
CMAC: An Energy Efficient MAC Layer Protocol
Using Convergent Packet Forwarding for Wireless

Sensor Networks

Sha Liu, Kai-Wei Fan and Prasun Sinha
Department of Computer Science and Engineering, The Ohio State University

Email: {liusha,fank,prasun}@cse.ohio-state.edu

Abstract— Low duty cycle operation is critical to con-
serve energy in wireless sensor networks. Traditional wake-
up scheduling approaches either require periodic synchro-
nization messages or incur high packet delivery latency
due to the lack of any synchronization. In this paper, we
present the design of a new low duty-cycle MAC layer
protocol called Convergent MAC (CMAC). CMAC avoids
synchronization overhead while supporting low latency. By
using zero communication when there is no traffic, CMAC
allows operation at very low duty cycles. When carrying
traffic, CMAC first uses anycast to wake up forwarding
nodes, and then converges from route-suboptimal anycast
with unsynchronized duty cycling to route-optimal unicast
with synchronized scheduling. To validate our design and
provide a usable module for the community, we implement
CMAC in TinyOS and evaluate it on the Kansei testbed
consisting of105 XSM nodes. The results show that CMAC
at 1% duty cycle significantly outperforms BMAC at 1% in
terms of latency, throughput and energy efficiency. We also
compare CMAC with other protocols using simulations.
The results show for 1% duty cycle, CMAC exhibits similar
throughput and latency as CSMA/CA using much less
energy, and outperforms SMAC and GeRaF in all aspects.

I. INTRODUCTION

Extending the lifetime of battery powered wireless
sensor networks is critical because touching the sensor
nodes for replacement might be expensive or even im-
possible. Since idle listening consumes almost the same
energy as receiving or transmitting, duty cycling the
radio is important to achieve long lifetime. However, a
low duty cycle usually causes performance degradation
in throughput and latency which are critical metrics for
various applications such as event tracking and surveil-
lance. These conflicting objectives motivate the design
of a new MAC layer protocol calledConvergent MAC
(CMAC) . Compared to other MAC layer protocols like
BMAC [1] and SMAC [2], CMAC can significantly

reduce latency and improve throughput while supporting
very low duty cycles.

Current duty cycling MAC layer protocols for wireless
sensor networks are either synchronized using explicit
schedule exchanges or totally unsynchronized. However,
both have their weaknesses and deficiencies. SMAC [2],
TMAC [3] and DMAC [4] use periodic synchronization
messages to schedule duty cycling and packet trans-
missions. Such message exchanges consume significant
energy even when no traffic is present. BMAC [1] uses
unsynchronized duty cycling and uses long preambles to
wake up receivers. However, the long preamble mech-
anism has following problems. First, the latency accu-
mulated along multihop routes could be overwhelming
due to the use of long preambles on each hop. Second,
the energy consumed on preamble transmission and
reception after the receiver has woken up is wasted. This
is due to lack of information at the sender side about the
wake-up schedule of the receiver, and thus the preamble
length is chosen conservatively. Third, neighbor nodes
other than the intended receiver will also be kept awake
by the long preamble until the data packet transmission
finishes, which is also wasteful since they are doing
unneeded preamble overhearing. Polastre et. al. propose
a link abstraction called Sensornet Protocol (SP) [5]
to adjust the preamble length by observing recent and
nearby traffic. However, SP still relies on long preambles
to initiate data flows, and it cannot dynamically select
the next hop if the intended next hop is currently not
available because of sleeping or interference.

The above problems motivate our design of an energy
efficient MAC layer protocol called Convergent MAC
(CMAC). CMAC uses unsynchronized sleep schedul-
ing like BMAC when there is no packet to transmit.
While transmitting packets, CMAC first usesaggressive
RTS (Section II-A) to anycast (Section II-B) packets
to potential forwarders which wake up first and detect

1

the traffic usingdouble channel check (Section II-A).
Once the sender is able to transmit packets to a node
with acceptable routing metric, CMACconverges from
anycast forwarding to unicast (Section II-C) to avoid
the overhead of anycast. To validate the practicability
of CMAC, we implement CMAC in TinyOS [6] and
compare it with BMAC on the Kansei testbed [7].
We also evaluate CMAC inns2 [8] against SMAC, a
GeRaF variant, and 802.11 based CSMA/CA protocol.
The results show CMAC outperformns other duty cy-
cle scheduling protocols in all aspects while providing
comparable throughput and latency performance as fully
awake CSMA protocol.

The main contributions of this paper are listed below:

• We propose CMAC, a novel MAC layer protocol,
which improves the latency and energy efficiency
by utilizing proposed aggressive RTS, anycast and
convergent packet forwarding mechanisms.

• We analytically model the performance comparison
of anycast and unicast, and the performance of
convergent packet forwarding;

• We present details of the implementation and real
field evaluation of CMAC to validate our design
goals.

The rest of the paper is organized as follows. Section
II presents the design of CMAC. Section III presents
our implementation and real field experimental results on
Kansei testbed comparing CMAC with BMAC. Section
IV presents simulation results comparing CMAC with
SMAC, CSMA/CA and a GeRaF variant. Section V
summarizes the literature and compares CMAC with
them. Finally, Section VI concludes the paper.

