and can be utilized appropri-
ately by upper level software.

2.2 MVAPICH Design Overview

MVAPICH [7] is a popular implementation of
MPI over InfiniBand. It uses several Infini-
Band services like Send/Receive, RDMA-Write,
RDMA-Read, and Shared Receive Queues to
provide high-performance and scalability to MPI
applications. There are two major protocols used.
The first is theEager Protocol, which is used
to transfer small messages. The second protocol
used is theRendezvous Protocol, which is used
for large messages. In order to avoid buffering
large messages inside the MPI library, the Ren-
dezvous protocol negotiates the availability of re-
ceive buffer by using control messages. After the
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negotiation phase, the messages are sent directly
to receiver user memory with the use of RDMA.
These control messages used by the Rendezvous
protocol are small in size and are sent over the
Eager protocol. Thus, the Eager protocol can be
used for MPI application generated small mes-
sages as well as Rendezvous control messages.
The Eager protocol requires the presence of

“pre-allocated” communication buffers, in order
to avoid any runtime costs and achieve low la-
tency. The Rendezvous protocol does not require
any additional buffer space other than the control
messages sent over the Eager protocol. Hence,
only the Eager protocol consumes communica-
tion memory in a MPI process. Since, in this pa-
per, we are studying the impact of communica-
tion memory usage on performance, we will fo-
cus on the Eager protocol.
Of the several implementations of the Eager

protocol in MVAPICH, the most scalable one
is over SRQ. The MVAPICH SRQ channel has
been described in detail in [12, 13]. This channel
relies on theSRQ LIMIT REACHED event pro-
vided by IBA. When the number of available re-
ceive requests on the SRQ drops below a certain
limit, an interrupt generated by the HCA is han-
dled by MVAPICH to post more receive descrip-
tors to the SRQ. The current implementation is
not adaptive in nature. i.e. the user can only spec-
ify a specific receive window size for the entire
run of the application (for all the processes in the
job). This is not very convenient, since the user
should know up-front, the minimum window size
required to achieve the best performance. Also,
the user has no way of controlling window sizes
on different processes based on application re-
quirement. Thus, the current scheme enforces a
global static policy on the size of the receive win-
dow.

3 Design of Adaptive Receive Win-
dow Scaling

In this section we discuss the design of our pro-
posed adaptive receiver window scaling mecha-
nism.
As mentioned in Section 2.2, MVAPICH re-

lies on theSRQ LIMIT REACHED event to de-

tect if the SRQ is low on receive WQEs. If
there are noSRQ LIMIT REACHED events, then
it can be assumed that enough receive opera-
tions are already made available to the network
than send operations. However, if there are
SRQ LIMIT REACHED events, then it indicates
the MPI application is trying to send more mes-
sages than the receiver initially estimated. When-
ever the event occurs, our design increases the
available receiver window size according to the
following equation:

Wcurrent = min(2nlimit × Winitial, Wmax)

Where,
Wcurrent = current receive window,
nlimit = total number of limit events,
Winitial = initial window size,
Wmax = maximum allowable window size
The threshold (given byLimitcurrent) for the

nextSRQ LIMIT REACHED event is set as fol-
lows:

Limitcurrent = Wcurrent/2

We choose an exponential function to grow the
window size, so that our scheme can very quickly
adapt to the application characteristics. Cur-
rently, our design does not reduce the window
size. This is because, it is hard to estimate for
the MPI library when the application will again
choose to send a burst of messages. Even if the
application does not utilize the entire window
(allocated after the burst), the buffers allocated
could still be used for keeping unexpected mes-
sages, etc.
In our implementation, the user can vary the

Winitial andWmax values. For example, a user
may select a lowerWmax value to set a limit
on the amount of memory the MPI layer uses
for communication. However, when theWmax

is set much lower, one factor which comes into
play is the RNR-NAK timeout values. As men-
tioned in Section 2.1, the RNR-NAK timeout
value impacts the rate at which the sender retries,
in case send operations do not find correspond-
ing receive requests on the receiver side. A very
low RNR-NAK value may lead to significantly
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increased traffic in the fabric as well as more
SRQ LIMIT REACHED events, thus leading to
increased memory usage. On the other hand, a
very high RNR-NAK value may lead to very de-
layed retries, leading to degraded performance.

