
Message Efficient Termination Detection

in Wireless Sensor Networks

Abstract. Execution of wireless sensor network (WSN) applications
typically consists of a number of successive phases, such as network re-
programming, localization, power management, health monitoring, and
parameter updates. Termination detection of a phase is therefore a crit-
ical operation for a network manager to safely execute a new phase on
some or all of the network nodes.

In this paper, we reformulate the well-known problem of termination
detection for WSNs, and present a low-cost solution to the problem. Our
algorithm, Reporter, exploits the reactive nature of WSN protocols as
well as the broadcast communication model of WSNs. It detects ter-
mination accurately and (message) efficiently, using reports from only a
small fraction of nodes in the network. It exploits existing network traffic
to construct a routing tree to collect these reports at a base station, and
thus reduces the control overhead of structure formation. Moreover, it has
low computation and memory overhead. We have developed a TinyOS
implementation of Reporter, which is easily composed with a number of
existing WSN protocols. We provide detailed experimental performance
results obtained on an indoor mote testbed which show that Reporter
selects as few as 5% of the total number of nodes in the network for
collecting termination reports while preserving accuracy.

1 Introduction

As demonstrated by several field deployments in environmental, military, indus-
trial and other applications, wireless sensor networks (WSNs) have evolved from
a network of dumb sensing devices that pump data to a central node to com-
plex software systems. By way of illustration, the Multi-Target Tracking [1] and
ExScal [2] systems consist of components for several tasks such as sensing, event
detection, routing, tracking, network reprogramming, localization, scheduling,
power management, health monitoring, parameter update, etc. The total pro-
cessing and memory requirements of these software systems exceed the resources
available on most existing WSN devices. Consequently, multi-phase execution is
a common paradigm in such complex sensor network applications.

In multi-phase execution, the application is broken down into multiple logical
tasks that are executed at different times. For instance, the task of localizing the
network to determine absolute or relative positions of nodes can be one appli-
cation phase. Based on this information, the reprogramming of location aware
application programs onto all nodes can be a subsequent application phase.
Power management, health monitoring, and parameter updates can be regarded
as separate phases. To switch between phases, a network manager relies on net-
work management tools provided by services such as Deluge [3] and SNMS [4].



Requirements for application phases. The execution of phases in applica-
tions is typically governed by the following requirements.

1. In-order execution: Application phases are often dependent on the output of
some earlier phases. For instance, an application phase cannot of course start
until the network reprogramming phase, which downloads to the network
nodes the programs of that application phase, is completed. Similarly, if an
event detection and tracking phase involves execution of a location-aware
routing service, it must be executed after the localization phase.

2. Atomic execution: It is often desirable that all up nodes executing a phase
complete it before the next phase starts execution on any node. For one,
this may be necessary for correctness of phases which require coordination
between nodes for completion; i.e., if a node that completes downloading
a new program or its localization operation starts executing its next phase
unilaterally, its neighbors that are waiting to receive program download or
localization information from it may never complete that phase. Also, even
if phases are designed to execute correctly even when previous phases have
not completed, the “synchronous transition” implied by atomicity may be
desirable for performance reasons; i.e., it may avoid message interference
between executions of the two phases and, in several cases, may help the new
phase stabilize more efficiently in time or energy consumption. For example,
if some nodes were to join a phase late they may cause many nodes to expend
more effort, e.g., in routing to enter a beaconing phase to update their current
link quality estimates [5] or in distributed time synchronization to choose the
preferred time.

Given these requirements, we identify termination detection as a critical
network management service. Generally speaking, robustness and minimality
are two key design considerations for network management. Robustness implies
that network management must function correctly even when an application has
failed, thus management services should not critically depend on application ser-
vices for their operation. For instance, even if the application routing structure
is broken, network health and other management data should still be received
from the network. Minimality implies that since management services need to
co-exist with applications, they should be lightweight and not adversely affect
application performance. Hence, while it is possible to add termination detection
capabilities separately to individual protocols and application phases, we argue
it would be inefficient to do so, given the node and network constraints in WSNs.

A baseline solution for termination detection is to use the standard pattern
of Propagation of Information with Feedback (PIF), as is done by multi-hop
network querying services such as SNMS [4] or TinyDB [6]. In this approach,
applications export a termination attribute to the querying service which creates
and maintains its own routing data structure (e.g., a spanning tree) for collecting
the query results. The network manager then periodically sends a query wave to
all nodes to determine termination status and the results are collected over the
pre-constructed structure. This solution is obviously message-inefficient because
it requires the manager to collect periodic query results. A simple optimization



to improve the efficiency of this baseline algorithm is to define a one-time query
which is triggered at each node upon termination. Regardless, this approach
requires every node in the network to respond upon its completion. Moreover,
this approach also incurs the additional overhead of having to maintain a data
structure for query collection.