II. CONVERGENT MAC (CMAC)

Motivated by the limitations of current approaches, we
propose a new MAC layer protocol calledConvergent
MAC (CMAC) that supports low latency and high
throughput as well as low duty cycle operation. CMAC
has three main components:Aggressive RTS equipped
with double channel check for channel assessment,any-
cast to quickly discover forwarder, andconvergent packet
forwarding to reduce the anycast overhead.

A. Aggressive RTS

The long preamble mechanism of BMAC incurs high
latency in order to ensure that the receiver is awake
before sending the data. However, the receiver may wake
up much earlier than the end of the preamble, which
makes part of the preamble transmission wasteful. We

RTS RTS

Channel check

(a) Case 1

RTS RTS

Channel check

(b) Case 2

RTS RTS

Channel check

(c) Case 3

Fig. 1. Double Channel Check used by CMAC. (a) The first check
detects the RTS burst. (b) The second check detects the RTS burst.
(c) impossible if RTS length is chosen carefully.

propose to useaggressive RTS to replace the long pream-
ble, which breaks up the long preamble into multiple
RTS packets (also called anRTS burst). The RTS packets
do not use long preambles, and are separated by fixed
short gaps each of which allows receivers to send back
CTS packets. Once the transmitter receives a CTS, it
sends the data packet immediately. Each gap need not
accommodate an entire CTS transmission as long as
the RTS sender can detect the preamble and cancel the
next RTS transmission accordingly. The number of RTS
packets to be sent in one RTS burst depends on the
duty cycle length. For the same duty cycle length, the
duration of one RTS burst is roughly the same as the long
preamble used by BMAC. If nodes uniformly randomly
wake up during each duty cycle, the expected latency at
each hop could be reduced by half.

To allow nodes to work at a very low duty cycle,
nodes must assess the channel very quickly each time
they wake up. However, if the receiver wakes up during
the gap between two RTS transmissions, it may miss this
RTS burst. So we propose to usedouble channel check
which works by assessing the channel twice with a fix
short separation between them each time a node wakes
up. For each channel check, nodes sample the channel
for up to 5 times. Between these two channel checks, the
radio could be put to sleep mode to save energy. If the
first check detects a busy channel, the second check will
be canceled (Fig. 1(a)). Otherwise, the second check is
performed (Fig. 1(b)). The positive conclusion on busy
channel from either check will keep the node awake
anticipating an RTS. To prevent the scenario in Fig. 1(c),
the interval must be shorter than the RTS transmission
time. This can be satisfied by padding RTS packets with
extra bytes if needed. (We discuss the choice of these
parameters In our implementation in Section III.) Such
a “double-check” mechanism ensures that nodes will not
miss any nearby RTS burst.

The cooperation of aggressive RTS and double chan-
nel check require both the gap between two RTS and
the interval between two channel checks to be fixed.
CMAC achieves this by sending all RTS packets without
assessing the channel except the first one. This may
cause two RTS bursts from more than one transmitter to

2

CTS slot

RTS

mini-slot

Canceled RTS

CTS

Sender

Canceled CTS

Node in R1

Node in R1

Node in R2 Canceled CTS

Node in R3 Canceled CTS

Fig. 2. CTS contention resolution. The first CTS cancels others.

collide, in which case nodes need to retransmit the RTS
burst from the beginning after current collisions have
been resolved.

B. Anycast Based Forwarding

Aggressive RTS can reduce per-hop latency by half
on average for unicast. However, if nodes other than
the unicast target can also reply to the transmitter, per-
hop latency could be further reduced since some routing
progress could be made while the target nexthop is still
asleep. We define the neighbor nodes of the transmitter
that are closer to the destination as aforwarding set.
Simple calculation shows for duty cycle length 1 and
forwarding set sizen, it takes on average1

n+1 to get in
contact with at least one of them.

However, more than one node in the forwarding set
may try to reply to the same RTS, and the one closest
to the destination should be elected to receive the data
packet. In CMAC, the CTS transmissions are prioritized
according to the routing metrics of contending nodes.
Nodes with better routing metrics can send CTS packets
earlier, while other overhearing nodes cancel their CTS
transmissions accordingly, and nodes that can make little
progress could be excluded. The routing metric used
could be very general, such as geographical distance,
hop count, ETX [9], ETT [10] and PRR×Dist [11]. In
this paper, we only investigate the use of geographical
distance to resolve CTS contentions.

CMAC partitions the forwarding region into 3 subre-
gions,R1,R2, andR3, such that nodes inRi are closer to
the destination than nodes inRj for i < j (Fig. 3). Each
gap between two consecutive RTS packets is divided into
3 sub-intervals calledCTS slots. Nodes in region closer
to the destination can send CTS packets in earlier CTS
slots. Each CTS slot is further divided into severalmini-
slots to resolve the contention within each region, and
each receiver will randomly choose one mini-slot to start
its CTS transmission (Fig. 2). On detecting busy channel,
pending CTS transmissions will be canceled assuming
the existence of another CTS.

