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Abstract
Protein-Protein Interaction (PPI) networks are be-

lieved to be important sources of information related to
biological processes and complex metabolic functions
of the cell. The presence of biologically relevant func-
tional modules in PPI networks has been theorized by
many researchers. However, PPI networks are known
to contain noisy false positive interactions and possess
the scale-free property, which makes the task of isolat-
ing these useful modules difficult. In this paper, we
propose an ensemble clustering approach to address
this problem. To perform initial clustering, we ex-
amine three topology-based distance metrics that are
conducive for partitioning these networks. To perform
consensus clustering, we develop a PCA-based hyper-
graph approach, designed to handle large interaction
networks. We also develop a soft consensus clustering
method to assign multifaceted hub proteins to multiple
functional groups. We conduct an empirical evalua-
tion of different consensus techniques using topology-
based, information theoretic and domain-specific vali-
dation metrics and show that our approaches can pro-
vide significant benefits over other state-of-the-art ap-
proaches. Our analysis of the consensus clusters ob-
tained demonstrates that ensemble clustering can a)
produce improved biologically significant functional
groupings; and b) facilitate soft clustering by dis-
covering multiple functional associations for hub pro-
teins.

1 Introduction

Proteins are central components of cell machinery
and life. In fact, as noted by Kahn[13], it is the pro-

∗This work is supported in part by the DOE Early Career Prin-
cipal Investigator Award No. DE-FG02-04ER25611 and NSF CA-
REER Grant IIS-0347662.

teins dynamically generated by a cell that execute the
genetic program. However it is insufficient to reason
about their functionality in a stand-alone manner since
proteins work with other proteins to regulate and sup-
port each other for specific functions [25]. Protein-
Protein interaction (PPI) networks represent experi-
mentally or in-silico determined interactions between
proteins. The presence of biologically relevant func-
tional modules in PPI networks has been theorized by
many researchers [7, 12, 28]. The task of extracting
these functional modules for the purposes of under-
standing the behavior of organisms, protein function
prediction and drug design is an active research area
in functional genomics. However, the application of
traditional clustering algorithms for the extraction of
these modules has yielded limited success [29, 23].

The challenges involved are manifold. First, the
PPI networks exhibit classic scale-free properties [19],
with a few nodes (hubs) having very large degrees,
while most nodes have very few interactions. This is
detrimental when adopting traditional partitioning or
clustering algorithms to the task. The resulting cluster-
ing arrangement typically contains one or a few giant
core clusters and several tiny clusters that are often not
very useful. Second, the interactions data is known to
be quite noisy - many detected interactions are conjec-
tured to be false positives. Also, some proteins are be-
lieved to be multi-functional – effective strategies for
soft clustering of these essential proteins are necessary.
Finally, different experimental and in-silico method-
ologies have been used to detect these interactions with
little overlap in terms of detected interactions. Fusion
of information from multiple sources is a key problem.

Researchers to date have applied several techniques
targeted at specific problems listed above [3, 6, 7, 12,
22, 23, 24, 28, 29]. In this work we present a uni-
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fied solution, adapting the notion of ensemble cluster-
ing, to potentially attack these problems. Ensemble
clustering has been proposed as a useful approach to
strengthen the performance of simple clustering algo-
rithms [9, 10, 20, 21, 18]. The goal is to combine mul-
tiple, diverse and independent clustering arrangements
to obtain a single, comprehensive clustering. Empir-
ical evidence has suggested that intelligent combina-
tion of these clusters can lead to novel and meaningful
cluster structures, even in the presence of noise [21].
Also, one can weight individual clustering arrange-
ments according to their strengths and weaknesses, po-
tentially addressing the fusion problem1.

The critical challenges we address in this work in-
clude adapting ensemble clustering to work in a scale-
free environment (none of the existing methods do), al-
lowing these algorithms to scale to large PPI networks
and finally, adapting them in a domain specific manner
to enable the soft clustering of essential proteins.

Existing clustering algorithms cannot be applied di-
rectly to PPI networks, due to the large variance in de-
gree between nodes (scale-free property) and the lack
of a suitable metric to capture node similarity. In PPI
networks, the only information available directly is
the set of proteins and the interactions between them.
Also, as we mentioned, several interactions are be-
lieved to be false positives. To address these problems,
we develop and apply three different topological dis-
tance metrics based on neighborhood, clustering co-
efficient and shortest path betweennness of nodes in
the network. These metrics, by design, provide low
similarity scores for proteins having potentially-false
interactions. We use three traditional graph partition-
ing algorithms with these metrics to obtain nine base
clusterings that are diverse and yet informative about
the topological properties of nodes in the network.