Contributions of the paper. In this paper, we reformulate the problem of
termination detection for the reactive model that is basis of low power WSN
protocols, and propose an efficient termination detection algorithm for WSNs,
Reporter. Our Reporter algorithm uses fewer messages than the baseline de-
scribed above in two ways: first, it only requires a small subset of nodes in the
network to send termination reports without compromising correctness; and sec-
ond, it (re)uses existing network traffic to create a structure for report collection
and thus reduces control messaging overhead. Reporter also makes limited as-
sumptions about the protocols whose termination is to be detected and, thus,
is highly composable with most existing implementations. Since network based
reprogramming is a critical global operation for most WSNs, we use reprogram-
ming as a running case study to concretely illustrate the working of our algo-
rithm. We demonstrate the improvement in efficiency and reduction in overhead
through real experiments based on the TinyOS [7] implementation of Reporter,
that detect termination in Deluge [3] and Sprinkler [8], which are two popular
WSN reprogramming protocols. Our experiments show that although these two
protocols are quite different in their design and operation, Reporter yields com-
parable performance for both, providing further evidence of its applicability to
other protocols.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we define the termination detection problem for WSNs and the
system model assumed in the rest of the paper. Section 3 describes the Reporter
algorithm and derives various correctness properties, while Section 4 provides
implementation details and experimental performance validation. We discuss
related work in Section 5 and make concluding remarks Section 6.

2 System Model and Problem Definition

In this section, we state the system model for WSNs that is assumed in the rest of
the paper and reformulate the problem of detecting termination of a distributed
protocol for this model.

2.1 System model

We begin with the network model, and then present the model for the underlying
application protocol for which termination is to be detected.

Network model. We assume a connected, multi-hop network of WSN nodes.
Associated with each node is a unique identifier. We assume that the wireless
links that nodes use to communicate with each other are bidirectional; the re-
liability in both directions need not however be the same: if a link exists in



one direction with some non-trivial reliability, then a link exists in the opposite
direction as well with some non-trivial, albeit different reliability. Given that
communications are sent over a broadcast channel, we also assume that a node
can snoop on message traffic in its radio neighborhood, i.e., receive messages sent
by nodes in its one-hop neighborhood that are not intended for it.

We assume there is a single distinguished node called the base station from
which the protocol is initiated and where termination reports are collected. The
network manager uses the information collected at the base station to detect
termination, hence the terms base station and manager are used interchangeably
in the paper.

Application protocol model. Network protocols may be classified as proac-
tive or reactive. We assume that most WSN protocols are inherently reactive;
i.e., they become busy only in response to some input from the environment,
such as a message received over the radio or data/events received from a sen-
sor. Unlike traditional distributed systems, where a node can be in two possible
states, idle or active, we identify a third state done, and a set of transition rules
that must be followed by nodes in our reactive:

1. A node is initially idle and continues to remain idle unless it receives
a protocol message, in which case it becomes active.

2. Upon becoming active, a node can perform local computation, send,
and receive protocol messages; however, if the node does not receive
any protocol messages for an interval of time T , it goes to the done
state. Note that a node can remain active indefinitely by continuing
to receive protocol messages.

3. Once a node enters the done state, it does not receive any more
protocol messages and does not become active again.

At first glance, this model may seem restrictive, but a closer inspection of WSN
protocols reveals that most if not all terminating WSN protocols do in fact sat-
isfy it. For instance, during network reprogramming, WSN nodes remain active
as long as someone in their neighborhood has not received some part of the
program being downloaded. Further, nodes with incomplete programs initiate
requests for missing data and receive it within bounded time specified by the
protocol. However, once all nodes in the neighborhood of a node have acquired
the program, it does not receive any more requests and enters the done state
as described above. A similar argument holds for cooperative localization pro-
tocols that do RSSI or acoustic ranging between neighboring nodes to figure
out relative distances from one another. Once a node has finished estimating its
distance with respect to all its neighbors, it is done. Other examples of proto-
cols that satisfy our reactive model include power management (sleep/wakeup)
and parameter update, and for these the time bound T is a small constant that
is independent of the size of the network. The PIF protocol itself also satisfies
our reactive mode, but in this cases T depends on the size of the network, as a
node that sends an outgoing/propagation wave along its subtree and has to wait
for its subtree to finish before it can send its incoming/completion reply to its
parent.



