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Abstract— Low duty cycle operation is critical to conserve
energy in wireless sensor networks. Traditional wake-up schedul-
ing approaches either require periodic synchronization messages
or incur high packet delivery latency due to the lack of any
synchronization. In this paper, we present the design of a new low
duty-cycle MAC layer protocol called Convergent MAC (CMAC).
CMAC avoids synchronization overhead while supporting low
latency. By using zero communication when there is no traffic,
CMAC allows operation at very low duty cycles. When carrying
traffic, CMAC first uses anycast to wake up forwarding nodes,
and then converges from route-suboptimal anycast with unsyn-
chronized duty cycling to route-optimal unicast with synchro-
nized scheduling. To validate our design and provide a usable
module for the community, we implement CMAC in TinyOS
and evaluate it on the Kansei testbed consisting of105 XSM
nodes. The results show that CMAC at 1% duty cycle significantly
outperforms BMAC at 1% in terms of latency, throughput and
energy efficiency. We also compare CMAC with other protocols
using simulations. The results show for 1% duty cycle, CMAC
exhibits similar throughput and latency as CSMA/CA using much
less energy, and outperforms SMAC and GeRaF in all aspects.

I. I NTRODUCTION

Extending the lifetime of battery powered wireless sensor
networks is critical because touching the sensor nodes for
replacement might be expensive or even impossible. Since
idle listening consumes almost the same energy as receiv-
ing or transmitting, duty cycling the radio is important to
achieve long lifetime. However, low duty cycle usually incurs
performance degradation in throughput and latency while
they are also critical performance metrics especially in event
tracking and surveillance applications. These conflictingob-
jectives motivate the design of a new MAC layer protocol
calledConvergent MAC (CMAC) . Compared to other MAC
layer protocols like BMAC [1] and SMAC [2], CMAC can
significantly reduce latency and improve throughput while
supporting very low duty cycles.

Current duty cycling MAC layer protocols for wireless
sensor networks are either synchronized using explicit sched-
ule exchanges or totally unsynchronized. However, both have
their weaknesses and deficiencies. SMAC [2], TMAC [3]
and DMAC [4] use periodic synchronization messages to
schedule the duty cycling and packet transmissions. Such
message exchanges consume significant energy even when no
traffic is present. BMAC [1] uses unsynchronized duty cycling
and uses long preamble to wake up receivers. However, the

long preamble mechanism has following problems. First, the
latency accumulated along multihop routes could be over-
whelming due to the application of long preamble on each
hop. Considering the importance of event reporting latencyin
tracking and surveillance applications, such latency increase
is not suitable. Second, the energy consumed on preamble
transmission and reception after the receiver has woken up is
wasted. This is due to the lack of information at the sender
side about the wake-up schedule of the receiver, and thus
the preamble length is chosen conservatively. Third, other
neighbor nodes of the transmitter will also be kept awake by
the long preamble until the data packet transmission finishes,
which is also wasteful since they are doing unneeded preamble
overhearing. Polastre et. al. propose an link abstraction called
Sensornet Protocol (SP) [5] to adjust the preamble length by
observing recent and nearby traffic. However, SP still involves
many uses of long preamble, and it cannot dynamically select
next hop if the intended next hop is currently not available
because of sleeping or interference.

MAC layer anycast is another way to avoid explicit synchro-
nization [6]–[9]. However, when compared to the Contention-
Based Forwarding (CBF) studied in MANET literature [10]–
[17], their RTS/CTS exchange schemes are more complicated
and inefficient. Both MAC layer anycast and CBF work by
prioritizing the CTS replying from potential forwarders, but
CBF schemes use CSMA based contention among CTS repli-
ers to resolve CTS collisions and thus have lower overhead.
The basic idea of both of them provides better packet for-
warding opportunities than unicast, but none of them specify
how the sleep scheduling and radio activity assessment are
accomplished, which is critical for a real MAC layer protocol
implementation. In addition, all of them incur higher RTS/CTS
exchange overhead than unicast which could be avoided if the
recent and nearby traffic information is studied.