1) Performance Analysis of Anycast : Anycast can
lock a forwarding candidate node faster than unicast, but

Fig. 3. Example of cost region generation in CMAC using geo-
graphical distance as routing metric.

this is achieved at the cost of higher overhead and less
routing progress for each individual transmission. In this
subsection, we analytically model the performance of
anycast. The metric used in this analysis is the latency of
each transmission normalized by its geographical routing
progress callednormalized latency. For the rest of the
analysis, the length of a duty cycle is normalized to 1,
and the notations used are summarized as follows.

• L: normalized latency.
• ρ: node density.
• S: area of the forwarding region.
• X: geographical progress made by anycast.
• Y : the latency of finding the first awake node in the

forwarding set. Then its CDF isF (y) = 1−(1−x)n,
and it is independent ofX.

• r: transmission range.
• r0: the minimum progress required for a neighbor

node to be present in the forwarding set.
• d: distance from the transmitter to the destination.

Note that lower duty cycle leads to longer duty cycle
length since the time to check the channel is fixed.
Then for very low duty cycles, the RTS and data packet
transmission times could be ignored. Hence,E[Y] ≈∫ 1
0 ydF (y) = 1

ρS+1 . Then the expected normalized
latency could be expressed as

E[L] = E[
Y

X
] = E[Y]E[

1

X
] =

1

ρS + 1
E[

1

X
], (1)

where the second equality is due to the independence.
To computeE[1

X
], we can simply consider the upper

half of the forwarding region as regionOAR in Fig. 4.
For any pointB betweenO andR with x coordinate no
less thanr0, on segmentOR, its weight is 1

x
times the

length of arc
⌢
BC (Fig. 4), while the length of

⌢
BC is

|
⌢
BC| = |CD| × 6 CDO (2)

= |CD| arccos
|CD|2 + |OD|2 − |OC|2

2|CD||OD|
(3)

= (d − x) arccos
(d − x)2 + d2 − r2

2d(d − x)
. (4)

3

D(d,0)R(r,0)BO

A

x

C

r
0

Fig. 4. Calculation ofE[1

X
]. O is the sender, D is the destination.

Hence,

S =

∫ r

r0

|
⌢
BC|dx (5)

=

∫ r

r0

(d − x) arccos
(d − x)2 + d2 − r2

2d(d − x)
dx, (6)

and

E[
1

X
] =

∫ r
r0

1
x
|
⌢
BC|dx

S
(7)

=

∫ r
r0

1
x
(d − x) arccos (d−x)2+d2−r2

2d(d−x) dx
∫ r
r0

(d − x) arccos (d−x)2+d2−r2

2d(d−x) dx
. (8)

There are three parameters affectingE[L]: r0, S andρ.
S depends onr0 andd. Fig. 5(a) plotsE[L] versusr0 for
differentd andρ values. It can be seen that for a certain
node density,d affectsE[L] only a little, but higher node
density clearly leads to smallerE[L]. In addition, for
certaind and node density, there is an optimal value of
r0 to optimizeE[L].

After finding the optimalr0, nodes still need to decide
to use anycast or unicast. For unicast, the normalized
latency is bounded by1

2r
. Hence for anycast to be

superior than unicast on average, it should have lower
expected normalized latency. Using Equation (1), this
criterion leads to the following critical node density
above which anycast is better

ρ >
2rE[1

X
] − 1

S
. (9)

According to the above expression, the minimum node
density depends on thed

r
ratio andr0. For r0 between

1% and50%, we plot the critical node densities versus
different d

r
ratios in Fig. 5(b). Hence if the minimum

density is lower than the actual density, anycast should
be used, and unicast should be used otherwise.

The above formulation also leads to a localized tech-
nique to determine if anycast will lead to better normal-
ized latency. Specifically, for a node withn neighbor

nodes in its forwarding set with each node makingri

progress (1 ≤ i ≤ n), it can decide if anycast is better if

1

n(n + 1)

n∑
i=1

1

ri
<

1

2max1≤i≤n{r}
(10)

C. Converging from Anycast to Unicast

Although anycast obviates the need for synchroniza-
tion messages and has better chance to make progress
in packet forwardings than unicast, it has two main
shortcomings. First, anycast may choose suboptimal
routes because the best next hop is sleeping or due to
interference. Second, the overhead of anycast RTS/CTS
exchange is usually higher than its unicast counterpart.
Hence, a mechanism is needed to reduce the overhead
incurred by anycast, and we proposeconvergent packet
forwarding to resolve these problems as follows.

In CMAC, the node will remain awake for a short
duration after receiving a data packet. During this period,
a node with better routing metric could wake up and
become the receiver of the next anycast. If the latest
anycast receiver has a routing metric close to the best,
CMAC will use unicast instead to avoid the overhead
of anycasting. Taking Fig. 3 as an example, node C
might be the first one to wake up and participate in the
anycast, and then node B followed by node A. After
A receives the anycast, the transmitter starts to unicast
to A, finishing the convergence. However, it is possible
that nodes with acceptable routing metrics may not exist.
For example, this will happen if there is no node in
region R1 in Fig. 3. Hence if the transmitter cannot
find a better next hop than the current one after a duty
cycle length, it switches to unicasting. In this way, the
packet forwarding converges from anycast to unicast for
each link. After some time without successful data packet
reception, CMAC will timeout and nodes will again start
following unsynchronized idle duty cycles.

