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Abstract
Virtual machine (VM) technology is experiencing a

resurgence due to various benefits including ease of man-
agement, security and resource consolidation. Live mi-
gration of virtual machines allows transparent movement
of OS instances and hosted applications across physical
host machines. It is one of the most useful features of
VM technology because it provides a powerful tool for
effective administration of modern cluster environments.

Migrating network resources is one of the key prob-
lems that needs to be addressed in the VM migration
process. Existing studies of VM migration have focused
on traditional I/O interfaces such as Ethernet, however,
modern high-speed interconnects with intelligent NICs
pose significantly more challenges as they have addi-
tional features including hardware level reliable services
and direct I/O accesses.

In this paper we present Nomad, a design for migrat-
ing modern interconnects with the aforementioned fea-
tures, focusing on cluster environments running VMs.
We introduce a thin namespace virtualization layer to
efficiently address location dependent resource handles
and a handshake protocol which transparently maintains
reliable service semantics during migration. We demon-
strate our design by implementing a prototype based on
the Xen virtual machine monitor and InfiniBand. Our
performance analysis shows that Nomad can achieve ef-
ficient migration of network resources, even in envi-
ronments with stringent communication performance re-
quirements.

1 Introduction
Virtual machine (VM) technologies are experiencing
a resurgence in recent years in both industry and
academia [26]. A key component in a VM environment
is the virtual machine monitor (VMM), which is also re-
ferred to as the hypervisor. The VMM provides virtu-
alized hardware interfaces to hosted guest virtual ma-
chines (VMs). It allows many different guest VMs to

run simultaneously in a single physical box, and pro-
vides a wide range of benefits including resource con-
solidation, performance isolation, and user-transparent
migration and checkpointing/restart. Among them, user-
transparent live migration is one of the most interesting
features. It helps separate the hardware and software
management and consolidate clustered hardware into a
single coherent management domain [5].

Recently, network interconnects providing low latency
(less than 5µs) and very high bandwidth (multiple Gbps)
are emerging, such as InfiniBand [10], Myrinet [16],
Quadrics [25], etc. Such interconnects also support fea-
tures including OS-bypass I/O and Remote Direct Mem-
ory Access (RDMA). With OS-bypass, applications can
directly initiate communication operations without the
involvement of the operating system. RDMA allows pro-
cesses on remote nodes to access certain memory buffers
of a local process. Modern interconnects with excellent
performance and flexibility provided by these features
are being widely adopted in cluster environments, which
typically host data center or high performance computing
(HPC) applications.

Virtual machine technology, due to its wide range of
benefits, is one of the possible remedies to solve per-
formance, scalability, and system management problems
caused by today’s ultra-scale clusters [22, 12]. By uti-
lizing the OS-bypass feature of the high speed inter-
connects, direct I/O access without involvement of the
VMM can be realized for high performance I/O in vir-
tual machine environment, as we have done in previously
in VMM-bypass I/O [13]. As a result, virtual machine
based cluster environments are a promising solution to
achieve both high performance and high manageability.

However, compared with traditional network devices
such as Ethernet, modern network interconnects with
OS-bypass pose additional unresolved challenges with
respect to VM migration:
• First, intelligent NICs of OS-bypass networks man-

age large amounts of resources, such as a memory
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protection table in InfiniBand NICs to allow safe
user level access. This information can only be ac-
cessed by opaque handles, and the value of these
handles are usually location-dependent and cannot
be migrated easily with the virtual OS.

• Second, with user-level communication various op-
erations can bypass the virtual OS and VMM, thus
the VMM has less control of network activity from
the processes hosted in the migrating OS. In con-
trast, with TCP all traffic will go through the kernel
and it is relatively easy to manage the communica-
tion of the processes during migration.

• Further, modern interconnects may store connec-
tion state information on NICs, which cannot be
directly managed by software. This information is
used for features like reliable service implemented
in hardware. Compared with traditional TCP where
connection states are stored in memory, which will
be automatically migrated with the virtual OS, it is
much harder to manage the NIC-stored connection
states with modern interconnects.

Current VM technologies have proposed several so-
lutions for migrating virtual OSes with traditional net-
works. However, problems related with migration of
modern interconnects, which are more widely adopted
in cluster environments, are left unstudied. In this pa-
per, we attempt to overcome these challenges by propos-
ing Nomad, a framework to address the migration issues
of modern OS-bypass interconnects. We target cluster
computing environments, which are very tightly coupled
systems with stringent communication performance re-
quirements.

Our approach introduces a thin namespace virtualiza-
tion layer to efficiently address location dependent re-
source handles. We also devise a coordination proto-
col to avoid packet drops or out-of-order communication
during migration. To demonstrate our ideas, we imple-
mented a prototype of Nomad in the Xen virtual machine
environment for InfiniBand. The prototype is based on
our earlier work of VMM-bypass I/O [13], which ex-
tends the OS-bypass features to bypass both the OS and
the hypervisor for time-critical I/O operations. Through
the high performance communication of VMM-bypass
and the Nomad’s efficient migration, we can realize the
promise of cluster computing environments with both
high performance and the benefits of modern VM tech-
nologies. Nomad can also be used for coordinated check-
pointing of the virtual machines in a cluster environ-
ment. Our design is readily applicable to other virtual
machine environments and other OS-bypass networks as
well. The concepts presented can also be extended for
process-level migration.

In summary, the main contributions of our work are:

• Discussing in-depth the challenges of transparently
migrating modern OS-bypass interconnects in vir-
tual machine environments, and proposing Nomad,
a possible solution with namespace virtualization
and coordination protocols.

• Implementing Nomad for a Xen-based cluster using
InfiniBand. Based off of our earlier work of VMM-
bypass I/O, our implementation maintains applica-
tion transparency and requires no changes to na-
tive device drivers running in the Xen privileged do-
main, device firmware, or hardware.

• Evaluating our prototype on an InfiniBand cluster
with various high performance computing (HPC)
benchmarks. Our evaluation shows that together
with Xen live migration, Nomad can be used effi-
ciently even in environments with stringent require-
ments on communication performance.