Existing approaches to ensemble clustering [9, 10,
20, 21, 18] have experimented with several graph-
based, combinatorial and statistical consensus meth-
ods. However, most of these methods have been ap-
plied to small datasets. To represent clustering ar-
rangements, some authors [9, 20] have used a co-
association matrix representation. This representation
scales quadratically with the size of the dataset and is

1This aspect is not considered in this paper but we believe the
approach is naturally amenable to fusing information from multi-
ple experimental and in-silico interaction networks

hence, infeasible for large datasets. Strehl et al [18]
propose a hypergraph representation which is ineffi-
cient when the number of clusters is large. To address
the scalability problem, we rely on Principal Compo-
nent Analysis (PCA) to reduce the dimensionality of
the problem and yield an efficient representation for
the clusterings, that can then be effectively clustered
using traditional algorithms.

Another challenge, as we mentioned earlier, is the
need to assign proteins to different groups (soft clus-
tering) based on their functions. Hub proteins typically
have multiple functions and are likely to be essential
for the organism. In this regard, we implement a soft
consensus clustering algorithm designed to discover
multiple functional associations for hub proteins.

We conduct a detailed empirical evaluation and
comparison of our approaches with other state-of-the-
art algorithms on the PPI network of budding yeast
(Saccharomyces Cerivisiae). We use topological, in-
formation theoretic and domain-specific cluster valida-
tion metrics to evaluate the consensus clusterings ob-
tained. Our experimental results show that our algo-
rithms can provide significant improvement in cluster
quality, when compared to previously reported consen-
sus methods. We also show that ensemble clustering
can facilitate the discovery of multiple functional as-
sociations for hub proteins.

To summarize, the main points of this paper include

• The application of an Ensemble Clustering ap-
proach to Protein-Protein Interaction networks

• The use of three diverse topological distance met-
rics to obtain informative base clusterings for
scale free PPI networks.

• A scalable PCA-based consensus method to ob-
tain meaningful clusters efficiently.

• A soft ensemble clustering approach targeting es-
sential (hub) nodes facilitating improved cluster
quality for multi-functional proteins.

2 Related Work

Many clustering algorithms of various types have
been applied to analyze scale-free networks. However,
there is no single algorithm that can guarantee effec-
tive partitioning of natural groups from the core of a
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scale-free network. Karypis et al [1]; present multi-
level graph partitioning algorithms to cluster scale-free
networks. Wu et al [27] propose a geodesic path-
based clustering approach to partition scale-free net-
works into natural divisions. They use these clusters
to create meaningful approximations of the graph.

The ensemble clustering problem has been stud-
ied previously in the machine learning community by
many researchers, although it has been applied mainly
to small classification datasets thus far. Fred et al [9]
map clusterings produced by multiple runs of the k-
means algorithm with different initializations into a
co-association matrix. They then apply a hierarchical
single-link algorithm to partition this matrix into the
final consensus clusters. Topchy et al [20] reduce this
problem into a maximum likelihood problem and pro-
pose using the EM algorithm to solve the correspond-
ing problem. In a later work, Topchy et al [21] also
present two approaches to prove the effectiveness of a
cluster ensemble - using plurality voting and using a
metric on the space of partitions.

Gionis et al [10] provide a formal definition to the
problem of cluster aggregation and discuss a few con-
sensus algorithms with theoretical guarantees. The al-
gorithms they propose use the distance matrix repre-
sentation and are suitable mainly for small datasets.
The Agglomerative algorithm proposed by Gionis et
al merges clusters that have distances less than 1/2,
which is a hard-coded threshold. If a point has distance
greater than half with all other clusters, it is placed in
a cluster by itself. The Balls algorithm tries to find
ball-shaped clusters, grouping together proteins that
are close to each other and far from other nodes. Both
these algorithms have been evaluated only on small
categorical datasets. They have not been evaluated on
scale-free graph datasets. We use these two algorithms
for comparison with our techniques.

Strehl and Ghosh [18] define the cluster ensem-
ble problem as an optimization problem and aim to
maximize the normalized mutual information of the
consensus clustering from the initial clusters obtained
from ten base clustering algorithms. They use a hy-
pergraph representation with an n × m matrix, where
n is the number of points and m is the total num-
ber of clusters in all the clusterings. They introduce
three different algorithms to obtain consensus clus-
terings, namely Cluster-based Similarity Partitioning

(CSPA), HyperGraph Partitioning (HGPA), and Meta-
Clustering (MCLA) algorithms. In CSPA, they con-
struct a similarity matrix from the clusters obtained
from the base clustering algorithms. This similarity
matrix is treated as a weighted graph and partitioned
using the METIS algorithm to obtain the consensus
clustering. In HGPA, the goal is to find a hyperedge
separator that partitions the hypergraph into k uncon-
nected components by cutting a minimal number of
hyperedges. The HMETIS algorithm is used for this
purpose. In MCLA, the main idea is to group related
hyperedges (base clusters) to obtain meta-clusters. A
representative cluster is obtained for each meta-cluster.
Finally, each data point is compared with the repre-
sentative clusters and assigned to the meta-cluster it
is most associated with. We use these three ensemble
consensus techniques in our evaluation.