For ease of exposition, we consider the case where the underlying protocol is
executed on all nodes in the connected network, however the ideas in this paper
apply to protocols that only execute on certain subsets or groups of nodes in the
network.

We do not assume any knowledge of the internal operation of the protocol
or its message formats for the purpose of termination detection. We do however
assume knowledge of two protocol parameters. The first is the upper bound T on
the reactive computation. This time bound T is usually specified as a protocol
parameter by the designer or can be readily inferred from the performance of
the protocol. The second parameter is the message type(s) used by nodes for
exchanging protocol messages. This message type is similar to a port number
in Internet applications and is usually well-advertised by protocol designers to
avoid conflicts. We thus argue that these assumptions are reasonable and our
approach is essentially a black-box one.

2.2 Problem

The problem of termination detection requires a network manager to detect that
the underlying distributed protocol has terminated at all nodes. Termination
detection requires the following standard properties of safety and liveness:

• Safety : If the manager detects termination, then the underlying pro-
tocol must indeed have terminated.
• Liveness : If the underlying protocol has terminated, then the manager
must eventually detect termination.

Given the differences between traditional distributed systems and the WSN
model, we impose the following additional requirements:

• Energy efficiency : The detection must introduce minimal additional
overheads, since WSN nodes have limited energy resources and message
transmission and reception is a significant energy drain.
• Composability : For the detection to be generally used as a management
service, it should easily compose with different types of network proto-
cols. (This motivates that detection should not exploit any particular
protocol data structures or implementation details.)

3 The Reporter Algorithm

We now describe our Reporter algorithm for efficient termination detection in
WSNs. The baseline algorithm described in Section 1 requires continual query-
ing of the entire network and hence is not only energy inefficient but yields more
unreliability as responses from the entire network create a traffic burst leading
to congestion and contention losses in the network. Studies such as [9, 10] have
shown that in large scale networks, the reliability of such global data collection
typically lies between 50-90%. Further, this algorithm depends on an external
routing structure for actually collecting termination reports. Constructing and



maintaining this structure imposes additional messaging and performance over-
heads.

The basic idea underlying Reporter is (i) to identify a small set of local
reporter nodes that can detect termination locally by exploiting the reactive
protocol model in WSNs, and (ii) to exploit existing protocol traffic to construct
a routing tree over which termination reports can be collected. We can prove
that receiving local termination reports from this small set of reporter nodes is
sufficient for detecting global termination of the underlying protocol. Thus, the
design of Reporter involves solving three subproblems, viz., efficient selection

of local reporter nodes, autonomous structure creation and detecting

global termination from local reports.
Reporter is specified in guarded command notation in Figure 1. We now

describe how Reporter solves the subproblems listed above.

3.1 Efficient selection of local reporter nodes

Given our model of reactive, broadcast-based WSN protocols, it is possible to
infer termination from only a small fraction of nodes, where each report not only
implies termination of that node, but also of other nodes around it. Reporter
selects these local reporter nodes (which we henceforth abbreviate as reporter
nodes) via the following rule:

Rule 1: Reporter selection: If, at the time of sending an underlying proto-
col message, a node has not received a message from any local reporter,
it elects itself as a local reporter.

The reporter selection rule is implemented by actions A1 and A2 in Figure 1.
In action A1, a node decides whether or not it should become reporter according
to the above rule. Additionally, it also piggybacks its decision on the outgoing
message. Conversely, in action A2, for every received protocol message, a node
checks whether or not the sender is a reporter and if so, records that it has now
seen a reporter.

It follows from Rule 1 that the set of reporters is a subset of nodes that send
protocol messages during its execution. In any protocol execution, some nodes
both send and receive protocol messages while others only overhear messages
sent by others. For example, in a reprogramming protocol, some nodes send
protocol messages in the form of the new program while some send requests for
missing parts of the program from neighbors, while others simply acquire the
new program by overhearing these messages. Based on Rule 1, we can prove the
following property about the reporter set selected by our algorithm.