The rest of the paper is organized as follows: In Sec-
tion 2, we briefly introduce the background information,
including the Xen VM environment, modern RDMA ca-
pable interconnects using InfiniBand as example, and
VMM-bypass I/O. In Section 3, we discuss in detail
the challenges of migrating OS-bypass interconnects. In
Sections 4 and 5, we present the design and implementa-
tion of Nomad. Performance evaluation results are given
in Section 6. In Section 7, we note several related issues
and limitations of our current implementation and how
they can be addressed in future. We discuss related work
in Section 8 and conclude the paper in Section 9.

2 Background
In this section we discuss background information for
our work. In Section 2.1, we introduce the OS-bypass
approach of modern high speed interconnects and give
an overview of InfiniBand architecture, which is a typi-
cal OS-bypass interconnect. In Section 2.3 we describe
direct I/O access in virtual machines and how OS-bypass
interconnects are supported by VMM-bypass I/O. Since
our prototype is based on Xen virtual machine environ-
ment, we introduce Xen in Section 2.2.

2.1 OS-bypass I/O
Device I/O accesses have traditionally been carried out
inside the OS kernel. This approach, however, imposes
several overheads into the critical path such as context
switches between user processes and OS kernels and ex-
tra data copies which degrade I/O performance [2]. It can
also result in QoS crosstalk [27] due to lack of proper ac-
counting for I/O access cost carried out by the kernel on
behalf of applications.
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To address these problems, a concept called user-level
communication was introduced by the research commu-
nity. One of the notable features of user-level commu-
nication is OS-bypass. Using this model, devices allow
frequent and time-critical operations such as I/O commu-
nication be performed directly by user processes without
involvement of OS kernels. Devices usually allow OS-
bypass for frequent and time-critical operations while
other operations, such as setup and management oper-
ations, are often handled by OS kernels. Due to these
advantages, OS-bypass has been adopted by commercial
products, many of which have become popular in areas
such as high performance computing where low latency
is vital to application performance.

The key challenge to implement OS-bypass I/O is to
enable safe access to a device shared by different ap-
plications. To achieve this, OS-bypass capable devices
usually require more intelligence in the hardware than
traditional I/O devices. Typically, an OS-bypass capable
device is able to present virtual access points to differ-
ent user applications. Hardware data structures for vir-
tual access points can be encapsulated into different I/O
pages. With the help of the OS kernel, the I/O pages
can be mapped into the virtual address spaces of differ-
ent user processes. Thus, different processes can access
their own virtual access points safely, with the protection
provided by the virtual memory mechanism.

2.1.1 InfiniBand Architecture
InfiniBand [10] is a high speed interconnect offering
OS-bypass features. InfiniBand host channel adapters
(HCAs) are the equivalent of network interface cards
(NICs) in traditional networks. InfiniBand uses a queue-
based model for communication. A Queue Pair (QP)
consists of a send queue and a receive queue, which hold
work descriptors to transmit data. Once a work descrip-
tor is posted to the QP, it is carried out by the HCA. The
completion of communication events is reported through
Completion Queues (CQs) using Completion Queue En-
tries (CQEs). InfiniBand offers reliable connection ser-
vice (RC) as well as Remote Direct Memory Access
(RDMA). After QPs are created, they need to be ex-
plicitly bound together to establish a reliable connection
(RC). RDMA operations can be carried over RC.

To ensure safe hardware access at the user level, In-
finiBand requires all buffers involved in communication
be registered. Upon the completion of registration, a lo-
cal key and a remote key are returned, which will be used
later for local and remote (RDMA) accesses.

A user communication library takes care of time-
critical operations. In the Mellanox [15] approach, which
represents a typical implementation of the InfiniBand
specification, initiating data transmission includes copy-
ing a work descriptor to the user-space queue pair (QP)

buffer and ringing a doorbell. Please note that when dis-
cussing InfiniBand, we refer to the Mellanox approach
in this paper. Doorbells are rung by writing to the reg-
isters that form the User Access Region (UAR), which is
a 4k I/O page mapped into the virtual address space of a
process, forming virtual access points to the HCA. The
completion queue entries (CQEs) are also located in user
space (CQ buffer) and can be directly accessed from the
process virtual address space. These OS-bypass features
make it possible for InfiniBand to provide very low com-
munication latency. Figure 1 illustrates the architecture
of OpenFabric Gen2 stack, which is a popular software
stack for InfiniBand.

User −level Infiniband Service

User−level Application

Core Infiniband Modules

HCA Driver

InfiniBand HCA

User−space
Kernel

OS−bypass

User−level Communication Library

Figure 1: Architectural overview of OpenIB Gen2 stack

2.2 Xen Virtual Machine Monitor
Xen is a popular high performance virtual machine mon-
itor originally developed at the University of Cambridge.
It uses para-virtualization [36], in which host operating
systems need to be explicitly ported to the Xen architec-
ture. This architecture is similar to native hardware such
as the x86 architecture, with only slight modifications to
support efficient virtualization.

Device Manager
and Control
Software

(Domain0)
VM0

Unmodified
User

Software

Unmodified
User

Software

VM1 VM2
(Guest Domain) (Guest Domain)

Safe HW IF Control IF Event Channel Virtual CPU Virtual MMU

Hardware (SMP, MMU, Physical Memory, Ehternet, SCSI/IDE)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Back−end driver

native 
Device
Driver

Xen Hypervisor

front−end driverfront−end driver

Figure 2: The structure of the Xen hypervisor, hosting
three xenoLinux operating systems (courtesy [23])

Figure 2 illustrates the architecture of Xen. The Xen
hypervisor is at the lowest level and has direct access
to the hardware. Above the hypervisor are the Xen do-
mains (VMs); many domains can be run simultaneously.
A special domain0, which is created at boot time, hosts
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application-level management software and performs the
tasks to create, terminate or migrate other domains.

To ensure manageability and safe access, device virtu-
alization in Xen follows a split device driver model [8].
Each device driver is expected to run in an isolated de-
vice domain (IDD), which hosts a backend driver to serve
access requests from guest domains. Each guest OS uses
a frontend driver to communicate with the backend. This
split device driver model requires the development of
frontend and backend drivers for each device class.

Xen supports hot migration, which transparently
moves one running VM to another physical host without
interruption of the services hosted on the virtual OS of
the migrating VM. Xen uses a pre-copy approach, which
iteratively copies the modified pages of memory from the
source machine to the destination host. Because the VM
is only paused at the final stage of migration, only a very
short downtime is noticed by the user application. Migra-
tion of devices is handled by the para-virtualized device
drivers. The front-end drivers receive suspend callbacks
at the final migration stage when the VM is about to be
paused and resume callbacks when the VM is resumed at
the new host machine.