3 Algorithms
The general framework of our approach

is provided in Algorithm 1. The call
EnsembleClustering(G,CA, k) returns k con-
sensus clusters CCA

1 ∪ . . . ∪ CCA
k for a given PPI

network G=(V,E), using consensus algorithm CA.
Initially, the base clustering algorithms are applied

Algorithm 1 EnsembleClustering(G,CA,k)
Input: PPI network G = (V, E) and k, the number of
clusters required
Output: CCA = CCA

1
∪ . . . ∪ CCA

k
for i = 1 to |SimMetrics| do

for j = 1 to |BaseAlgorithms| do
// Use each similarity metric with each base algo-
rithm to obtain a clustering of k clusters
Ci∗j = Ci∗j

1
∪ . . . ∪ Ci∗j

k
end for

end for
// Convert the clusterings into representative matrix M
M = represent(C1∗1, C1∗2,...,C|SimMetrics|∗|BaseAlgorithms|)
// Cluster M using CA
CCA = C1 ∪ . . . ∪ Ck

return(CCA)

using the similarity metrics to obtain individual
clusterings of k clusters each. This set of clusterings
is represented appropriately and then the consensus
clustering algorithm is applied to obtain the final set
of consensus clusters. In the next few subsections,
we describe our similarity metrics, base clustering
algorithms and consensus methods in detail.
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3.1 Similarity metrics

We employ three different metrics designed to cap-
ture diverse topological properties of scale-free net-
works. We believe that together, they can pro-
vide enough information to partition scale-free graphs
meaningfully, while reducing the effect of noise.

3.1.1 Clustering coefficient-based

The first similarity metric is based on the Clustering
coefficient, a popular metric from graph theory. The
clustering coefficient [26] is a measure that represents
the interconnectivity of a vertex’s neighbors. The clus-
tering coefficient of a vertex v with degree kv can be
defined as follows:

CC(v) =
2nv

kv(kv − 1)

where nv denotes the number of triangles that go
through node v.

Essentially, if the edge between two nodes con-
tributes significantly to the clustering coefficients of
the nodes, then they are considered similar and should
be clustered together. To calculate the similarity of
nodes vi and vj , we first calculate their clustering co-
efficients as CCvi

and CCvj
. We then remove the in-

teraction(edge) between these nodes and re-calculate
the clustering coefficient of each node as CC

′

vi
and

CC
′

vj
. The difference between these two values rep-

resent the importance of the edge for each node. Ac-
cordingly, the Clustering coefficient-based similarity
of two nodes is then calculated as follows:

Scc(vi, vj) = CCvi
+ CCvj

− CC
′

vi
− CC

′

vj

Note that if two nodes are not linked in the original
network, their Clustering coefficient-based similarity
score is zero. The similarity scores are normalized into
the range [0-1] using min-max normalization.

3.1.2 Betweenness-based

The second metric is based on the Shortest-path Edge
betweenness measure, which was first introduced by
Newman et al [15]. It is a popular measure for clus-
tering networks in sociology and ecology to obtain
communities. This measure favors edges between
communities and disfavors ones within communities.
The Shortest-path betweenness measure computes, for
each edge in the graph, the fraction of shortest paths

that pass through it. To take advantage of the global
information that is captured by the edge-betweenness
measure [16], we use it as a similarity metric, as fol-
lows.

Seb(vi, vj) = 1 −
SPij

SPmax

where SPij is the number of shortest paths passing
through edge ij and SPmax is the maximum number
of shortest paths passing through an edge in the graph.
Similar to the previous metric, this metric is defined
only for connected pairs and rescaled into the range
[0-1] using min-max normalization.

3.1.3 Neighborhood-based

The third metric we use is a Neighborhood-based sim-
ilarity metric. We use the well-known Czekanowski-
Dice distance metric [7] for this purpose. This metric
uses the adjacency list of each node and favors nodes
that have several common neighbors. Two nodes hav-
ing no common neighbor will have zero similarity,
while those interacting with exactly the same set of
nodes will have the maximum value, 1. The similarity
metric is defined as:

Sn(vi, vj) = 1−
|Int(i)∆Int(j)|

|Int(i) ∪ Int(j)| + |Int(i) ∩ Int(j)|

Here, Int(i) and Int(j) denote the adjacency list of
proteins i and j, respectively, and ∆ represents the
symmetric difference between the sets. Note that us-
ing this metric, nodes that do not interact with each
other may have non-zero similarity if they have com-
mon neighbors.