To reduce the packet delivery latency, a long awake
duration after receiving each packet is preferred. But
longer awake period also leads to more energy consump-
tion. Hence, nodes need to optimize the length of this
period based on the observed traffic information such
as average packet arrival rate to accommodate latency
or energy consumption requirements. In what follows,
we use a simple model to analyze the latency and
power consumption under different awake durations. The
duty cycle length is again normalized to 1, and other
denotations are listed below.

• A: active duration after receiving a packet.
• Z: packet arrival interval (a random variable).

4

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[L

]

r0

d=5r, rho=5
d=5r, rho=10
d=5r, rho=15
d=10r, rho=5

d=10r, rho=10
d=10r, rho=15
d=15r, rho=5

d=15r, rho=10
d=15r, rho=15

(a) Anycast Performance

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 4 6 8 10 12 14 16 18 20

N
od

e
D

en
si

ty
 (

rh
o)

d/r Ratio

r0=0.01r
r0=0.1r
r0=0.2r
r0=0.3r
r0=0.4r
r0=0.5r

(b) Critical Density

Fig. 5. Numerical results for anycast performance analysis.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.1 0.2 0.3 0.4 0.5

La

A

(lambda=10,n=9)
(lambda=10,n=14)
(lambda=10,n=19)
(lambda=20,n=19)
(lambda=20,n=29)
(lambda=20,n=39)

(a) Impact ofA on Latency

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1

E
a

A

(lambda=10,n=9)
(lambda=10,n=14)
(lambda=10,n=19)
(lambda=20,n=19)
(lambda=20,n=29)
(lambda=20,n=39)

(b) Impact ofA on Energy

Fig. 6. Numerical results for convergence performance analysis.

• G: the CDF ofZ.
• λ: average packet arrival rate.
• pr: power for idle listening and receiving.
• pt: power for transmitting.

If the next packet arrives at the sender before the active
duration A timeouts, which happens with probability
P{Z < A} = G(A), unicast will be used. Hence the
latency is 0 (before transmitting the data packet), and the
idle listening of lengthZ contributes to the entire energy
consumption. Otherwise, if the next packet arrives at
the sender before the active duration timeouts, which
happens with probabilityP{Z ≥ A} = 1 − G(A),
anycast will be used. Hence the average latency is the
average time needed to contact at least one receiver
which is 1

n+1 , and the average energy consumption
has two components, idle listening for durationA and
transmitting aggressive RTS for 1

n+1 . Therefore, the
average latencyLa and average energy consumptionEa

are

La =
1

n + 1
(1 − G(A)),

Ea = G(A)prE[z|z < A]

+(1 − G(A))(prA + pt
1

n + 1
).

If the packet arrival process is Poisson with parameter
λ, thenG(A) = 1 − e−λA, and

E[z|z < A] =

∫ A
0 zλe−λzdz∫ A
0 λe−λzdz

=
1
λ
− (A + 1

λ
)e−λA

1 − e−λA
.

(11)
Hence,

La =
e−λA

n + 1
, (12)

Ea =
pr

λ
+ (

pt

n + 1
−

pr

λ
)e−λA. (13)

We plot in Fig. 6(a) and Fig. 6(b),La andEa versusA
for different λ and n (pr = 1 and pt = 1.5). It can be

5

seen thatLa decreases with the increase ofA given a
certainn, but Ea has more complex variation patterns.
Using Equation (13) we can see that there are three cases
as follows.

1) If λ < pr(n+1)
pt

, Ea increases withA up to pr

λ
.

2) If λ = pr(n+1)
pt

, Ea = pr

λ
.

3) If λ > pr(n+1)
pt

, Ea decreases withA down to pr

λ
.

Hence, for high packet arrival rate with certain node
densities, nodes can increase the awake period without
worrying about the latency and energy performance.
But for low traffic scenarios, the determination ofA is
application dependent.

The unicast after such convergence may or may not
use normal RTS/CTS. In our experiments, CMAC does
not use RTS/CTS after convergence for fair comparison
with BMAC. In our simulations, CMAC uses normal
RTS/CTS that is similar as 802.11 after convergence for
comparison with 802.11, SMAC and GeRaF.

If the event moves fast, the source nodes may continu-
ously change with each of them generating only a small
number of packets. In this case, the convergence may
still happen at places closer to the destination where the
routes may be more stable. For some other cases such
as low data rates, the convergence may not happen, but
CMAC can still use aggressive RTS and anycast to make
quick progress towards the sink.

D. Synchronized Wake-up Schedule

In order to save more energy after convergence, nodes
can synchronize with their neighbor nodes to use some
kind of wake-up schedule instead of keeping fully awake.
In our simulations, we evaluate a CMAC variant us-
ing a staggered scheduling similar to DMAC [4] after
convergence. When the transmitter intends to converge
from anycast to unicast, it synchronizes its schedule with
the receiver. The two nodes will maintain the staggered
schedule as long as there is traffic between them. After
a certain duration without traffic, the nodes go back to
using unsynchronized duty cycling. This CMAC variant
is described in more details in our technical report [12].