2.3 Direct I/O in Virtual Machines
Traditional I/O accesses in virtual machines involve ei-
ther the hypervisor [35] or a device domain [8] to achieve
device sharing and safe access. Such schemes, however,
also introduce extra overhead to access I/O devices. This
behavior is not desirable in many cases especially for
cluster computing environment, where I/O performance
is often critical to application performance. To overcome
this shortcoming, several techniques have been proposed
to directly access the I/O devices in VM environment
without compromising the safety.

Privileged Access
VMM−Bypass Access

......

VM

Backend Module

Module

VMM

Device

OS

Device Driver VM
Application

Guest ModulePrivileged

Figure 3: VMM-Bypass I/O

Our previous work proposed VMM-bypass I/O, which
extends the idea of OS-bypass I/O to allow safe direct
network I/O access in virtual machines. The architecture
of VMM-bypass I/O is illustrated in Figure 3. We target
network devices with OS-bypass capabilities. A device
driver called guest module in the OS of the guest VM

is responsible for handling all privileged accesses to the
device. In order to allow I/O operations be carried out
directly in the guest VM, the guest module must be able
to create virtual access points on behalf of the guest OS
and map them into the appropriate addresses (e.g., UAR
for InfiniBand) of user processes. Since the guest mod-
ule does not have direct access to the device hardware,
a backend module in the device domain helps to provide
such access to all the guest modules. In addition to serv-
ing as a proxy for device hardware access, the backend
module also coordinates accesses among different VMs
so that system integrity can be maintained. Once the vir-
tual access points have been setup, applications in the
guest VM can directly access the hardware, which brings
close-to-native I/O performance.

Other direct I/O techniques include Xen PCI pass
through [39], which passes a PCI device through to an
unprivileged domain, who will then has the exclusive ac-
cess to this specific PCI device. Thus the I/O perfor-
mance can be greatly enhanced. PCI-Express I/O vir-
tualization [21] also allows multiple operating systems
running simultaneously within a single physical machine
to natively share PCI-Express devices. To the best of our
knowledge, there is no commercial product that supports
this specification yet.

3 Challenges
Figure 4 illustrates an environment using virtual ma-
chines for cluster management. Each physical machine
hosts several VMs which can run serial or parallel jobs.
Migration of VMs plays several important roles in such
an environment. First, the system administrator can
move the VMs across nodes according to the work loads,
which improves resource utilization. Second, for perfor-
mance reasons, it is desirable to move the VMs hosting a
parallel job to physical nodes adjacent in network topol-
ogy whenever possible. Additionally, if physical nodes
need to be shutdown for maintenance, hosted VMs can
be migrated to other nodes. To achieve this, one of the
basic requirements of VM migration in a cluster envi-
ronment is to transparently keep alive the open network
connections.

Physical Resources Computing Nodes

VMM

Guest VMs

Storage Nodes
Module
Management

Front−End

User Generated Data
VM Image Distribution/

Execute Jobs
Instantiate VMs/Control

Submit Jobs/

Control

Figure 4: A VM-based cluster environment

Compared with traditional network devices such as
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Ethernet, migration of modern OS-bypass interconnects
are less studied. In this section we take a closer look
at the challenges of migrating OS-bypass interconnects.
We use InfiniBand and Ethernet as examples for OS-
bypass interconnects and traditional network devices, re-
spectively, in our description.

3.1 Location Dependent Resources
Many network resources associated with OS-bypass in-
terconnects are location dependent, making them very
difficult to migrate with the virtual operating system.

First, as mentioned in Section 2, to allow user level
communication and remote memory access, the HCAs of
modern interconnects will often manage some data struc-
tures in hardware. Software can only use opaque handle
to access HCA resources. Taking InfiniBand as an ex-
ample, software can only use QP numbers, CQ numbers,
and local and remote keys to refer the connections, com-
pletion queues, and registered communication buffers,
respectively. Many of those structures are maintained by
the device and cannot be managed directly by software.
Once a VM is migrated to another physical machine with
a different HCA, the opaque handles are no longer valid.
One approach is to attempt to reallocate the resources
on the new host using the same handle values. This
method requires changes to the device firmware which
assigns the handles. Even with that additional complex-
ity, we will have a problem if multiple VMs are sharing
the HCA, because the handles may have already been as-
signed to other VMs.

Further, InfiniBand port addresses (local ID or LID)
are associated with each port, and only one LID can be
associated with each port. The mapping between the
LIDs and physical ports are managed by external sub-
net management tools, making it difficult to change dur-
ing migration. Also, since the LIDs can be used by
other VMs sharing the same HCA, in many case it is
not feasible to change them during migration. In con-
trast, both IP and MAC addresses used in Ethernet are
device-transparent and can be associate with any Ether-
net devices. Multiple MAC and IP addresses can also be
associated with one device, which offers flexibility to mi-
grate and share the network devices in VM environment.

3.2 User Level Communication
User level communication makes migration more diffi-
cult from at least two aspects:

First, besides kernel drivers, applications can also
cache multiple opaque handles to reference the HCA re-
sources. If those handles are changed after migration we
cannot update those cached copies at the user level. Also,
RDMA needs some handles (remote memory keys) be
cached at remote peers, which makes the problem even
more difficult. In contrast, applications for traditional

networks generally use the sockets interface, where all
complexities are hidden inside the kernel and can be
changed transparently after migration.

Second, with direct access to the hardware device from
the user level it is difficult to suspend the communication
during migration. For traditional networks with socket
programming, the kernel intercepts every I/O request,
making it much easier to suspend and resume the com-
munication during migration.

3.3 Hardware Managed Connection State
Information

To achieve high performance and RDMA, OS-bypass in-
terconnects typically store connection state information
in hardware. This information is also used to provide
hardware-level reliable service, which automatically per-
forms packet ordering, re-transmission, etc. With hard-
ware managed connection states, the operating system
avoids the stack processing overhead and can devote
more CPU resources to computation. This presents a
problem for migration, however, since there is no easy
way to migrate connection states between the network
devices. Given this, the hardware cannot recover any
dropped packets during migration. Meanwhile, any
dropped or out-of-order packets may cause a fatal error
to be returned an application since there is no software
recovery mechanism.