The above problems motivate our design of an energy ef-
ficient MAC layer protocol called Convergent MAC (CMAC)
which utilizes the advantages of unsynchronized sleep schedul-
ing, anycast and unicast while mitigating the impact of their
disadvantages. CMAC uses unsynchronized sleep scheduling
like BMAC when there is no packet to transmit. While upon
transmitting packets, CMAC first usesaggressive RTS (Section
II-A) to anycast (Section II-B) packets to potential forwarders
which wake up first and detect the traffic usingdouble channel
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check (Section II-A). Since pure anycast based forwarding
incurs higher overhead than unicast, if the sender is able to
transmit packets to a node with routing metric good enough,
CMAC converges from anycast forwarding to unicast (Section
II-C). Compared to CBF, the core idea of CMAC anycast is
similar. But CMAC anycast can accommodate more routing
protocols, and it concentrates on activating and choosing
potential forwarders instead of studying the throughput perfor-
mance on mobile node scenario. Compared to GeRaF, CMAC
anycast has lower overhead and more concrete radio activity
detection scheme. More importantly, CMAC is implemented
in TinyOS and could serve as a prototype of these ideas for
future study.

To validate the practicability of CMAC, we implement
CMAC in TinyOS [18] and compare it with BMAC on the
Kansei testbed [19]. We also implement CMAC inns2 [20]
and compare it with SMAC, a GeRaF variant, and 802.11
based CSMA/CA protocol. The highlights of our performance
evaluation are summarized as follows:

• For static event experiments on testbed, CMAC working
at 1% duty cycle significantly outperforms BMAC with
the same duty cycle in throughput, latency, and energy
efficiency, and exhibits similar throughput and latency
performance as fully active BMAC.

• For moving event experiments on testbed, CMAC at 1%
duty cycle also provides much superior performance in
all aspects over BMAC with the same duty cycle.

• For moving events in simulations, CMAC achieves 95%
throughput of IEEE 802.11 based unicast with compara-
ble latency while saving up to 88.5% energy. CMAC also
exhibits remarkable advantage in all aspects over SMAC
and the GeRaF variant.

The rest of the paper is organized as follows. Section II de-
tails the design of CMAC, Section III presents our implemen-
tation and results gathered from Kansei testbed [19] for CMAC
and BMAC, Section IV presents simulation results comparing
CMAC with SMAC, IEEE 802.11 based CSMA/CA and the
GeRaF variant, and Section V finally concludes the paper.

II. CONVERGENT MAC (CMAC)

Motivated by the limitations of current approaches, we
propose a new MAC layer protocol calledConvergent MAC
(CMAC) supporting low latency and high throughput as well
as low duty cycle operation. CMAC has three main compo-
nents,Aggressive RTS equipped withdouble channel check
for channel assessment,anycast for fast forwarder discovery,
and convergent packet forwarding for reducing the anycast
overhead, and they are detailed as follows.

A. Aggressive RTS

The long preamble mechanism of BMAC may incur high
latency as the transmitter must ensure the receiver will be
woken up before sending any data. However, the receiver may
wake up much earlier than the end of the preamble, which
makes part of the preamble transmission wasteful. Hence, we
propose to useaggressive RTS to replace long preamble, which

breaks up the long preamble into multiple RTS packets (also
called an(aggressive) RTS burst). The RTS packets do not use
long preambles, and are separated by fixed short gaps each of
which allows receivers to send back CTS packets. The gap
does not have to accommodate an entire CTS transmission
as long as the RTS sender can receive the preamble of
the CTS and cancel the next RTS transmission accordingly.
Once the transmitter receives a CTS, it sends the data packet
immediately. In this way, not only the packet delivery speeds
up, but also the unnecessary energy waste on the remaining
part of the preamble after the receiver has woken up is saved.

The number of RTS packets to be sent in one full aggressive
RTS burst depends on the duty cycle length. For the same duty
cycle length, the duration of one full RTS burst is roughly the
same as the preamble of BMAC to guarantee the wake-up of
the receiver. However, compared to BMAC, CMAC provides
the chance for nodes to communicate as soon as possible since
receivers may wake up early during a RTS burst, and hence
the expected latency incurred by long preamble at each hop
could be brought down by half.