Property 1: The set of reporter nodes in a protocol execution forms a Dominating
Set over the set of nodes that send protocol messages.
(Proof) A set of nodes D is defined to be a Dominating Set of a set of nodes
N if every node in N is within one-hop of some node in D. Now consider the
set S of nodes in a protocol execution that send protocol messages and assume
that the set of reporters R is not a Dominating Set of S. Then there must exist
a node s that sends a protocol message, yet there is no reporter in the one-hop



Algorithm Reporter

Var is reporter : boolean
seen reporter : boolean
parent : integer

Initially (parent = −1) ∧ (!is reporter) ∧ (!seen reporter)

Actions

〈A1〉 :: send pdata = TRUE −→ if (!seen reporter)
is reporter := TRUE;
seen reporter := TRUE;

fi

send(myid, is reporter, pdata);
[]

〈A2〉 :: rcv(id, reporter, pdata) −→ if (parent < 0) parent := id; fi

if (reporter) seen reporter := TRUE; fi

process rcvd msg(pdata);
[]

〈A3〉 :: nbr activity timeout −→ if (is reporter) send report(parent,myid); fi

[]

〈A4〉 :: rcv report(i, j) −→ if (i = myid) send report(parent, j); fi

Fig. 1. The Reporter algorithm for termination detection

neighborhood of s. However, according to Rule 1, s would itself have become a
reporter, which violates the assumption.

We now identify a rule by which reporters can detect local termination of
the underlying protocol and thereby report this to the manager.

Rule 2: Local termination detection: If a reporter node does not receive
any messages in an interval of time T , it detects termination locally.

Given the time bound T in the reactive protocol model and the fact that our
algorithm snoops on protocol traffic in the broadcast WSN model, the above
rule readily detects local termination. This rule is implemented by action A3 in
Figure 1. Upon detecting local termination, a reporter sends a report message
to the base station. We now prove the correctness of Reporter as follows.

Property 2: The safety and liveness requirements of termination detection are
satisfied if all local termination reports from the set of reporters are received.
(Proof) From Rule 2, we know that if all nodes in the network have terminated
or are in the done state, all reporter nodes will detect termination locally as they
will not receive any protocol messages for time T . Thus, when all reports are
received, the manager can detect termination and liveness is satisfied.

To prove safety, we must show that the manager does not detect termination
when some nodes are still active. Assume that the manager receives reports
from all reporters and detects termination before the protocol has terminated.
If protocol execution has not yet terminated, there must exist some active node



p in the network. From our reactive protocol model, we know that for p to be
active, it must have received a message from some node q within the last T

time. From Property 1, the set of reporters is a Dominating Set of the set of
nodes that send protocol messages. hence there must exist a reporter r within
the one-hop neighborhood of q and r must have also received the message sent
by q within the last T time. However, according to Rule 2, r could not have
detected local termination if it received a message in the last T time. This is a
contradiction.

We therefore conclude that the set of reporters, which is a Dominating Set
of the set of nodes sending protocol messages, suffices for termination detection.
An optimal solution would thus require the reporter nodes to form the Mini-
mum Dominating Set (MDS) of nodes that send protocol messages. However,
computing the MDS is NP-hard and would require exponential time. Existing
approximation solutions either perform much worse than the optimal or require
non-local computations or some knowledge about the network topology. Also,
the set of nodes that send protocol messages could vary over different protocol
executions. We therefore eschew computing the MDS of the network.

We experimentally validate, in Section 4, that our simple reporter selection
rule, which does not assume any topology knowledge or require non-local compu-
tations, performs comparably to the MDS solution, for the particular networks
considered in our experiments.

3.2 Routing structure creation

Reporter solves the second subproblem of autonomous operation by creating
its own structure for collecting termination reports. Our approach is similar to
that used in the classic Dijkstra and Scholten [11] termination detection protocol,
and constructs a collection structure efficiently by once again exploiting protocol
traffic, according to the following rule.

Rule 3: Parent selection: Every node selects the first node from which it
receives a protocol message as its parent.

This rule is implemented by action A2 in Figure 1. Initially, all nodes have
invalid parents. Upon receiving a message, a node checks whether it has an
invalid parent. For the first message received, this check succeeds and the node
selects the sender of the received message as its parent. For subsequent messages,
the check will fail as it already has a valid parent. Based on Rule 3, we can prove
the following property about the structure created by the selected parent links.

Property 3: Reporter constructs a spanning tree over the entire network rooted
at the base station.
(Proof) Rule 3 defines exactly one parent for every node. Since the network
is connected, every node receives at least one protocol message and acquires a
parent. There also cannot exist any cycles in our structure because if two nodes
p and q select each other as parents then they must have received their first
protocol message from each other, which is a contradiction. (A similar argument



applies to cycles of arbitrary length). Since the base station invokes the under-
lying protocol by sending the first message, we obtain a spanning tree rooted at
the base station.