In contrast, migration is relatively easier for a tradi-
tional TCP stack on Ethernet. The connections states are
managed by the operating system. Thus it is usually suf-
ficient to save the main memory during migration and all
connection states will be migrated with the virtual OS.
The in-flight packets during migration may be lost, but
they can be recovered by the OS at TCP layer.

4 Design

In this section we present some of the design choices
made for Nomad to address the challenges we explained
in Section 3. We use namespace virtualization to virtu-
alize the location dependent resources and a handshake
protocol to coordinate among VMs to make the connec-
tion state deterministic during migration. We first focus
on migrating VMs hosting applications using RC ser-
vices only. Then we will also briefly mention how to
deal with unreliable datagram (UD) services.

We use Xen and InfiniBand throughout our discus-
sion. Xen and InfiniBand are each very typical in their
domains, virtual machine monitors and OS-bypass in-
terconnects, respectively. Thus, most of the issues dis-
cussed are common to other VM technologies and OS-
bypass network devices.
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4.1 Location Dependent Resources
As we have discussed in the last section, software can
only use opaque handles to refer to HCA resources,
which are location dependent. In some specific HCA im-
plementations it may be possible to directly modify the
resources, for example, “Memory Free” Mellanox Infini-
Band cards store a majority of resources in main memory
and access them through the PCI-Express bus. Such a de-
sign opens the chance to modify those memory areas di-
rectly to support migration. However, a design based on
this scheme is very hardware dependent, so the first de-
sign choice we make is to strictly assume HCA resources
are not modifiable directly. Thus, we need to free the
location dependent resources before the migration starts
and re-allocate them after the migration.

The opaque handles are assigned by the firmware,
meaning they will be changed after the resources are re-
allocated. The main difficulty is how to approach the
cached opaque handles at the user application. For ex-
ample, a typical parallel application using InfiniBand re-
liable connections may cache the following information:

• LIDs (port addresses), which are exchanged among
the processes involved after the application starts to
address the remote peers;

• Queue Pair (QP) numbers after the QPs are created;
To establish a reliable connection, each QP has to
know both the LID and the QP number of the re-
mote side.

• Local and remote memory keys after registration.
The same keys must be used to reference the com-
munication buffer for either local communication
operations or remote access (RDMA).

All above handles may be changed upon migration.
In order to maintain application transparency, we must
ensure the application can still use the re-allocated re-
sources with the old handles.

4.1.1 Nomad Namespace Virtualization

VQPN1

VQPN2

QPN2

QPN2
......

...

VID

VID

VID
LID

number from the lookup list
Locate the actual LID and QP

Figure 5: Destination lookup list

To achieve application transparency, we introduce a
virtualization layer between the opaque handles that ap-
plications may use and the real handles associated with
HCA resources. To virtualize the LID, we assign a VM

identification (VID), which is unique within a cluster, to
each VM once it is instantiated. The VID is returned to
the application as LID. Similarly, once a QP is created,
a virtual QP number (VQPN) is returned to application
instead of actual QP number.

In order to determine the real LID and QP number
when the applications try to setup the connection, No-
mad maintains a destination lookup list similar to Fig-
ure 5 in the front-end driver. When an application tries to
setup a connection to a remote peer represented by VID
and VQPN, the front-end driver intercepts the connec-
tion request and replaces the VID and VQPN according
the content in the translation table. If the driver is not
able to locate an entry in the lookup list, which happens
the first time the connection is established, it will send
a lookup request to the front-end driver on the VM de-
noted by VID to “pull” the actual LID and QP numbers
that should be used and put an entry in the lookup list.

Once a connection is setup between two processes on
different VMs we consider those two VMs connected.
When a VM is migrated, the same VQPN and VID
then may correspond to a different QP number and LID.
Nomad must make sure that any changes are reflected
in the destination lookup list on each of the connected
VMs. Each VM maintains a registered list at the front-
end driver to keep track of the connected VMs. Once
a VM receives a lookup request, it puts the remote VM
into the registered list. After the migration, updates of
new handles will be sent to all the connected VMs in the
registered list to “push” the updates, which will be re-
flected in their lookup list. The connections can then be
re-established automatically between the VMs without
notifying the application, using the latest handles.

Once an application completes, the driver will deter-
mine all remote VMs to which it no longer has connec-
tions. It then sends an “unregister” request to those VMs
to remove itself from their registered list. In this way we
avoid unnecessary updates being sent among VMs.

4.1.2 Virtualizing Memory Keys
An additional challenge is handling of the memory keys,
especially for remote memory keys, which are sent to
peers for remote direct memory access (RDMA). If we
use the lookup list and update schemes as mentioned
above, each time a new remote memory key is used for
communication, there will be no entry in the lookup list,
requiring a query to the remote VM. This approach may
impose a significant and unacceptable delay in the criti-
cal path of communication.

To avoid the extra cost of looking for updates, we
make modifications based on the lookup list mentioned
in the last section. We still keep a similar lookup list, as
shown in Figure 6. Note that we need a translation table
for the local keys because they are used by applications
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to reference the local memory buffers. We return the real
memory keys as the “virtual” keys to the applications.
Thus, if no entry is found corresponding to a key used by
application, instead of querying for updates, Nomad will
use the key directly for communication.

VID VID

VRKEY1 RKEY1

VRKEY1 RKEY1
... ...

...

... ...

VLKEY1 LKEY1

VLKEY1 LKEY1

(a)Local keys (b) remote keys

Figure 6: Nomad keeps: a) translation table for local keys;
b) list of translation table for remote keys, updated upon peer’s
request

After migration we will get a new set of “physical”
memory keys for the communication buffers. We then
will update all connected peer VMs with the new keys,
which will be kept in the lookup list.