3.2 Base algorithms

We use three conventional graph clustering algo-
rithms to obtain the base clusters.

3.2.1 Repeated bisections (rbr):
In this method, the desired k-way clustering solution is
computed by performing a sequence of k - 1 repeated
bisections. The input matrix is first clustered into two
groups, after which one of the groups is selected and
bisected further. This process continues until the de-
sired number of clusters is found. During each step, a
cluster is bisected so that the resulting 2-way cluster-
ing solution optimizes the I2 clustering criterion func-
tion. Finally, the overall solution is globally optimized.
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3.2.2 Direct k-way partitioning (direct):
In this method, the desired k-way clustering solution
is computed by simultaneously finding all k clusters.
Initially, a set of k objects is selected from the data
sets to act as the seeds of the k clusters. Then, for each
object, its similarity to these k seeds is computed, and
it is assigned to the cluster corresponding to its most
similar seed. This initial clustering is then repeatedly
refined to optimize the I2 clustering criterion function.

3.2.3 Multilevel k-way Partitioning (kMetis):
kMetis is a popular multilevel partitioning algorithm,
developed by Karypis et al [14]. It works in three
phases: coarsening, initial partitioning and refinement.
In the coarsening phase, the original graph is trans-
formed into a sequence of smaller graphs. An initial k-
way partitioning of the coarsest graph that satisfies the
balancing constraints while minimizing the cut value
is obtained in the next phase. During the uncoarsen-
ing and refinement phase, the partitioning is projected
back to the original graph by going through intermedi-
ate partitions. After projecting a partition, a partition
refinement algorithm is employed to reduce the edge-
cut while conserving the balance constraints.

3.3 Consensus Algorithms

Using the base algorithms with the three similarity
metrics we discussed in the first subsection, we obtain
nine sets of k clusters. Our goal is to combine these
individual clusterings to obtain a meaningful consen-
sus clustering. Given n individual clusterings (c1..cn),
each having k clusters, a consensus function F is a
mapping from the set of clusterings to a single, aggre-
gated clustering:

F : {ci|iε1, .., n} → cconsensus

Ideally, the consensus clustering needs to be represen-
tative of the individual component clusterings.
3.3.1 Coassociation-based Consensus

We construct an n × n Coassociation matrix to repre-
sent the fraction of co-occurence of each pair of nodes
in the 9 sets of base clusters. The coassociation value
in the matrix for 2 points vi and vj is given by

C(vi, vj) =
‖Clusters containing both vi and vj‖

‖Total number of clusters‖

The matrix can thus be treated as a similarity matrix,

with the points that occur together in all the cluster-
ings having the maximum score value of 1. We obtain
the Coassociation matrix for all nine clusterings and
apply the Agglomerative algorithm with the UPGMA
(average link) metric to obtain a consensus clustering.
Apart from this Coassociation-based Agglomerative
Consensus (CBAC) Algorithm, we also implement a
variant with the single link metric (CB-slink), similar
to the one used by Fred it et al [9].

3.3.2 Hypergraph-based Consensus

Strehl et al [18] used a hypergraph representation with
an n × m binary matrix, where m is the total number
of clusters obtained using all base algorithms. Each
row represents a point while each column corresponds
to a cluster. The value I(x,y) in the matrix represents
the indicator function of point x wrt cluster y.

I(x, y) =

{

1, if x ∈ y

0, otherwise

As we described earlier, they proposed 3 algorithms -
CSPA, HGPA and MCLA based on this representation.
3.3.3 PCA-based Consensus

The main disadvantage with the Coassociation matrix
representation is that it is quadratic and therefore com-
putationally expensive for large datasets. Although a
hypergraph is a better representation, clustering algo-
rithms cannot be directly applied to it when the num-
ber of clusters is large. For instance, in our case, we
have nine algorithm-metric combinations each produc-
ing k clusters. If the value of k is large, clustering the
9×k-dimensional points would prove inefficient since
distance metric computations do not scale well to high
dimensions [2].
To obtain a more scalable and efficient representation
for clustering, we use the technique of Principal Com-
ponent Analysis (PCA). The idea is to reduce the num-
ber of dimensions of the hypergraph matrix without
compromising the information required for clustering.
As we described above, each feature vector (row) in
the hypergraph matrix corresponds to the cluster mem-
bership pattern of a node. Since we are using hard
clustering algorithms, a node can occur only in 9 clus-
ters. For large values of k, the binary feature vectors
will be very sparse. Also, since the occurence of a
node in a cluster is not independent of other clusters in
a clustering, there is bound to be a lot of redundancy
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in the feature vectors. Several researchers [11, 8, 17]
have suggested the application of dimensionality re-
duction techniques (such as PCA) as a pre-processing
step to clustering sparse high-dimensional data. PCA
uses the eigen decomposition of the correlation ma-
trix to find orthogonal directions with total maximum
variance of projections. In our case, it can use the cor-
relations between the cluster membership patterns of
nodes to eliminate redundancies reducing the matrix
to a more compact representation, retaining only dis-
criminatory information. Traditional clustering algo-
rithms can then be applied on this reduced representa-
tion without performance concerns, to obtain consen-
sus clustering arrangements.
Accordingly, we convert the 9 × k clusters into a hy-
pergraph matrix and apply PCA to reduce the number
of dimensions. We then apply two different consen-
sus clustering algorithms on the PCA representation -
the Recursive Bisection (PCA-rbr) algorithm and the
Agglomerative Hierarchical (PCA-agglo) algorithm.
3.3.4 Soft Consensus Clustering