III. E XPERIMENTAL EVALUATION

Our TinyOS [6] implementation1 of CMAC is based
on XSM [13] which is similar to Mica2 mote [14] in
CC1000 radio [15] and processing board. We set the
mini-slot length to the transmission time of 1 byte on
CC1000 radio which is416µs, a period long enough to

1Code available at http://www.cse.ohio-state.edu/

˜ liusha/cmac .

TABLE I

IMPLEMENTATION PARAMETERS

CTS-slot length 7.488ms

Number of CTS-slots 3
Mini-slot length 416µs

Number of mini-slots 6
RTS packet size 44 bytes
Double channel check interval 10ms

accommodate the propagation delay and busy channel
detection (One channel sampling takes about265µ to
finish). Other parameters are summarized in Table I.
The Kansei testbed consists of105 XSM nodes forming
a 15 × 7 topology with node separation of 3 feet.
The transmission range is set to 4 rows/columns in the
testbed. Each XSM node is attached to a Linux-based
stargate [16] through which command messages are sent
to trigger the generation of packets.

We evaluate the throughput, latency and energy ef-
ficiency of CMAC against BMAC for two basic event
scenarios, static event and moving event. Throughput
refers to the total number of packets received at the sink
in 600 seconds, latency is the average delay experienced
by a packet, and energy efficiency refers to the energy
consumption of the entire network for delivering one 36-
byte packet to the sink (called normalized energy).

Note that the double channel check almost doubles the
times of channel sampling in BMAC. Thus CMAC con-
sumes more energy on channel assessment than BMAC if
the duty cycle length is the same. To be fair, we evaluate
CMAC with duty cycle length double that of BMAC in
this section. For example, if BMAC uses300ms duty
cycle length, CMAC will use600ms. Since using300ms
duty cycle length in BMAC is roughly 1% duty cycle, we
denote it by BMAC 1%, and denote CMAC using600ms
duty cycle length as CMAC 1%. To provide the baseline
for throughput and latency evaluation, we also gathered
the data for BMAC and CMAC without duty cycling,
denoted by BMAC 100% and CMAC 100% respectively.

A. Static Event Scenarios

In this set of experiments, we emulate an event hap-
pening at one corner of the testbed. The source node
sends all packets to the sink located at the diagonally
opposite corner. We vary the data rate at source nodes,
and the results are shown in Fig. 7.

For low data rates (0.2 ∼ 0.5 packets/sec.), both
CMAC 1% and BMAC 1% can deliver all packets (Fig.
7(a)), but Fig. 7(b) shows that CMAC 1% exhibits
better latency performance than BMAC 1% due to the

6

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

pa
ck

et
s

in
 6

00
 s

ec
.)

Data Rate (packets/sec.)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

(a) Throughput

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(s
ec

.)

Data Rate (packets/sec.)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

 1.7

 1

 0.05
 0.5 0.2

(b) Latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8 9 10N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s/
P

ac
ke

t)

Data Rate (packets/sec.)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

(c) Energy Efficiency

Fig. 7. Experiment results of throughput, latency and energy efficiency performance of CMAC and BMAC under different data rates.

capability of aggressive RTS and anycast to discover
awake potential forwarders.

Under high data rates (≥ 1 packet per second), BMAC
1% can not deliver all packets to the sink, and the flat
curve shows that the channel capacity is reached due
to the use of long preambles and multihop contention.
CMAC 1% saves unnecessary long preambles, and thus
not only significantly outperforms BMAC 1% but also
provides similar throughput as BMAC 100% and CMAC
100% (Fig. 7(a)). In some cases, e.g., data rate of 2 and
5 packets per second, CMAC 1% even provides latency
performance very close to that of BMAC 100% (Fig.
7(b)). This is due to the convergence of CMAC from
anycast to unicast and the saving on anycast overhead. At
the data rate of 10 packets per second, CMAC 1% does
not provide throughput and latency very close to BMAC
100% or CMAC 100% because the high contention leads
to some convergence duration times out which result in
more RTS/CTS, but CMAC 1% still exhibits significant
improvement over BMAC 1%.

Fig. 7(c) shows CMAC 1% utilizes the energy more
efficiently than BMAC 1% and BMAC 100%, and the
energy efficiency becomes better as the data rate in-
creases. Hence, we conclude that CMAC is more suitable
for providing high throughput and low latency while the
idle duty cycle is low.

B. Moving Event Scenario

To evaluate the performance of CMAC for moving
events, we let the the emulated event move along the bot-
tom edge of the testbed at different speeds where faster
speeds trigger more packets. The results of throughput,
latency and energy efficiency are shown in Fig. 8.

Fig. 8(a) exhibits the advantage of CMAC 1% over
BMAC 1% in throughput. The throughput of BMAC 1%
increases with the increase of the moving speed for slow
speeds, but it gradually drops after the moving speed

exceeds 1 row/sec. However, the throughput increase of
CMAC 1% shows that it can accommodate the increased
packet generation speed. Fig. 8(b) shows remarkable
advantage of CMAC 1% over BMAC 1% in latency (less
than1s compared to more than100s). For BMAC 1%,
the queueing delay contributes to most of the latency and
is due to the use of long preambles. Fig. 8(c) shows the
advantage of CMAC 1% in energy efficiency. CMAC
1% saves75% ∼ 95% normalized energy of BMAC
1%. In addition, the normalized energy consumption
of CMAC 1% decreases gradually with the increase of
moving speed because there are more chance for CMAC
to converge when there are more active flows. But for
BMAC 1%, the energy efficiency increases sharply due
to the inefficiency of long preambles.