The extra complexity caused by using real keys as
virtual keys is that we may have a conflict of physi-
cal keys with virtual keys after migration, For exam-
ple, on the origin host we first register a user buffer
and get memory key 0x1000. After migration we re-
register the buffer and get key 0x2000, creating an en-
try “0x1000→0x2000” in the lookup list. Now we reg-
ister another buffer, this time we get key 0x1000 since
it has not been used on the new host. Then if the ap-
plication uses key 0x1000 to communicate, Nomad can-
not distinguish which buffer it is referencing. To solve
the conflict, we have to select a unused virtual key, say
key 0x3000, and update all connected VMs with an entry
“0x3000→0x1000”. Connected VMs are the only loca-
tions where the keys could possibly be in use. We believe
for memory keys, such conflicts will not occur often, re-
ducing any possible overhead. For instance, InfiniBand
firmware randomly select 32-bit keys, making the possi-
bility of such conflicts very low.

We do not use this scheme for virtualizing LIDs or QP
numbers. The main reason is that in case of conflict, we
do not know which VM will use the LID/QP number to
set up a connection. We will end up updating all active
VMs in the cluster, which may be prohibitively expen-
sive on large clusters. Also, connection setup is not in
the communication critical path, thus there is no need for
this extra complexity.

4.2 User-level Communication
With namespace virtualization the applications can use
the same handle to access the HCA resources after mi-
gration. Even with this, we still need to suspend the net-
work activity during the migration. Unlike the traditional
TCP/IP stack where all communication goes through ker-

nel, the user level communication leaves no central con-
trol point from where we can suspend the communica-
tion. Fortunately, almost no applications access the hard-
ware directly. The user level communication is always
carried out from a user communication library, which is
maintained synchronously with the kernel driver. This
allows us to intercept all send operations in this commu-
nication library. Taking InfiniBand as an example, we
generate an event to the communication library to mark
the QP suspended if we want to suspend the communica-
tion on that specific QP. If the application attempts to
send a message to a suspended QP, we buffer the de-
scriptors in the QP buffer, but do not ring the doorbell.
When resuming the communication, we update every
buffered descriptor with the latest memory keys and ring
the doorbell, the descriptors then will be processed on the
new HCA. This delays the communication without com-
promising the application transparency. Note that this
scheme does not require extra resources to buffer the de-
scriptors, because the QP buffers are already allocated.

4.3 Connection State Information
Since there is no easy way to manage the connection
state information stored on the HCA, we work around
this problem by bringing the connection states to a de-
terministic state. When the VM starts migrating, we not
only mark all QPs as suspended, but also wait for all the
outstanding send operations to finish during the suspen-
sion of communication. In this way, there will be no
in-flight packets originating from the migrating VM.

Beyond that, we must avoid packets being sent to the
migrating VM. Nomad achieves this by sending a sus-
pend request to all the connected VMs. Upon receiving
the suspend request the VM will notify the user com-
munication library to mark the corresponding QP as sus-
pended and wait for all outstanding send operations on
that QP to finish. Note that communication on QPs to
other VMs will not be affected. The registered list can
be used to identify all the connected VMs.

After all communication on both the migrating VM
and the connected VMs are suspended and all the out-
standing sends finish, the connection states are determin-
istic thus need not be migrated. We simply need to re-
sume the communication after the migration is done.

4.4 Unreliable Datagram (UD) Services
Besides RC service, most modern interconnects also pro-
vide unreliable datagram service (UD). UD service is
easier to manage since we do not need to suspend the re-
mote communication, lost packets during migration will
be recovered by the application itself. Only the UD ad-
dress handles need to be updated after migration; for In-
finiBand these are the LID and QP number.

Updating the UD address can be done in the similar
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way as described in Section 4.1. For example, Infini-
Band requires a UD address handle to be created before
any UD communication takes place. Nomad checks with
the destination VM, denoted by VID, for updates when
creating the address handle. It is then registered with that
VM. When a VM is migrated, it will update all VMs in
the registered list with the new QP numbers and LIDs so
the address handles will be re-created.

5 Implementation
In this section we present a prototype implementation of
Nomad. We built the prototype based on our earlier work
of XenIB, which virtualizes InfiniBand in the Xen en-
vironment with VMM-bypass I/O. Our implementation
extends XenIB with migration functionalities. In the fol-
lowing section we first show the overall architecture of
the prototype. Then we discuss the protocols to migrate
one VM and how we extend the protocols to migrate a
group of VMs. Finally, we discuss some optimizations
with respect to scalability on large clusters.

5.1 Architecture

...node 2node 1

Central server for

frontend driver

kernel modifications kernel

backend driver

userspace

node n

management

user library

user−lib modifications

Nomad migration

User−level services

Applications

DomU
Device
Domain

Figure 7: Architecture of Nomad

Figure 7 illustrates the overall architecture of Nomad,
which consists of the following major components:

• Modified user communication library: The major
modification includes code to suspend/resume com-
munication on QPs, and a lookup list for memory
keys as described in Section 4.1.2 for user level
communication. All changes are transparent to the
higher level InfiniBand services and applications.

• Modified InfiniBand driver in kernels of guest op-
erating system: Major code changes include the
suspend/resume callback interfaces interacting with
XenBus interfaces[38]; the interaction with the user
library notifying it to suspend/resume communica-
tion as necessary; the destination lookup list as de-
scribed as Section 4.1; re-allocation of opaque han-
dles after migration; and memory key lookup list for
all kernel communication.

• Management network: This includes a central
server and management module plug-ins at the priv-
ileged domain. All control messages (i.e. suspend
or resume requests) are forwarded by a manage-
ment module in the privileged domain. The central
server keeps track of the physical host of each vir-
tual machine so that control messages addressed by
VID can be sent to the correct management module.
Though the forwarding by a management module is
not absolutely necessary, this design has its advan-
tages. First, we can verify the correctness/validity
of the control messages, so a malicious guest do-
main will not break the system security. Further, the
privileged domain will not be migrated, so the man-
agement framework itself can be built on high speed
interconnects like InfiniBand. If the management
network involves the VMs that could be migrated,
using InfiniBand may cause addition complexity.

5.2 Migrating a Single Virtual Machine

(a) SUSPEND stage
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1
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4

Resetup HCA dependent resource

Send SUSPEND request

Suspend all communication

Free HCA dependent resources
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SUSPEND REQ
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Resume communication
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Re−init connections

ACK

RESUME REQ
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(b) RESUME stage

Suspend communication 

Migrating VM Connected Peers

10

8

7

6

9

SUSPEND callback from Xen

the migrating VM

Re−init connections to remote VM

Figure 8: Protocol for migrating one VM

Figure 8 illustrates the protocol of Nomad to migrate a
VM. We use a two stage protocol, following the model of
migrating para-virtualized devices in Xen. The front-end
drivers go into a suspend stage after receiving a suspend
callback from the hypervisor to get ready for migration.
It goes into a resume stage after receiving the resume
callback to restart communication on the new host.