Aggressive RTS relies on receivers to detect its existence.
But unlike GeRaF which can detect an RTS only if the
RTS transmission starts during its awake period, CMAC uses
intermittent channel check to assess the channel, and it keeps
awake if the channel is busy to see whether there is any RTS
intended for it. Compared to the scheme in GeRaF, CMAC
can reduce the length of awake period and thus brings much
lower duty cycle especially networks for rare event detection.

The low power listening (LPL) of BMAC [1] provides a
energy-efficient way to quickly assess the channel, so it can
serve as the basic building block of channel check in CMAC.
However, the LPL is not directly applicable for aggressive RTS
detection. In BMAC, the LPL is reliable since the channel
will be always busy during any preamble transmission. But in
CMAC, a gap exists between two consecutive RTS packets,
and thus the channel assessment will conclude an idle channel
if it happens during such a gap (given no other ongoing
transmission). To resolve this problem, we propose to use
double channel check in CMAC, which works by assessing
the channeltwice instead of once after each long sleep period.
Each check takes up to five RSSI samples just like BMAC,
but there is a fixed short interval between the two checks
during which the radio is kept off. This interval is much shorter
than the duty cycle length but slightly longer than the fixed
gap between two consecutive RTS packets. If the first check
detects a busy channel, the second check will be canceled (Fig.
1(a)). Otherwise, the second check is performed (Fig. 1(b)).
The positive conclusion on busy channel from either check
will keep the node awake anticipating an RTS. To prevent the
scenario in Fig. 1(c), the small interval in one double-check
must be shorter than the RTS transmission time. This can be
satisfied by padding RTS packet with extra bytes. (We present
how these parameters of interval lengths and packet sizes
are chosen in Section III.) Such a “double-check” mechanism
ensures that nodes will not miss any nearby RTS burst.

Note that the length of the interval within one double-
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Fig. 1. Double Channel Check used by CMAC. In case 1, the first channel
check detects a busy channel, and thus the second check (dashed arrow)
is cancelled. In case 2, the first channel check happens between two RTS
transmissions, but the second check will detect the busy channel. Case 3 is
impossible since the interval in a double check is shorter than RTS length.
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Fig. 2. The relationship between the aggressive RTS probingduration and
the probability of waking up at least one potential forwarders. (L = 300ms)

check is fixed, and thus the gaps between consecutive RTS
transmissions must also be fixed. CMAC achieves this by
sending all RTS packets without assessing the channel except
the first one. This may cause two RTS bursts from two
transmitters to collide. Such collisions could be resolvedeither
by one of them receiving the RTS preamble from another
during its RTS sending gaps, or by the initial backoffs before
sending their first RTS packets. For the former case, the
interrupted RTS burst will be restarted later just like resending
a long preamble, while the resolution for second case is the
same as CSMA based BMAC. If an RTS transmitter detects a
valid preamble before sending its subsequent RTS packets but
fails to receive a CTS packet after that, it will retry the entire
RTS burst with initial backoff. This could happen if another
node with packets to send wakes up between two consecutive
RTS packets and chooses a small initial backoff.

B. Anycast Based Forwarding

If only unicast is used, the expected latency of using
aggressive RTS is roughly half that of using long preamble.
However, usually there are more than one potential forwarding
node within the communication range of the transmitter. They
form a forwarding set with better but not necessarily the best
routing metrics, and some of them may wake up much earlier
than the one with the best metric. Thus if the data packet is
anycast to such nodes, some progress could be made towards
the destination even if the intended receiver is sleeping,
and the end-to-end latency could be further reduced. Simple
calculation shows for duty cycle lengthL and forwarding set
sizen, it takes on averageL

n+1
to get contacted with at least

one of them. ForL = 300ms and differentn, Fig. 2 shows the
relationship between the aggressive RTS probing duration and
the probability of waking up at least one potential forwarder.