As we mentioned earlier, hub proteins are known to
participate in several functions in the cell. By assign-
ing the hub proteins to a single cluster each, we are
inhibiting the number of functions that can be discov-
ered. To overcome this problem, we construct a variant
of the PCA-agglo consensus algorithm to perform soft
clustering for hub proteins. To identify hub proteins,
we use the degree information of the nodes, similar to
our earlier work [22]. By the theory of preferential
attachment [24], there exists a strong positive correla-
tion between the degree of a node and the probability
of other nodes forming edges to it. Since hubs have
very high degrees, new proteins added to the PPI net-
work are more likely to interact with hubs than with
other nodes. We analyze the degree distribution of the
PPI network and use a degree threshold [22] to identify
60 hub proteins. We then perform clustering using the
agglomerative algorithm with the additional constraint
that these hub nodes can be placed in multiple clusters.

4 Experiments

4.1 Dataset

The Protein-Protein Interactions (PPI) network of
budding yeast (Saccharomyces Cerevisiae) has been
studied earlier in several works [3, 23, 22, 28, 29].

This dataset is available from the Database of Inter-
acting Proteins (DIP). It consists of 15147 interactions
between 4741 proteins. From the degree distribution
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Figure 1. Degree distribution of the PPI network. k is the de-

gree and p(k) is the number of nodes with degree k.

shown in Figure 1, it can be observed that the PPI
dataset is scale-free with a skewed distribution. The
value of the scale parameter α is -1.7911.

4.2 Validation Metrics:

Before presenting our experimental results, we
would like to describe our validation metrics. We use
both domain-specific and general metrics to evaluate
the quality of the consensus clusters.

4.2.1 Topological Measure: Modularity
The first metric we use is a topology-based Modular-
ity metric, originally proposed by Newman [15]. This
metric uses a k X k symmetric matrix of clusters where
each element dij represents the fraction of edges that
link nodes between clusters i and j and each dii repre-
sents the fraction of edges linking nodes within cluster
i. The modularity measure is given by

M =
∑

i

(dii − (
∑

j

dij)
2)

4.2.2 Information Theoretic Measure: Normal-
ized Mutual Information (NMI)

Another metric to evaluate the quality of clusters ob-
tained is the amount of mutual information shared
between clusterings. This metric was originally de-
scribed by Strehl et al [18]. They define the optimal
combined clustering as the one that shares the most
information, in terms of mutual information, with the
original clusterings. Assume r groupings denoted as
Λ = {λq|qε{1, .., r}}. Suppose there are two cluster-
ings λa and λb of sizes ka and kb respectively. Let
nh be the number of objects in cluster Ch according
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to λa, nl the number of objects in cluster Cl accord-
ing to λb and nh

l is the number of objects in cluster
Ch according to λa and in Cluster Cl according to λb.
The [0-1] normalized mutual information φNMI can
be calculated as follows:

φNMI(λa, λb) =
2

n
∗

l=1
∑

ka

h=1
∑

kb

nh
l ∗ logka

∗kb

nh
l ∗ n

nh ∗ nl

The average normalized mutual information
(ANMI) [18] between a set of r labelings, Λ and
a labeling named λi is defined as follows:

φNMI(Λ, λi) =
1

r
∗

q=1
∑

r

φNMI(λi, λq)

Here Λ is the set of base clusterings and λi is the con-
sensus clustering.