The driver sends suspend requests to the connected
VMs to suspend their communication. It will then sus-
pend local communication in parallel. Once it receives
the acknowledgments from all connected VMs, it frees
the location dependent resources and finishes the sus-
pend stage.

In the resume stage, the driver will first re-allocate all
location dependent resources. It then sends update mes-
sages to all VMs in the registered list. Upon receiving the
update, the connected VMs can re-establish the connec-
tion and resume the communication. After all connected
VMs have acknowledged, the communication on the mi-
grating VM will be resumed.
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5.3 Migrating a Group of Virtual Ma-
chines

(a) SUSPEND stage

(b) RESUME stage

Migrating VM 1 Migrating VM 2

1

2

3

5

6

7

8

10

11

9

4 Suspend all communication

Free HCA dependent resources

Get migrating peer list

Suspend all communication

Free HCA dependent resources

Get migrating peer list

Resetup HCA dependent resource

Re−init connections to remote peer

Send RESUME request &

Resetup HCA dependent resource

Re−init connections to remote peer

Send RESUME request &

SUSPEND callback from Xen SUSPEND callback from Xen
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Wait for ACKs and Resume Wait for ACKs and Resume

Figure 9: Protocol for migrating two VMs

In some cases users need to migrate a group of vir-
tual machines to new hosts. For instance, to bring down
a set of physical nodes for maintenance. In this case,
because of the existence of the central server as coor-
dinator, we can simplify the control message exchange
among the migrating VMs. We assume the central server
will know the set of VMs that user wants to migrate si-
multaneously. Then during suspend stage, each migrat-
ing VM will query the server to get the list of connected
VMs which are also migrating. It does not need to send
suspension requests to those VMs, because they will sus-
pend their communication regardless. Instead, all the mi-
grating VMs will send the suspend acknowledgments di-
rectly to each other. For VMs not migrating the same
protocol as in the last section is used.

During resume stage, however, extra steps are needed
to exchange the updated resource handles among the mi-
grating VMs before the connections between the QPs can
be re-established with the correct resource handles (step
8). Flowchart for simultaneously migrating two virtual
machines is shown in Figure 9.

5.4 Scalability
Jobs running in a cluster environment, especially HPC
jobs, can involve as many as hundreds to thousands of
nodes. Application such as MPI may use a static con-
nection model, which means that each process will set
up a reliable connection to every other processes. This
may cause scalability issues for Nomad during migra-
tion. Sending suspension requests to so many connected
VMs and waiting for replies may cause significant delay.

Fortunately, research on communication characteris-
tics of parallel programs [31] indicates that not all pairs
of processes in a parallel job communicate among each
other with equal frequency. Figure 10 shows the aver-
age number of communicating peers per process in some
scientific applications written in MPI. In many cases the
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Figure 10: Average number of communicating peers per pro-
cess in several large-scale applications (Courtesy of [11])

majority of process pairs do not communicate between
each other. Based on this observation, we introduce a
concept called active connections.

Once a connection (QP) is created, by default it is in
“non-active” mode. And no communication is allowed
on “non-active” QPs, just like what we do on suspended
QPs. During migration, we do not handshake with VMs
connected with “non-active” QPs, which may signifi-
cantly reduces the number of control messages sent.

When a process posts a send to a “non-active” QP,
Nomad will first contact the remote side to see if any
side of the connection has been migrated. If so, the VMs
will exchange any possible updates on the QP numbers,
LID or memory keys, and re-establish the connection if
needed. After that, the QP is switched to “active” state
and is ready for communication.

6 Performance Evaluation
In this section, we evaluate the performance of our proto-
type implementation of Nomad. We first evaluate the im-
pact of VM migration on InfiniBand verbs layer micro-
benchmarks, then we move to application-level HPC
benchmarks. We focus on HPC benchmarks since they
are typically more sensitive to the network communi-
cation performance and allow us to evaluate the perfor-
mance of Nomad better. Since there are barely any HPC
benchmarks directly written with InfiniBand verbs, we
use benchmarks on top of MPI [28] (Message Passing
Interface). We use MVAPICH [14, 18], a popular MPI
implementation over InfiniBand, for this evaluation.

6.1 Experimental Setup
The experiments are carried out on an InfiniBand cluster.
Each system in the cluster is equipped with dual Intel
Xeon 2.66 GHz CPUs, 2 GB memory and a Mellanox
MT23108 PCI-X InfiniBand HCA. The systems are con-
nected with an InfiniScale InfiniBand switch. Besides
InfiniBand, the cluster is also connected with Giga-bit
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Ethernet as the control network. Xen-3.0 with the 2.6.16
kernel is used on all computing nodes. Domain 0 (the
device domain) is configured to use 512 MB and each
guest domain runs with a single virtual CPU and 256 MB
memory. Each physical node hosts one VM so that there
is one spare CPU to provide computing resources needed
in the pre-copy stage of the Xen live migration. This al-
lows us to reduce the impact of the migration cost of Xen
on our experiments.

6.2 Micro-benchmark Evaluation
In this subsection, we evaluate the impact of migra-
tion on micro-benchmarks. We use the standard Perftest
benchmarks provided with the OpenFabrics Gen2 stack.
They consist of a set of InfiniBand verb layer bench-
marks to evaluate the basic communication performance
between two processes. We ran the tests on two VMs,
with each of them hosting one process. We measure the
performance reported by the benchmarks while migrat-
ing the VMs, one at a time.

The RDMA latency tests were carried out in a ping-
pong fashion. A process RDMA writes to the peer and
the peer acknowledges with a RDMA write after it de-
tects message arrival. This process repeats one thousand
times and the worst and median half round-trip time are
reported. We slightly modify the benchmark to keep
measuring the latency in loops. Figure 11 shows the
RDMA latency reported in each iteration. The worst
latency is always higher than the typical latency due to
process skews at the first few ping-pongs. We also ob-
serve that during iterations that we migrate the VMs, the
worst latency increases to around 90 ms from under few
hundred micro-seconds. This approximates the migra-
tion cost when migrating simple programs.