From our link model, we know that if a parent-child link exists, then the
child-parent link has some non-trivial reliability. This reliability can be further
improved using acknowledgements and retransmissions. We show in Section 4
that despite using the simple spanning tree construction in our algorithm, we
obtain almost 100% reliability with very basic per-hop reliability mechanisms.

Of course, an application may already be maintaining a routing structure,
perhaps one that selects better links using estimation or exploiting topological
knowledge. In such cases, the network manager is free to reuse the existing struc-
ture to collect termination reports. Our simple algorithm however is lightweight,
designed to work with all applications and suffices to provide reliable results.

3.3 Detecting global termination from local reports

In Section 3.1, we proved that the network manager could safely conclude global
termination of the underlying protocol if it received report messages from all
reporters. However, the set of reporters is generally not fixed. We therefore de-
scribe two techniques whereby the manager can learn that the set of reporters
from which reports are received is complete.

For the first technique, we make the additional assumption that the manager,
through a localization service, knows the locations of all nodes in the network.
Assuming a disk model for communication, the manager can identify regions
that must have terminated from the source locations of received reports. Even if
the communication range of nodes is not a unit disk, previous research by Zhao
et al. [12] has identified the existence of a stable region, referred to as inner
band within which communication is reliable. Of course, some nodes outside of
the inner band may still be able to communicate with the node over what are
referred to as long links. However, this is not a problem as our algorithm is
conservative, so if a node that has not yet terminated has a long link to some
reporter, then that reporter will not detect termination in its neighborhood.
Thus, a non-terminated node may slow down one or more reporters, however
once the protocol has terminated, our algorithm is guaranteed to detect it.

The second technique requires the manager to learn its reporter set. In this
approach, when a node elects itself as reporter, it communicates this to the
manager using the constructed spanning tree. During protocol execution, the
manager thus learns about the reporter set and can then wait to receive ter-
mination reports from all nodes in this set before detecting termination. This
approach does not assume any localization information, but it requires twice the
number of messages.

To guarantee correctness deterministically, our algorithm requires messages
from all reporters to be received at the base station. However, due to faults such
as reporter failure or message loss, some reports may never be received. Even
in the absence of such faults, some node executing the protocol might start
misbehaving by sending arbitrary protocol messages. In this case, its reporter,



although correct, will not detect and report local termination. In such scenarios,
a network manager may be forced to live with only probabilistic guarantees about
the correctness of termination detection and deal with faults through predefined
network policies. One example of such a policy could be to wait for a fixed
time to receive termination reports and declare termination of the underlying
protocol if more than x% of the nodes (say 90%) could be inferred to have
terminated. Another policy could be to send out explicit network queries using
more expensive protocols such as SNMS or TinyDB to regions from which no
termination reports are received.

4 Implementation and Experimental Results

In this section, we first discuss some implementation considerations for Reporter.
We then present results from a case study in which we integrated our implemen-
tation with two reprogramming protocols, Deluge [3] and Sprinkler [8], and ran
several experiments on an indoor WSN testbed to detect their termination, so
as to validate the correctness and performance of our implementation.

4.1 Implementation details

We implemented Reporter in TinyOS [7] as a reusable component that is eas-
ily integrated with different types of network protocols. The time bound T for
protocol reactiveness and the message type(s) used by the protocol (referred to
in TinyOS as handler-id), assumed known to Reporter, are specified as input
parameters by the manager in a header file. The Reporter component includes
two modules, one for snooping and the other for detecting and reporting local
termination.

We implemented our snooping module at the level of the generic communi-
cation module, known as GenericComm, which is responsible for delivering mes-
sages to and from TinyOS components to the radio layer, for two reasons. First,
our algorithm needs to snoop on protocol messages to learn about reporters in its
neighborhood and to detect local termination. Second, our algorithm piggybacks
reporter information on protocol messages (action A1), hence it needs access to
these messages before they are sent out. Since all message communication for
TinyOS components is handled by the GenericComm component, implementing
the snooping module at this level is most efficient.

The detection and reporting module maintains a timer set to expire after the
time T specified in the header file, and resets this timer every time the snooping
module receives a protocol message. If this timer ever expires, local termination
is detected and reporter nodes send a report message to their parent to be for-
warded to the manager. Since reliable delivery of termination reports is critical,
we implemented a message buffer at intermediate nodes. Report messages are
enqueued in this buffer and retransmitted until they are acknowledged by the
parent or until the maximum number of retransmissions is exceeded. Our imple-
mentation thus uses explicit acknowledgements provided by the TinyOS MAC
along with retransmissions to improve message reliability on a per-hop basis.



4.2 Performance

We first analyze the computation, memory and messaging overheads for our
implementation, and then present experimental results.