4.2.3 Domain-based Measure: Clustering Score
For the PPI network, we need to test if the clusters ob-
tained correspond to known functional modules. This
can be done by validating the clusters using known
biological associations from the Gene Ontology Con-
sortium Online Database [4] 2. The Gene Ontology
(GO) database provides three vocabularies of known
associations - cellular component (CC) which refers
to the localization of proteins inside the cell, molecu-
lar function (MF) which refers to shared activities at
the molecular level and biological process (BP) which
refers to entities at both the cellular and organism lev-
els of granularity. Earlier works have used these three
ontologies to validate the biological significance of
clusters [23, 3, 22]. We use all three annotations for
validation and comparison. 3

Merely counting the proteins that share an annota-
tion will be misleading since the underlying distribu-
tion of genes among different annotations is not uni-
form. Hence, p-values are used to calculate the statis-
tical significance of a group of proteins that share a GO
term. The p-values essentially represent the chance
of seeing that particular grouping, or better, given the
background distribution. Assume a cluster of size n,
with m proteins sharing a particular annotation. Also
assume that there are N proteins in the database with
M of them known to have that same annotation. Then

2http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
3As of May 2005, the GO database contains 7000 genes an-

notated with 1644 cellular component , 7502 molecular functions
and 9706 biological processes.

using the Hypergeometric Distribution, the probabil-
ity of observing m or more proteins that are annotated
with the same GO term out of n proteins is:

p − value =
n

∑

i=m

(M
i

)(N−M
n−i

)

(N
n

)

Smaller p-values imply that the grouping is not ran-
dom and is more significant biologically than one with
a higher p-value. A cutoff parameter is used to differ-
entiate significant groups from the insignificant ones.
If a cluster is associated with a p-value greater than
cutoff , it is considered insignificant. 4

As the p-value of a single cluster is statistically not
representative, we define a Clustering score function
to quantify the overall clusters, as follows.

Clustering score =

∑nS

i=1 min(pi) + (nI ∗ cutoff)

nS + nI

where nS and nI denotes the number of significant
and insignificant clusters, respectively and min(pi)
denotes the smallest p-value of the significant cluster
i. Hence, each cluster is associated with one p-value
for each of the three ontologies.
4.3 Experimental Results

We use the three graph clustering algorithms with
the three topology-based metrics to obtain nine inde-
pendent base clusterings each. Estimating the opti-
mal number of clusters, k, is a serious issue in clus-
tering. Earlier approaches [17] have suggested us-
ing the ratio between the inter-cluster and intra-cluster
similarities to estimate the value. We used all three
similarity metrics with the kMetis algorithm to esti-
mate cluster quality for different values of k. Finally,
one of the optimal values was chosen as the value of
k. Accordingly, the value of k for the PPI dataset
was chosen to be 100. The 9 × 100 clusterings ob-
tained are then represented in the form of a hyper-
graph matrix and PCA is applied to reduce the dimen-
sions. We select the number of dimensions that capture
95% of the total variance. We then perform consen-
sus using three algorithms - the agglomerative hierar-
chical algorithm (PCA-agglo), the repeated bisections
divisive algorithm (PCA-rbr) and the soft consensus
(PCA-softagglo) algorithm. Apart from these three,

4We used the recommended cut-off of 0.05 for all our valida-
tions.
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we also implement the Coassociation based Agglom-
erative consensus (CBAC) algorithm, as discussed ear-
lier. To compare with our techniques, we implement
a Coassociation based single link agglomerative (CB-
slink) algorithm, which was used by Fred et al [9, 20],
the three algorithms proposed by Strehl et al [18] -
CSPA, HGPA and MCLA and two algorithms - Balls
and Agglomerative proposed by Gionis et al [10]. The
latter two algorithms do not accept the required num-
ber of clusters as a parameter. When we used the de-
fault settings for both, with a distance matrix based
on the coassociation matrix, the agglomerative algo-
rithm produced 1315 clusters and the Balls algorithm
yielded 3494 clusters for the 4741 proteins. Most of
these clusters contained only singletons or pairs. Also,
the CSPA algorithm ran out of memory for this dataset.
It seems to be conducive only for small datasets.

4.3.1 Evaluation of Consensus Algorithms

Modularity and NMI: First, we compare the con-
sensus algorithms in terms of the Modularity and
Average Normalized Mutual Information scores.
Figure 2 shows the comparative results in terms of
both these metrics for 6 consensus methods. The
Agglomerative and Balls algorithms, as we mentioned
earlier, resulted in a large number of clusters, most of
which contained only singletons and pairs. 5 Hence,
the modularity and NMI scores were very low for
these clusters and are not presented here.

It can be observed that the CBAC, the PCA-agglo

0
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0.3

0.4

0.5

0.6

0.7

HGPA MCLA PCA-agglo CB-slink PCA-rbr CBAC

NMI Modularity

Figure 2. Modularity and NMI scores for consensus algorithms

and PCA-rbr algorithms perform the best with high
scores in terms of both metrics, when compared to the
other methods. The single link algorithm performs
the worst overall. Although the MCLA algorithm

5508 of the 1315 clusters produced by the Agglomerative algo-
rithm contained singletons, and 337 contained pairs. For the Balls
algorithm, 3204 of the 3494 clusters contained singletons.

performs better than HGPA and has a good NMI
score, its performance in terms of modularity is worse
than the PCA-based algorithms. Note that for the
PCA-based methods, the number of dimensions is
reduced from 900 to 50. This makes their performance
very impressive.