In the bandwidth tests, a sender sends a number of
messages to a receiver and then waits for an acknowledg-
ment. The bandwidth is obtained by dividing the number
of bytes transferred from the sender by the elapsed time
of the test. Since the migration cost is amortized among
all the messages, we do see a degradation on the aver-
age bandwidth reported during the migration period, as
shown in Figure 12.

We see the same trend for latency and bandwidth using
send/receive verbs instead of RDMA. We also observe
no noticeable overhead is caused by Nomad on either la-
tency or bandwidth if no migration is taking place.

6.3 HPC Benchmarks
In this subsection we examine the impact of migration on
HPC benchmarks. We use the NAS Parallel Benchmarks
(NPB) [17] for evaluation, which are a set of comput-
ing kernels widely used by various classes of scientific
applications. Also, the benchmarks have different com-
munication patterns which allows us to better evaluate
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the overhead of Nomad.
The benchmark sizes are selected so that they run long

enough for us to migrating VMs. We run the benchmarks
on four processes with each VM hosting one computing
process. We then migrate VMs one at a time during the
process to see the impact of migration. Figure 13 com-
pares the performance between running NAS on native
systems, with Nomad but no migration, migrating a VM
once, and migrating a VM twice. As we can see from
the graph, Nomad causes only slight overhead (less than
1%) if there is no migration, which conforms to our ear-
lier evaluation on XenIB [34]. Each migration causes 0.5
to 2 seconds increase of total execution time, depending
on the benchmarks.

6.4 Analysis of Migration Cost
In this subsection we take a closer look at the migration
cost caused by Nomad. As we have discussed, the mi-
gration process can be divided into suspend and resume
stages. We analyze the cost of both of these stages.

6.4.1 Suspend Stage of Nomad
The overhead of the suspend stage can be broken down
into two parts, time to wait for local and remote peers
suspend communication and the time to free local re-
sources. Suspending local communication occurs in par-
allel with suspending remote communication. Suspen-
sion of remote communication typically takes a relatively
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larger amount of time since there is extra overhead to
synchronize through the management network. To es-
timate the overhead of synchronization, we also mea-
sure the cost of suspending communication on the remote
peers, that is, from the time it receives the request to sus-
pend communication, to the time that the communication
is suspended.
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Figure 14: Suspend time running NAS benchmarks

We profile each of these stages. The results are shown
in Figure 14. We observe that the remote side takes a
few hundred milliseconds to suspend communication on
the QP to the migrating VM. Considering the synchro-
nization overhead, the migrating VM takes typically a
few microseconds to wait for communication suspen-
sion. The major cost observed is the time to free lo-
cal resources, which takes 10 to 36 ms based on the re-
sources allocated. Because we fix the number of peers
in the job, we see a strong correlation between the time
to free the resources and the amount of memory regis-
tered. For instance, for NAS-BT, the VM has registered
7540 pages of memory by the time it is migrated, and
it takes 36 ms to free the local resources. For NAS-EP,
where only 2138 pages are registered by the time the VM
is migrated, and it takes only around 11 ms to free all
the resources. This suggests that a scheme which delays
the freeing of resources will potentially reduce the mi-
gration cost further: the VM can be suspended without

freeing HCA resources; and the privileged domain can
track the resources used by the VM and free them after
VM migration.

6.4.2 Resume Stage of Nomad
The cost at the resume stages mainly includes the time
to re-allocate the HCA resources and the time to resume
the communication. Similar to our analysis of the sus-
pend stage, we also profile the time taken on the remote
peers to resume the communication. The time is mea-
sured from the resume request arrival to send of the ac-
knowledgment; this time includes updating the resource
handle lookup list, re-establishing the connections, and
reposting the unposted descriptors during the migration
period. Time to resume local communication on the mi-
grating VM has very low overhead because there are no
unposted descriptors.
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Figure 15: Resume time running NAS benchmarks

As shown in Figure 15, re-allocating the HCA re-
sources is still a major cost of the resume period. We
see the same correlation between the amount of regis-
tered memory and the time to re-allocate resources. The
time varies from around 49ms for NAS-BT to 13ms for
NAS-EP in our studies. This suggests a pre-allocation of
the resources can help reducing the migration cost too.
Pre-allocation of resources will also allow better migra-
tion safety, we will discuss more in Section 7.

Our evaluation shows slightly more time to resume
than to suspend the communication on remote peers.
This difference is largely due to the process to update
the lookup list and to re-establish the connections. We
also observe that the migrating VM resume time is much
greater that of the non-migrating peers. For instance,
NAS-BT takes around 3.2 ms on the non-migrating peers
to resume communication, but the time measured on the
migrating VM is around 48 ms. There are three possible
reasons that may cause this longer delay: first, more traf-
fic is on the control networks, mainly due to the update
list of the resource handles; second, we have to inform
the central server the new location of the migrating VM;
third, the non-migrating peers take longer time to pro-
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cess the resume request, which increase the chance to
have longer skews.

6.5 Migrating Multiple VMs
We also measure the overhead of migrating multiple
VMs simultaneously while running the applications. We
run the NAS benchmarks on 4 processes located on 4 dif-
ferent VMs. During the execution we migrate all 4 VMs
simultaneously. Thus the protocols as described in Sec-
tion 5.3 will be used.
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Figure 16: Impact of migration on NAS benchmarks (mi-
grating all four VMs)

Figure 16 shows the comparison of the total execution
time. We observe from the graph that the average per
checkpoint cost is not increased much as compared to
the case of migrating one VM. Despite this, we observe
larger variation of the results we collected. We believe
the skew between processes is the major cause for the
variation. The skew can be mainly due to two reasons:
• Though we start migration of all 4 VMs at the same

time, Xen may take a varied amount of time to pre-
copy the memory pages, thus the time each process
enters the Nomad suspend stage is different.

• Each VM may not take the same amount of time to
suspend the local communication and to free the lo-
cal resources. Similarly, the time to re-allocate the
resources on the new host and resume communica-
tion can also be different.

Figure 17 shows a breakdown of suspend time spent
on each of the migrating VM. As we can see, VM1 takes
a significantly shorter time to wait for remote communi-
cation suspension than other three VMs. It clearly indi-
cates that VM1 enters the suspend stage later than other
three: all other three VMs have already suspended their
traffic and are waiting to synchronize with VM1.