Overhead. As seen from action A2 in Figure 1, Reporter performs two ex-
tra comparisons to check whether or not the node has a parent and whether
or not the sender is a reporter, for every received protocol message. Similarly,
for every send operation as shown in action A1, we require one extra compari-
son. However, the actions contained within each of these comparisons only need
to be executed once per execution of the protocol; once assigned, a parent is
not changed. Reporter adds one extra bit to each protocol message to indicate
whether the sender is a reporter or not. For TinyOS, we also had to modify the
message structure as the sender-id was not included in a message by default. We
also require one message when a reporter’s timeout expires. Reporter thus has
very low computation and message overhead.

Finally, our implementation of Reporter has a very light memory footprint,
requiring only few hundred lines of code and around 50 bytes of additional RAM.

Reporter is thus easy to implement with very little computation, communi-
cation and memory overheads.

Experimental Setup. We tested the correctness and performance of Re-
porter by performing a series of experiments using our TinyOS implementation
composed with the Deluge and the Sprinkler reprogramming protocols as a case
study. We used an indoor testbed of 105 WSN nodes deployed in a 15x7 grid
pattern. We present here a brief overview of the two protocols, highlighting the
key differences between the two.

• Deluge: Deluge is an unstructured, flooding-based protocol that is designed
to work even when no information about the network topology is available. In
Deluge, nodes periodically advertise their program version and the fraction of
this latest program they possess. Whenever a node receives an advertisement
for a higher version number or for a missing fraction of its current version, it
sends a request message to the advertiser, which responds with the requested
program fraction. Deluge specifies upper bounds on the time interval between
advertisements, time within which a request for missing program fractions should
be made and the time within which such a request should be responded to; it
thus satisfies our reactive protocol model. To prevent network contention due to
redundant transmissions, Deluge uses a suppression mechanism whereby nodes
refrain from sending new request messages as long as they receive useful program
fractions by overhearing request/responses from others. However, the selection of
which nodes send the request messages is done randomly, hence it varies across
different protocol executions.

• Sprinkler : Sprinkler is a structured protocol that exploits topology information
about a network to construct a backbone structure for program dissemination.
The backbone constructed by Sprinkler is within O(1) of the Minimal Connected
Dominating Set. Additionally, Sprinkler locally computes a TDMA schedule for
disseminating new programs over the backbone node. Thus, Sprinkler preselects



nodes that disseminate the new program and carefully schedules transmissions
across these nodes to cut down message losses due to collisions and interference.
The upper bound T for message forwarding can be derived from the TDMA
schedule constructed by Sprinkler; it too thus satisfies our reactive model.

We selected Deluge and Sprinkler for our experiments because they are re-
liable, have been widely used in field deployments, and also use two completely
different approaches for reprogramming.

In each experiment run with each of the two protocols, we invoked a new
reprogramming operation with a small, fixed new program. During a run, each
node logged whether or not it sent any protocol messages and whether it became
a reporter, the id of its parent, and the id(s) of reporter(s) in its one-hop neigh-
borhood that it had overheard. The logged data from all nodes was collected
reliably using the Ethernet backchannel in the testbed to construct the actual
reporter set and the collection data structure. At the end of each run, reporters
detected termination in their one-hop neighborhoods and sent report messages
along their chosen parent links to the base station. Received reports were then
compared with the actual reporter set to calculate reliability.

Results. Figure 2(a) plots the number of senders in the network for each
reprogramming protocol and highlights the differences in their dissemination
patterns. Since the inter-node separation was fixed for the testbed we used, we
ran these experiments using different transmit power levels to create networks
with different effective densities. The X-axis in the graph denotes power level
while the Y-axis denotes the number of nodes that sent protocol messages.

(a) Dissemination patterns for
Deluge vs Sprinkler

(b) Performance of reporter selection
for our algorithm

Fig. 2. Efficiency of reporter selection in our algorithm.

As seen from Figure 2(a), the average number of senders in Deluge is more
than that in Sprinkler, as expected. Also, while the Sprinkler backbone size
remains fixed, the number of distinct senders in Deluge can vary quite a bit
across different runs. For instance, at power level 1, we observed that as many
as 23 out of 105 nodes sent a Deluge message in some execution while the number
of senders in Sprinkler at the same power level was always 10.