4 Experimental Evaluation
In this section we present experimental results

for the design alternatives described in the previ-
ous section. We evaluate both the performance
and memory used while executing the NAS Par-
allel Benchmarks [1] (Class B) and NAMD [9]
(apoa1 dataset).
In order to obtain the communication memory

usage, we inserted profiling code inside MVA-
PICH. The information collected by the profiling
code was collected usingMPI Reduce inside
MPI Finalize. The profiling code does not
impact the performance of the application (veri-
fied with latency/bandwidth micro-benchmarks).
Our experimental results are divided into two cat-
egories. In the first category, we measure the im-
pact of various values ofWmax on both applica-
tion performance and memory consumption. In
the second category, we measure the impact of
choosing several different RNR-NAK timer val-
ues for different values ofWmax.

4.1 Experimental Platform

Our experimental platform is a 32 node dual In-
tel 3.7 GHz cluster. Each node is equipped with
2GB of main memory and PCI-Express interface.
The nodes have MHGA28-1T Mellanox DDR
HCAs with firmware version 5.1.4. The cluster
is connected with a 144 port Flextronics DDR
switch. The Verbs layer used is from OpenFab-
rics [8] (OFED 1.1). The Linux kernel version
used is 2.6.17.

4.2 Impact of Wmax on Performance and Mem-
ory Usage

In this section, we present our evaluation of our
adaptive receive window scaling mechanism with
various values ofWmax. In our experiments, we
varyWmax from 16 to 4096. The value ofWinitial

is fixed at8 for all the experiments.
The experimental results are shown in Figure 2.

We present both the average memory usage (i.e.,
memory used by an average MPI process) and
the relative performance as compared to the best
recorded performance of MVAPICH (using the
“default” configuration). The default configura-
tion consists of the settings used in MVAPICH
version 0.9.8. The default configuration does not
have the adaptive receiver window scaling mech-
anism, rather it uses a fixed window of512. Rela-
tive performance of1 indicates that performance
remains the same, and< 1 indicates degraded
performance. The configurations used in this ex-
periment are named as “Winitial − Wmax Adap-
tive” and “Non-Adaptive” (the original design).
As seen in Figures 2(a) to 2(h), the memory

consumed byWmax = 4096 (column “8 − 4096
Adaptive”) is considerably lesser than that of
the default combination, ranging from a factor
of two or three better. In addition, from Fig-
ures 2(c) to 2(g), we can observe that all values of
Wmax perform equally well, as compared to the
default “Non-Adaptive” combination. Further,
the difference in memory consumption between
Wmax = 16 and Wmax = 4096 is just around
500KB.
In Figures 2(a), 2(b) and 2(h), we see that with

Wmax = 64 and greater achieves the same per-
formance as the default combination. For val-
ues ofWmax = 32 and below (in case of Fig-
ure 2(h), Wmax = 16), there is performance
degradation. This indicates that window of at
least that much is required to obtain the best
available performance.Wmax = 4096 consumes
only around500KB more of memory (in case
of Figure 2(h),1MB more), and is able to pro-
vide the best possible performance. Thus, we
note that our adaptive receive window scaling can
achieve the best possible performance with al-
most theminimumamount of memory required
with Wmax = 4096. Current generation Mel-
lanox HCAs (like the one used for this paper)
support up-toWmax = 16, 384. It is our expecta-
tion that even on very large clusters, the adaptive
receive window scaling mechanism can scale to
consume only as much memory as applications
require for attaining best performance.
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4.3 Impact of RNR-NAK Timer on Memory Us-
age

In this section, we present the experimental re-
sults which show the impact of the choice of the
RNR-NAK timer on the memory consumed by
an application with varyingWmax.
The experimental results are shown in Figure 3.