C. Anycast Performance

For low data rates, CMAC may not be able to converge
from anycast to unicast because there isn’t enough traffic.
In such cases, the performance of CMAC depends on
the aggressive RTS and anycast mechanism. Thus we
evaluate the performance of the aggressive RTS and
anycast mechanism in this section. The duty cycles are
1% and 0.1%, where each cycle is3000ms and6000ms
respectively for BMAC 0.1% and CMAC 0.1%. The
source node is located at one corner, and the sink is at the
diagonally opposite corner. We vary the node density by
adjusting the transmission range from 3 rows/columns
to 8 rows/columns and run each experiment for 600
seconds. The data rate is chosen such that every packet
is purely anycast enroute without any convergence or
queuing delay. Due to the limited size of Kansei testbed,
we present the latency normalized by the hop count of
unicast, i.e.,Latency

Hops
, and the results are shown in Fig.

9(a) and 9(b) (Figures for throughput are omitted since
all protocols can deliver all packets to the sink).

CMAC reduces the latency of BMAC by about 33%

7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2.5 2 1.5 1 0.5 0.1

T
hr

ou
gh

pu
t (

pa
ck

et
s

in
 6

00
 s

ec
.)

Event moving speed (rows/sec.)

BMAC 1%
CMAC 1%

(a) Throughput

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2.5 2 1.5 1 0.5 0.1

La
te

nc
y

(s
ec

.)

Event moving speed (rows/sec.)

BMAC 1%
CMAC 1%

(b) Latency

 0

 1

 2

 3

 4

 5

 6

 2.5 2 1.5 1 0.5 0.1N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s/
P

ac
ke

t)

Event moving speed (rows/sec.)

BMAC 1%
CMAC 1%

(c) Energy Efficiency

Fig. 8. Experiment results of throughput, latency and energy efficiency performance of CMAC and BMAC under different event moving
speeds.

at both 1% and 0.1% duty cycles except for transmis-
sion range of 8 rows with 1% duty cycle, where the
improvement is not very significant. The reason for this
is that the packet can take as few as 2 hops to reach the
destination while the last-hop transmission does not use
anycast since the destination is already in range.

We also collect the route stretch of anycast, which is
represented by the average number of hops of anycast
normalized by the hop count of unicast. Fig. 9(c) shows
CMAC 0.1% has larger stretch than 1%. This is because
for higher duty cycles, the elected next hop is also better.
As Fig. 9(a) and 9(b) show, even with route stretch,
CMAC 1% can still outperform BMAC 1% due to the
use of aggressive RTS and anycast.

IV. SIMULATION BASED EVALUATION

We also conduct simulations2 for large networks to
compare the throughput, latency and normalized energy
consumption of CMAC with other protocols usingns2
[8]. Our study is based on the following six protocols:

• CSMA/CA: Fully awake CSMA/CA.
• Anycast: Using the anycast mechanism described

in Section II-B with radio fully awake.
• GeRaF: Using the anycast protocol in Section II-B

with 10% duty cycle and3ms active period, which
is similar in essence to [17] [18].

• CMAC: Our proposed scheme described in Section
II working on 1% idle duty cycle.

• CMAC-S [12]: Similar to CMAC, but a DMAC-like
[4] staggered scheduling is used after convergence.

• SMAC: SMAC in [2] working at 10% duty cycle.

The simulations are conducted on a2000m × 2000m
network with an event moving randomly at10m/s. We

2Code available at http://www.cse.ohio-state.edu/

˜ liusha/cmac .

TABLE II

SIMULATION PARAMETERS

Tx range 250m RTS size 14 bytes
Bandwidth 38.4Kbps CTS size 14 bytes
Tx power 27mA ACK size 28 bytes
Rx power 10mA Data header 20 bytes
Idle power 10mA Data payload 50 bytes
CTS slot 0.2ms Anycast CTS 22 bytes
Active period 3ms Preamble+PLCP 24 bytes

use 250m as the transmission range, but our protocol
works for any radio transmission range. Other parameters
are shown in Table II. In this section, we present results
in mobile event scenarios for varying initial idle duty
cycle, node density, and data rate. More simulation
results are available in our technical report [12].

A. Initial Duty Cycle

First we evaluate the impact of the idle duty cycle by
varying it from 0.1% to 1% for data rate of 10 packets/s.
(GeRaF and SMAC use 1% to 10% duty cycles since
they can barely deliver any packet for lower duty cycles.)
Fig. 10 shows anycast and CSMA/CA have the best
throughput performance, but CMAC can also provide
comparable throughput while greatly exceeding SMAC
and GeRaF even if the idle duty cycle is lower. In addi-
tion, CMAC provides latency performance comparable
to CSMA/CA while using the least energy. Note that the
energy efficiency in Fig. 10 only reflects the performance
when there is traffic, and CMAC at low duty cycle
actually consumes much less energy than CSMA/CA and
anycast when the network is idle