Domain-based Evaluation: We proceed to evaluate
the clusters obtained from the consensus algorithms
using the domain-based metric. Figures 3a and 3b
show the comparison in terms of the Clustering Score
for the Biological Process, Molecular Function and
Cellular Component ontologies. Note that in this
case, lesser values represent more meaningful clus-
ters. Also, a clustering score value of 0.05 repre-
sents the worst case, when all clusters obtained are
insignificant. The CBAC and PCA-based consensus
methods once again do better than all the other algo-
rithms. The PCA-rbr algorithm provides the best clus-
tering scores overall. The Balls and CB-slink algo-
rithms have scores very close to 0.05. Although the
CBAC algorithm performed well in both cases, clus-
tering using a coassociation matrix is computationally
quadratic. This makes it an inefficient and non-viable
approach for large datasets. The PCA-based approach
is more scalable and provides similar and even better
quality clusters, in some cases. Its performance is ad-
mirable considering that we are reducing the number
of dimensions by a factor of 18, from 900 to 50.

In the next experiment, we compare the number of
significant clusters obtained, shown in Figure 4. Sim-
ilar to the clustering score results, we find CBAC and
PCA-agglo 6 having the largest percentages of signifi-
cant clusters. As we mentioned earlier, the Agglomer-
ative and Balls algorithms generate a large number of
insignificant clusters.

Next, we further analyze the clusters obtained with
the PCA-based consensus clustering. We consider the
clusters obtained by the PCA-rbr algorithm. To em-
phasize the high quality of these clusters, we compare
them against the MCLA algorithm. Figure 5 shows
the comparison between the two algorithms, in terms
of p-value distribution of the clusters obtained, for the
biological process ontology 7. The p-value distribu-

6The PCA-rbr algorithm yielded similar number of significant
clusters as the PCA-agglo method

7The plots for the other two ontologies follow similar trends
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tion of the metis base algorithm is also provided for
reference. The y-axis, in this case, corresponds to
-log(pvalue), which means that higher values corre-
spond to better biological significance. We find that
both the consensus algorithms outperform the base
clustering algorithm, as expected. The clusters ob-
tained using the PCA-rbr algorithm consistently out-
perform the MCLA clusters in terms of biological sig-
nificance. The MCLA algorithm results in 78 sig-
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Figure 5. P-value distribution Comparison

nificant clusters for the molecular function ontology
whereas the PCA-rbr algorithm provides 83. The best
cluster we obtain with PCA-rbr for this ontology has a
p-value score of 5.8e-64. The best scoring cluster for
the MCLA algorithm has a much worse p-value score
of 1.4e-40. The best-scoring cluster for the PCA-rbr

and have been omitted due to lack of space.

algorithm is composed of 64 proteins, among which
31 are annotated with the same molecular function
term GO:0004299 - proteasome endopeptidase activ-
ity. In the whole genome, there are only 34 proteins
(out of 7000) that are associated with this term. This
result strongly emphasizes the quality of the clusters
we obtained with the PCA-rbr algorithm. Such high-
quality clusters are essential for predicting unknown
functions of proteins. For instance, in the same clus-
ter, there exist several proteins such as YPL066W,
YCR001W, YBR204C and YLR040C that have not
been previously annotated with a known molecular
function. These results can be very effective in ex-
plaining and guiding wet-lab experiments for further
analysis of the relation between these proteins and the
specified GO term.

In the case of MCLA, we obtain two clusters
that are significantly annotated with the same GO
term,proteasome endopeptidase activity. One of these
clusters has 12 proteins (out of 40) and the other has
20 (out of 50) that are associated with this term. The
p-value scores for these annotations are 9.8e-20 and
1.9e-36 respectively. On the other hand, as we pre-
viously stated, the PCA-rbr algorithm is able to assign
almost all these proteins (31 out of 34) to a single clus-
ter with a p-value score of e-64.

These results further demonstrate the effectiveness
of the PCA-based clustering approach in finding bio-
logically meaningful groups for the PPI dataset.

4.3.2 Soft Clustering

As we mentioned earlier, the hubs in PPI networks are
believed to correspond to multi-functional proteins,
which interact with different groups of proteins for dif-
ferent functions. To identify these different functions,
we used the soft-clustering variant of the PCA-agglo
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algorithm, which allows hub proteins to belong to mul-
tiple clusters. To emphasize the benefits of performing
soft clustering, we provide an illustrative example.