The various values of RNR-NAK timers tried
were from 0.01ms to 655.36ms. When a mes-
sage arrives at the receiver and there is no SRQ
WQEs available, the sender gets a RNR-NAK
with a specific timer value. According to the
IBA specification [2], the requester HCA (i.e.
the HCA sending the message), should re-try the
message after waiting for at-least this amount of
time. There is no upper bound specified. Nev-
ertheless, we found on the Mellanox HCAs, this
RNR-NAK timer to be in general a good indica-
tor of how often messages are re-tried.
In Figure 3(a), we can see the impact of reduc-

ing the RNR-NAK timer with very low maxi-
mum SRQ sizes (Wmax). Even though theWmax

value is low, due to very high frequency of retries,
more memory is consumed. As soon as memory
is made available to the MPI library, new mes-
sages are received and marked as “unexpected”.
Since unexpected messages also count towards
the communication memory usage of the MPI li-
brary, the usage increases as a result. The other
NAS benchmarks and NAMD show the trend
as seen in Figure 3(b). These show that even
though theWmax value is quite low, the RNR-
NAK value has literally no impact on the overall
performance. The reason for this can be obtained
from observations in Section 4.2, where we see
that MG performs equally well even for very low
Wmax values.

5 Related Work

Memory usage inside MPI libraries over In-
finiBand is a well researched topic. Since the
most popular InfiniBand transport is connection
oriented, resources dedicatedper-connectionin-
crease the overall memory usage on large scale
clusters. Liu, et al performed a comparison
of the earliest MPI implementation over Infini-
Band (MVAPICH) with MPI implementations

over Myrinet and Quadrics in [4], which showed
this trend of increasing memory with the num-
ber of increasing processes. The Shared Receive
Queue feature of InfiniBand was not available
at that time. Yu, et al introduced an “adaptive”
connection strategy in [15] which allowed Infini-
Band connections to be set-up only after certain
number of messages were exchanged between a
process pair. The MVAPICH SRQ channel was
described in [12], a much more detailed appli-
cation level evaluation was carried out in [13]
which revealed that the SRQ design required only
around5 − 10 MB of communication memory
while executing various applications and bench-
marks on a 64-node InfiniBand cluster. Other
MPI implementations, such as Open MPI also
have Shared Receive Queue support [11]. While
most of the above research works focussed on ei-
ther reducing the connection memory or receive
buffer and communication memory, Koop, et al
showed in [3] the impact of reducing the number
of outstanding send operations combined with
message coalescing on the overall memory usage
of the MPI library.
This research work complements other existing

works by evaluating the effect of adaptively in-
creasing the receiver side SRQ window on the
application memory usage and performance. In
addition, it evaluates the combined effect of dif-
ferent RNR-NAK thresholds and low SRQ win-
dow sizes on the end application performance.
To the best of our knowledge, this is the first re-
search work which provides this kind of design
and analysis.

6 Conclusions and Future Work

With the increasing scale of clusters, it is es-
sential that MPI implementations have scalable
design and consume the minimum possible re-
sources. In this paper, we proposed a mechanism
for adaptively scaling the receive window to ob-
tain the best possible performance with the least
amount of memory resources. Our experimen-
tal evaluations have proved that not only does
our mechanism consume a fraction of memory as
compared to the default design, memory required
by it is very close to theminimumrequired mem-
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Figure 3. Impact of RNR-NAK Timer on Memory Usage

ory for attaining best performance. In addition,
we have also evaluated our proposed mechanism
in combination with the effect of low-level Infini-
Band flow control timers to show the effect on
end application communication memory usage.
In the future, we plan to evaluate this design

on much larger scale clusters in conjunction with
methods and heuristics to reclaim unused mem-
ory with least impact to end application perfor-
mance. We also plan to study application char-
acteristics in detail to understand the patterns of
memory requirement from the MPI library.
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