B. Node Density

Next we evaluate the performance of CMAC in net-
works with different node densities. We vary the number
of nodes in the network from100 to 625 while keeping

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 7 6 5 4 3

La
te

nc
y/

H
op

 (
se

c.
/h

op
)

Transmission Range (rows/columns)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

(a) Per Hop Latency for 1% Duty Cycle

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 7 6 5 4 3

La
te

nc
y/

H
op

 (
se

c.
/h

op
)

Transmission Range (rows/columns)

BMAC 100%
CMAC 100%
BMAC 0.1%
CMAC 0.1%

(b) Per Hop Latency for 0.1% Duty Cycle

 0

 0.5

 1

 1.5

 2

 8 7 6 5 4 3

H
op

 C
ou

nt
 R

at
io

Transmission Range

CMAC 1%
CMAC 0.1%

(c) Route Stretch

Fig. 9. Experiment results of anycast latency performance of CMAC 1% and CMAC 0.1% under different node densities.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
t (

bp
s)

Inidial Duty Cycle (%)

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(a) Throughput

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

(s
)

Initial Duty Cycle (%)

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(b) Latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Initial Duty Cycle (%)

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(c) Energy Efficiency

Fig. 10. Simulation results for throughput, latency and energy efficiency of CMAC, SMAC, GeRaF and CSMA/CA under different idle
duty cycles. The duty cycles for GeRaF and SMAC are 1% to 10% due to their inability of delivering any packet for lower duty cycles.

the area and event size unchanged. Fig. 11 shows that the
throughput, latency and normalized energy consumption
all increase with the increase of node density. This is
because more nodes are generating packets with higher
node density. The throughput of anycast is the best
because it can always take alternate path during high
contention, while CMAC provides similar throughput
as CSMA/CA (Fig. 11(a)). For latency, CMAC is also
among the best. More importantly, CMAC outperforms
all other protocols in normalized energy consumption.

C. Data Rate

Fig. 12 shows the simulation results of throughput,
latency and normalized energy consumption of different
protocols for different date reporting rates. CMAC and
CMAC-S use the least energy, while achieving at least
90% − 95% of throughput of CSMA/CA.

V. RELATED WORK

In the context of energy efficient MAC layer designs,
the proposed approaches can be broadly divided into two
categories: synchronized and unsynchronized.
Synchronized MAC: Protocols using this mechanism
require nodes to periodically synchronize wake-up

schedules with their neighbors using explicit messages,
and nodes wake up and sleep according to the synchro-
nized schedules. SMAC [2], TMAC [3] and DMAC [4]
fall into this category. This type of approaches requires
periodic synchronization message exchange which con-
sumes significant energy unnecessarily.
Unsynchronized MAC: Protocols in this category do
not synchronize nodes until there is traffic. Usually this
involves the use of long preambles like in BMAC [1]
and SP [5]. However, the long preamble leads to high
latency as explained in Section I. XMAC [19] tries to
mitigate the negative impact of long preambles by using
strobed preambles, which shares a similar idea with the
Aggressive RTS used in CMAC. However, XMAC has a
significantly longer awake period than CMAC due to the
lack of a mechanisms like double channel check (16ms
on TelosB versus6ms on XSM/Mica2 in CMAC).

MAC layer anycast is another way to avoid explicit
synchronization [17] [18] [20] [21]. But when com-
pared to CMAC and the Contention-Based Forward-
ing (CBF) mechanisms [22]–[24], their RTS/CTS ex-
change schemes are more complicated and inefficient.
Both MAC layer anycast and CBF work by prioritiz-

9

 0

 500

 1000

 1500

 2000

 2500

 625 400 225 100

T
hr

ou
gh

pu
t (

bp
s)

Number of Nodes

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(a) Throughput

 0

 50

 100

 150

 200

 250

 625 400 225 100

La
te

nc
y

(s
)

Number of Nodes

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(b) Latency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 625 400 225 100

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Number of Nodes

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(c) Energy Efficiency

Fig. 11. Simulation results for throughput, latency and energy efficiency performance of CMAC, SMAC, GeRaF and CSMA/CA under
different node densities.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

bp
s)

Packet Rate (pkt/s)

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(a) Throughput

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(s
)

Packet Rate (pkt/s)

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(b) Latency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Packet Rate (pkt/s)

CSMA/CA
Anycast
GeRaF
CMAC

CMAC-S
SMAC

(c) Energy Efficiency

Fig. 12. Simulation results for throughput, latency and energy efficiency performance of CMAC, SMAC, GeRaF and CSMA/CA under
different data rates. CMAC and CMAC-S can achieve at least 90% to 95% throughput of CSMA/CA.

ing the CTS replying from potential forwarders, but
CBF schemes use CSMA based contention among CTS
repliers to resolve CTS collisions and thus have lower
overhead. However, CBF mechanisms are only explored
in the context of MANET where performance impact
of the node mobility is the major concern. The design
of CMAC, however, takes all aspects of designing a real
protocol such as sleep scheduling and channel check into
consideration. Furthermore, CMAC uses convergence to
avoid the anycast overhead.