7 Discussions
In this section we discuss several issues related to No-
mad. Some of these are limitations of the current proto-
type implementation, such as the migration safety issues.
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We also propose several possible improvements for No-
mad.

7.1 Safe Migration
A desirable feature of migration is safety. The Xen mi-
gration follows a pattern that should at no time leave a
virtual OS more exposed to system failure than when it
is running on the original single host [5]. For instance, if
the remote host does not have enough resources to host
the migrating VM, the migration process will be aborted
at early stage, leaving the virtual OS running on the old
host without being affected. Unfortunately, Nomad will
allocate HCA resources on the new host after the VM is
suspended on the old host. It risks the failure of a virtual
OS if the HCA resources are not available on the new
host.

A possible solution is to contact the privileged domain
of the new host trying to pre-allocate the resources before
suspending the virtual OS. A more elegant approach is to
introduce a “pre-suspend” stage to the current Xen mi-
gration interface of the “suspend” and “resume” stages.
During this stage all HCA resources can be pre-allocated.
We plan to explore both directions.

7.2 Scalability of the migration protocols
Nomad requires coordination among peers to update all
opaque handles and avoid delivery failure during the mi-
gration process. When migrating a VM involved in large-
scale parallel jobs the coordination may cause high syn-
chronization delays.

Besides the concept of “non-active” connections we
used in the prototype implementation, several methods
can be used to improve the scalability of the protocol.
For instance, instead of sending the suspend/resume re-
quest to all peers one by one, we can distribute the re-
quest and gather the acknowledgments through a tree-
based structure. Using this mechanism can significantly
speedup the synchronization process. In addition, we
can take advantage of hardware multicast, which is pro-
vided by many high speed interconnects like InfiniBand
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and Quadrics, to expedite the distribution process. Us-
ing these methods the protocol overhead caused by the
network transfer time can be significantly reduced.

7.3 Single-point of Failure
Using a central server in our management network cre-
ates a single point of failure. If the machine acting as
this central server fails, none of the other VMs can be
migrated successfully.

There have been many studies to use backup servers
to improve the system robustness. A simple solution is
to duplicate a central server as the backup server, which
will become active if the main server fails. Alternatively
for a large cluster, several servers can be active simul-
taneously, which will improve the performance if many
queries are taking place. For both solutions we need to
make sure the query answers provided by all servers are
coherent.

8 Related Work
In this paper we discussed the migration of OS-bypass
interconnects in virtual machine environment. OS-
bypass is a feature found in user-level communication
protocols such as active messages [33], U-Net [32],
FM [20], VMMC [3], and Arsenic [24]. Later it has been
adopted by the industry [7, 10] and has been incorporated
into various commercial products [16, 25].

Our implementation is based on our earlier work of
VMM-bypass I/O [13]. VMM-bypass I/O extends the
idea of OS-bypass to VM environments. Using this
method, I/O and communication operations can be ini-
tiated directly by userspace applications, bypassing the
guest OS, the VMM, and the device driver VM. VMM-
bypass also allows an OS in a guest VM to carry out
many I/O operations directly, although virtualizing in-
terrupts still needs the involvement of the VMM. It also
avoids the additional cost of involving the VMM or a
privileged VM to handle I/O operations, such as the ap-
proaches used in VMware Workstation [30], VMware
ESX Server [35], and Xen [8]. Instead, VMM-bypass
makes use of intelligence in modern high speed net-
work interfaces, limiting it to a relatively small range
of devices which are used mostly in high-end systems.
The traditional approaches can be applied to much wider
ranges of devices.

Current virtual machine technologies have provided
several solutions for migration of traditional network de-
vices like Ethernet. The solution used in Xen [5] is
based on the observation that the network interfaces of
the source and destination machines typically exist on
a single switched LAN. The migrating virtual OS will
carry its IP address. A unsolicited ARP reply will be gen-
erated to advertise the IP has been moved. However, the
location dependent resources and the need for hardware

level reliable service have make additional challenges for
the migration of OS-bypass networks.

Some previous work on process-level migration also
have addressed the issue of network migration. For ex-
ample, Zap [19] adopts Virtual Network Address Trans-
lation (VNAT) [29] which intercepts all network pack-
ets and dynamically translates between the address seen
by the pod and the physical address. Another method
is to use a “home node” approach, as is used in Mobile
IP [1]. In this method a home node will re-route packets
sent to the default or old address to the current address.
These schemes, however, due to OS-bypass communi-
cation and performance reasons, can not be utilized in
cluster environments where communication performance
is extremely important.

Both the VMM-bypass I/O and the Nomad migra-
tion require a para-virtualization approach. As a tech-
nique to improve VM performance by introducing small
changes in guest OSes, para-virtualization has been used
in many VM environments [4, 9, 37, 6]. Essentially,
para-virtualization presents a different abstraction to the
guest OSes than native hardware, which lends itself to
easier and faster virtualization.

9 Conclusions and Future Work

In this paper we present Nomad, a design for migrating
modern interconnects with OS-bypass features, focusing
on cluster environments running VMs. We discussed in
detail the challenges of migrating modern interconnects
due to hardware level reliable services and direct I/O ac-
cesses. We proposed a possible solution based on names-
pace virtualization and handshake protocols. To demon-
strate our ideas, we present a prototype implementation
of Nomad based on the Xen virtual machine monitor and
VMM-bypass I/O with InfiniBand. We elaborated on the
detailed design issues and possible improvements with
respect to scalability on large scale clusters. Our perfor-
mance analysis shows that Nomad can achieve efficient
migration of network resources.

We are working on improving the safety of Nomad mi-
gration by pre-allocating resources before the VM sus-
pends. We plan to further reduce the migration overhead
of Nomad and improve the scalability on large scale clus-
ters. We have proposed several possible approaches in
Section 6 and Section 7 and plan to study the pros and
cons of those schemes. We plan to use high speed in-
terconnects to accelerate the Nomad control and the Xen
migration traffic because currently they go through Eth-
ernet. We also plan to explore solutions to achieve in-
teroperability of Nomad and unmodified hosts running
native operating systems, where the handshake will be
impossible.
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