However, even for these two protocols, that work quite differently, the num-
ber of reporters selected by our algorithm is comparable for the same power level
(network density), as illustrated in Figure 2(b). Our experiments thus demon-
strate the performance benefits of reporter selection in our algorithm. At the
lowest power level (lowest node density), only 4-7% of the total number of
nodes became reporters while at higher power levels, i.e. highest node density,
this number was even smaller. In most WSNs, network density is dictated by
sensing range, as it is typically smaller than communication range. Reporter
achieves substantial performance savings in such dense networks.

Figure 3 shows the spatial distribution of senders and reporters in the 15x7
network from one execution from both protocols at power level 2. The arrows
indicate the routing paths chosen by Reporter for collecting termination reports.
We see that the dissemination pattern of Sprinkler is regular and deterministic
while that of Deluge is random. However, the net performance of Reporter is
quite similar for both protocols. It should be noted that in a small number of
executions with the Deluge protocol, our algorithm did end up with reporters
that were within one-hop of each other. This occurred due to message collisions
during transmission as a result of which the piggybacked reporter selection was
not heard by the second node that also chose itself to be a reporter. This does
not affect the correctness of Reporter, and only slightly affects its performance.

In the baseline algorithm described in Section 1, every node sends a termina-
tion report to the base station which creates a burst of network traffic. Reliable
end-to-end delivery of such traffic bursts is especially challenging, with even the
best known solutions only achieving about 90% reliability. As shown in Figure 3,
our algorithm selects only about 5% of nodes as reporters that are somewhat
evenly spread across the network. For this less severe traffic load, even our sim-
ple, per-hop reliability mechanisms gave us 98.4% routing reliability on average
for report collection at the base, with 92% of the runs yielding 100% reliability.

Fig. 3. Spatial distribution of reporters selected by our algorithm.

For the network setup and power level shown in the Figure 3, the size of the
Minimum Dominating Set is 3 nodes, whereas our algorithm selects 4 nodes as
reporters in the average case. However, our algorithm is forced to select the base



station, which for this setup is a corner node, as a reporter since it sends the
first protocol message. These results are reproduced at other power levels too
where the number of reporters selected by our algorithm matches the calculated
size of the Minimum Dominating Set.

5 Related Work

The problem of distributed termination detection was introduced by Dijkstra
and Scholten [11] in 1980 and has been extensively studied since [11, 13–15].
While our approach for tree construction for collecting reports is similar to the
one proposed in [11], our ideas for detecting termination differ from existing
approaches in several ways. Existing termination detection algorithms require
explicit signalling of control information between neighboring nodes and to the
base station to detect termination whereas we exploit the reactive nature of
WSNs and the broadcast communication model to reduce global termination
detection to locally detecting neighborhood termination at a small fraction of
nodes in the network. We also do not require all nodes to signal termination
unlike previous approaches. Rather, our reporter algorithm once again exploits
the underlying protocol to select a small faction of nodes as reporters and is
thereby well suited to WSNs where message efficiency is highly desirable.

The concept of a Dominating Set has been used in protocols for bulk dis-
semination [8, 16] and clustering [17, 18]. However, these protocols typically use
location information or introduce their own control messages to create a clus-
tering structure in the network. Our algorithm does not assume any network
information and imposes minimal control overhead for selecting reporters. Clus-
tering algorithms also typically incur control overhead for maintaining clusters
in the presence of node joins and failures. Unlike such static clustering schemes,
our algorithm performs a one-shot, on-demand selection of reporters for every
execution of the underlying protocol. Also, as shown by our experiments with
Sprinkler, Reporter automatically exploits any existing structure of the under-
lying protocol, however it can work equally well with unstructured protocols, as
demonstrated by or results for Deluge.

6 Conclusions

Termination detection is a critical service for management of multi-phase WSN
applications. In this paper, we reformulated the classical termination detection
problem by identifying a reactive model that is commonly used in low-power
WSN protocols, and proposed Reporter, an algorithm for efficient termination
detection in this model. Reporter imposes minimal computation, communica-
tion and memory overheads while achieving significant message efficiency over
existing solutions. This improved efficiency also results in an improvement in
reliability, which would otherwise be hard to achieve. We implemented Reporter
as a TinyOS component that is readily integrated with most WSN protocols to
detect their termination. Finally, we validated the correctness and performance



of Reporter through experiments on a real WSN testbed for two popular repro-
gramming protocols. Our experiments show that even though the two protocols
are quite different, Reporter achieves comparable performance for both, and re-
quires only about 5% of the number of nodes required by existing protocols to
send termination reports.