VI. CONCLUSION

Existing MAC layer solutions for low duty cycling
either consume a lot of energy on periodic synchroniza-
tion messages or incur high latency due to the lack of
synchronization. Thus in this paper we proposes three
mechanisms, aggressive RTS, anycast and convergence,
to address such problems. We also implement CMAC as
the outcome of these three mechanisms above and evalu-
ate it extensively. The experiment and simulation results
show that CMAC at low duty cycles can achieve compa-
rable throughput and latency performance as fully awake
CSMA protocl, while greatly outperforming other en-

ergy efficient protocols like BMAC, SMAC and GeRaF.
Hence, we conclude that CMAC is highly suitable for
wireless sensor networks that require low latency and
high throughput as well as long network lifetime.

REFERENCES

[1] J. Polastre, J. Hill, and D. Culler, “Versatile Low PowerMedia
Access for Wireless Sensor Networks,” inProc. SenSys’04, Nov.
2004, pp. 95–107.

[2] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Con-
trol with Coordinated Adaptive Sleeping for Wireless Sensor
Networks,” IEEE/ACM Trans. Networking, vol. 12, no. 3, pp.
493–506, June 2004.

[3] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient
MAC Procotol for Wireless Sensor Networks,” inProc. Sen-
Sys’03, Nov. 2003, pp. 171–180.

[4] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An Adap-
tive Energy-Efficient and Low-Latency MAC for Data Gath-
ering in Wireless Sensor Networks,” inProc. IPDPS’04, Apr.
2004, pp. 224–231.

[5] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and
I. Stoica, “A Unifying Link Abstraction for Wireless Sensor
Networks,” in Proc. SenSys’05, Nov. 2005, pp. 76–89.

[6] “TinyOS,” http://www.tinyos.net.
[7] A. Arora, E. Ertin, R. Ramnath, W. Leal, and M. Nesterenko,

“Kansei: A High-Fidelity Sensing Testbed,”IEEE Internet
Computing, vol. 10, no. 2, pp. 35–47, Mar. 2006.

[8] “The Network Simulator – ns-2,” http://www.isi.edu/nsnam/ns/.

10

[9] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A
High-Throughput Path Metric for Multi-Hop Wireless Routing,”
in Proc. MobiCom’03, Sept. 2003, pp. 134–146.

[10] J. Padhye, R. Draves, and B. Zill, “Routing in Multi-Radio,
Multi-Hop Wireless Mesh Networks,” inProc. MobiCom’04,
Sept. 2004, pp. 114–128.

[11] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari,
“Energy-Efficient Forwarding Strategies for Geographic Rout-
ing in Lossy Wireless Sensor Networks,” inProc. SenSys’04,
Nov. 2004, pp. 108–121.

[12] K.-W. Fan, S. Liu, and P. Sinha, “Convergent Anycast: A Low
Duty- Cycle MAC Layer for Sensor Networks,” Technical
Report OSU-CISRC-4/05–TR24, 2005. [Online]. Available:
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2005/TR24.pdf

[13] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler,
“Design of a Wireless Sensor Network Platform for Detecting
Rare, Random, and Ephemeral Events,” inProc. IPSN’05, Apr.
2005, pp. 497–502.

[14] “Mica2,” http://www.xbow.com/Products/productsdetails.aspx?sid=72.
[15] “CC1000,” http://www.chipcon.com/files/CC1000DataSheet2 2.pdf.
[16] “Stargate,” http://platformx.sourceforge.net/home.html.
[17] M. Zorzi and R. R. Rao, “Geographic Random Forwarding

(GeRaF) for Ad Hoc and Sensor Networks: Multihop Perfor-
mance,”IEEE Trans. Mobile Comput., vol. 2, no. 4, pp. 337–
348, Oct. 2003.

[18] ——, “Geographic Random Forwarding (GeRaF) for Ad Hoc
and Sensor Networks: Energy and Latency Performance,”IEEE
Trans. Mobile Comput., vol. 2, no. 4, pp. 349–365, Oct. 2003.

[19] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A
Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor
Networks,” in Proc. SenSys’06, Nov. 2006, pp. 307–320.

[20] S. Jain and S. R. Das, “Exploiting Path Diversity in the Link
Layer in Wireless Ad Hoc Networks,” inProc. WoWMoM’05,
June 2005, pp. 22–30.

[21] R. R. Choudhury and N. H. Vaidya, “MAC-Layer Anycasting
in Ad Hoc Networks,”SIGCOMM Computer Communication
Review, vol. 34, no. 1, pp. 75–80, Jan. 2004.

[22] H. Füßler, J. Widmer, M. Käsemann, M. Mauve, and H. Harten-
stein, “Contention-Based Forwarding for Mobile Ad Hoc Net-
works,” Ad Hoc Networks, vol. 1, no. 4, pp. 351–369, Nov.
2003.

[23] T. He, B. M. Blum, Q. Cao, J. A. Stankovic, S. H. Son, and
T. F. Abdelzaher, “Robust and Timely Communication over
Highly Dynamic Sensor Networks,”Real-Time Systems Journal,
Special Issue on Real-Time Wireless Sensor Networks, to appear.

[24] D. Chen, J. Deng, and P. K. Varshney, “On the Forwarding Area
of Contention-Based Geographic Forwarding for Ad Hoc and
Sensor Networks,” inProc. SECON’05, Sept. 2005, pp. 130–
141.

11