CKA1 is a multi-faceted hub protein, involved in
multiple cellular events such as maintenance of cell
morphology and polarity, and regulating the actin and
tubulin cytoskeletons. When we analyze the base clus-
terings using the clustering scores, we find that the
base clusterings associate this hub protein in differ-
ent groups. 6 out of the 9 base clusterings asso-
ciate CKA1 with biological process term transcrip-
tion, DNA-dependent with p-values ranging from e-05
to e-10. The metis base algorithm with the between-
ness and neighborhood metrics associates CKA1 with
biological process term cell organization and biogen-
esis with p-values of 1.81e-10 and 2.63e-12 respec-
tively. A hard consensus clustering algorithm can only
associate CKA1 with the most popular term. Accord-
ingly, the pca-agglo consensus algorithm associates
CKA1 in a large group associated with the biologi-
cal process transcription, DNA-dependent with a much
better p-value of 5.08e-13. This cluster, in which
CKA1 has been placed by the pca-agglo algorithm,
has few proteins associated with the cell organization
and biogenesis functionality. The soft clustering algo-
rithm, on the other hand, places CKA1 into 4 clusters
with significant biological process associations - tran-
scription, DNA-dependent with p-value 1.20e-13, cell
organization and biogenesis with p-value 6.36e-22,
cell ion homeostasis with p-value 3.26e-19 and reg-
ulation of transcription, DNA-dependent with p-value
2.41e-10. Thus, we find that soft consensus cluster-
ing can lead to the discovery of multiple functionalities
for hub proteins. The benefit of ensemble clustering is
once again evident, since the different base clustering
algorithms uncover different functionalities, which can
be summed up adequately by the soft consensus clus-
tering algorithm.

In our earlier work [22] we developed a soft clus-
tering method based on hub-duplication for the PPI
dataset. Now, we compare the performance of the
PCA-based soft consensus method with the hub-
duplication technique. The p-value distributions for
the biological process ontology 8 is shown in Figure

8The plots for the molecular function and cellular component
ontologies follow similar trends and have been omitted due to lack
of space.

6. It can be observed that the PCA-softagglo method
consistently yields clusters with higher biological sig-
nificance than the hub-duplication technique.
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Figure 6. P-value distribution Comparison for Soft Clustering

We also conduct experiments comparing the perfor-
mance of the base similarity metrics and clustering al-
gorithms. For the metrics, the Betweenness metric per-
forms the best and the Neighborhood metric, the worst.
The Direct and rbr algorithms have similar modularity
scores and outperform the Metis algorithm. For more
details, please refer to our technical report [5].

4.3.3 Comparison of Similarity Metrics

In the next experiment, we compare the performance
of the three similarity metrics that we employ to per-
form base clustering. We use the Modularity metric
to make the comparison. For each metric, we take
the average of the modularity score over all three base
clustering algorithms for that metric. The results are
presented in Figure 7. We find that the Betweenness
metric provides the highest average modularity score
and the Neighborhood metric performs the worst. As
we mentioned earlier, the Betweenness and Cluster-
ing Coefficient metrics are defined only for nodes that
have interactions between them while the Neighbor-
hood metric can have non-zero values for two nodes
even if they do not have an interaction between them
(if they have common neighbors). The poor perfor-
mance of the Neighborhood metric could be attributed
to the fact that the metric tends to make the network
more complex by creating artificial interactions be-
tween nodes that are not physically interacting.

4.3.4 Comparison of Base Clustering Algorithms

We now compare the performance of the three graph
clustering algorithms used for base clustering. In this
case, we take the average of the modularity scores over

10



Comparison of Base Metrics

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Neighborhood Betweenness Clustering Coefficient

Modularity

Figure 7. Modularity-based Comparison of Base
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all three similarity metrics. Figure 8 shows the results
for both datasets. The Direct and rbr algorithms have
similar scores and outperform the Metis algorithm.
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Figure 8. Modularity-based Comparison of Base
Clustering Algorithms

5 Conclusion

In this paper, we have shown how an ensemble ap-
proach can be applied to effectively partition PPI net-
works. We have implemented three topological met-
rics using graph partitioning algorithms to reduce the
effect of noise and obtain diverse base clusterings. We
have presented several consensus algorithms includ-
ing a PCA-based hypergraph approach, designed to
scale to large datasets and a soft consensus clustering
method, designed to discover multiple functional as-
sociations for hub proteins. The Coassociation-based
Agglomerative Consensus (CBAC) Algorithm was
found to perform well consistently, but the quadratic
complexity of its representation is a serious disadvan-
tage. The proposed PCA-based algorithms, apart from
the scalability advantage, were found to lead to con-
sensus clusters with high efficiency, in terms of all

three metrics. We found that even with an 18x reduc-
tion in dimensionality, we were able to obtain clus-
ters with high biological significance. Also, the PCA-
based soft consensus clustering algorithm proved to be
very effective in identifying multiple functionalities of
hub proteins. In the future, we would like to extend
the notion of ensembles to incorporate interactions ob-
tained from multiple experimental and in-silico PPI
networks.
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