Future work. WSNs are subject to a wide variety of faults which may happen
at anytime during protocol execution. A fault that significantly affects Reporter
is the failure of a reporter node during termination detection. Since our algorithm
tries to maintain only one reporter in a neighborhood, failure of this reporter
implies that termination information from this neighborhood will not be sent to
the base station. This failure can be dealt with either by defining network poli-
cies, as we described in the paper, or by adding fault-tolerance to the algorithm
itself. One approach to fault-tolerance is to guarantee that there exist at least
k reporters in every one-hop neighborhood, as opposed to the single reporter
in our current algorithm. While this extension seems simple, it is not easy to
implement locally in a distributed manner because for k > 1, a node cannot
decide locally whether including itself in the set will violate the global property.
Thus, we seek solutions that require local communication and synchronization
between nodes, are fault-tolerant and stabilizing, and do not impose too much
overhead.

An alternative approach for network management assumes that WSNs are
inherently probabilistic in nature and therefore achieves efficiency by sampling
the network, instead of collecting full information, to provide probabilistic guar-
antees about network state. Sample based approaches require white-box infor-
mation about the underlying application protocol to obtain the guarantee; the
approach is thus less general than the black-box approach considered in this
paper. We intend to study sampling-oriented solutions for various network man-
agement tasks, including termination detection, and to compare their correctness
and performance advantages over their deterministic counterparts.

Finally, automation of a WSN manager requires the development of a frame-
work for scripting/orchestrating the execution of multi-phase WSN applications.
The framework would be useful not only in the field but also in the testing and
validation stages. Reporter is a useful building block for such a framework. We
have recently started development of the framework.

References

1. P. Dutta and et al. Trio: enabling sustainable and scalable outdoor wireless sen-
sor network deployments. In 5th Intl. Conf. on Information processing in Sensor
Networks (IPSN), 2006.

2. A. Arora et al. ExScal: Elements of an extreme scale wireless sensor network.
In 11th IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 102–108, 2005.

3. J. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for
network programming at scale. In 2nd Intl. Conf. on Embedded networked sensor
systems (SenSys), pages 81–94, 2004.



4. G. Tolle and D. Culler. Design of an application-cooperative management system
for wireless sensor networks. In Proceedings of the EWSN, 2004.

5. H. Zhang, A. Arora, and P. Sinha. Learn on the fly: data-driven link estimation
and routing in sensor network backbones. In 25th IEEE International Conference
on Computer Communications (INFOCOM), 2006.

6. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tinydb: an acquisi-
tional query processing system for sensor networks. ACM Trans. Database Syst.,
30(1):122–173, 2005.

7. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer
S. J. Pister. System architecture directions for networked sensors. In Architectural
Support for Programming Languages and Operating Systems, pages 93–104, 2000.

8. V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable and energy
efficient data dissemination service for wireless embedded devices. In 26th IEEE
Real-Time Systems Symposium (RTSS), 2005.

9. S. Bapat, V. Kulathumani, and A. Arora. Analyzing the yield of ExScal, a large-
scale wireless sensor network experiment. In 13th IEEE Intl. Conf. on Network
Protocols (ICNP), pages 53–62, 2005.

10. H. Zhang, A. Arora, Y. Choi, and M. Gouda. Reliable bursty convergecast in
wireless sensor networks. In 6th ACM Intl. Symp. on Mobile ad hoc networking
and computing (MobiHoc), pages 266–276, 2005.

11. E. Dijkstra and C. Scholten. Termination detection for diffusing computations. In
Information Processing Letters 11(1):1-4, 1980.

12. J. Zhao and R. Govindan. Understanding packet delivery performance in dense
wireless sensor networks. In 1st Intl. Conf. on Embedded networked sensor systems,
2003.

13. K. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. In ACM Trans. on Computer Systems, 8(3):326343, 1985.

14. S. Chandrasekharan and S.Venkatesan. A message-optimal algorithm for dis-
tributed termination detection. In Journal of Parallel and Distributed Computing,
8:245252, 1990.

15. F. Mattern. Global quiescence detection based on credit distribution and recovery.
In Information Processing Letters 30, pages 195–200, 1989.

16. S. Parthasarathy and R. Gandhi. Fast distributed well connected dominating sets
for ad hoc networks. Technical Report CS-TR-4559, Univ. of Maryland, 2004.

17. I. Chlamtac and A. Farago. A new approach to the design and analysis of peer-
to-peer mobile networks. In Wireless Networks, 5:149-156, 1999.

18. Y. Chen and A. Liestman. Approximating minimum size weakly connected dom-
inating sets for clustering mobile ad hoc networks. In 3rd ACM Intl. Symp. on
Mobile Ad Hoc Networking and Computing (MobiHoc), 2002.