However, it is possible that more than one potential for-
warder try to reply the same RTS. Hence a contention reso-
lution scheme is needed for CTS transmissions. In addition,
among all potential forwarders, the transmitter should favor
the node with the best routing metric among the awake
ones. To achieve these two objectives, we design a CTS
contention resolution scheme similar as but more general than
the Contention Based Forwarding (CBF) [10]–[17], and this
scheme also has lower overhead than these in [6]–[9].

Similar as CBF and GeRaF, CMAC also uses routing metric
to prioritizing CTS transmissions. But besides the geographical
distance used by CBF and GeRaF, CMAC could use many
other routing metrics, such as hop count, ETX [21], ETT
[22] and PRR×Dist [23]. Generally, CMAC assumes each
node knows the costs (routing metrics to the destination) of
choosing different nodes in its forwarding set as next hop
forwarders, and such information is also shared by nodes in
its forwarding set. In TinyOS [18], these costs could be fed
by the routing module easily using interfaces. Based on the
costs, CMAC generatesm regions R1 = [0, cost1], R2 =
(cost1, cost2], . . . , Rm = (costm−1,∞]. These regions could
be evenly divided or decided according to the cost distribution.
Note that the cost of choosing any neighbor node as next
hop falls into one of these regions, but only nodes in the
forwarding set will try to send CTS. The information of the
m regions along with the routing metric of the transmitter
could be carried in each aggressive RTS packet. We find that
a smallm like 3 provides good performance in experiments
and simulations, and thus the piggybacking does not incur
high overhead. Note that CMAC works the same as CBF when
geographical distance is used as the routing metric, so routing
beacons and extra information carrying in RTS could be saved
in this case.

CMAC partitions the gap between two consecutive RTS
packets into a few sub-intervals calledCTS slots. CTS slots
have one-on-one correspondence with the cost regions gener-
ated by the transmitter where regions having smaller costs
are mapped to earlier CTS slots. After obtaining the cost
regions in an aggressive RTS packet, each potential forwarder
calculates which region it belongs to, and tries to send CTS in
the corresponding CTS slot. Each CTS slot is further divided
into severalmini-slots to resolve the contention within each
region, and each receiver will randomly choose one mini-
slot to start its CTS transmission (Fig. 3). On detecting busy
channel before transmitting CTS, pending CTS transmission
will be canceled assuming the existence of another CTS.

We use geographical distance as routing metric to illustrate
the anycast route selection of CMAC. The area that is closer
to the sink than the sender and within its transmission rangeis
divided into m regions,R1, R2, . . . , Rm, such that all nodes
in Ri are closer to the sink than nodes inRj for i < j. Fig.
4 shows an example wherem = 3. Then each node in region
Ri schedules its CTS transmission in a randomly chosen mini-
slot of CTS sloti (Fig. 3). If the packet forwarding encounters
a “void” where the forwarding set is empty, the transmitter
could simply use “right hand rule” with the ID of the receiver
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CTS

Sender

Canceled CTS

Node in R1

Node in R1

Node in R2 Canceled CTS

Node in R3 Canceled CTS

Fig. 3. CTS contention resolution. Nodes in different routing metric regions
transmit their CTS in the corresponding CTS slots, while nodes in the same
region transmit their CTS packets in randomly selected mini-slots. The first
sent CTS will cancel other CTS and subsequent RTS transmissions.

Fig. 4. Example of cost region generation in CMAC using geograph-
ical distance as routing metric.

specified in destination field of RTS packets. Sophisticated
void circumvention is out of the scope of this paper.

C. Converging from Anycast to Unicast

Although anycast obviates the need for synchronization
messages and has better chance to make progress in packet
forwardings than unicast, it has two main shortcomings. First,
anycast may choose suboptimal routes because the best next
hop is sleeping or due to interference. Second, the overheadof
anycast RTS/CTS exchange is usually higher than its unicast
counterpart. Hence, a mechanism is needed to reduce the
overhead incurred by anycast, and we propose theconvergent
packet forwarding to resolve these problems as follows.

In CMAC, the node will remain awake for a short duration
after receiving a data packet from anycast. During this period,
a node with better routing metric could wake up and become
the receiver of the next anycast. If the latest anycast receiver
has a routing metric close to the best, CMAC will use unicast
instead to avoid anycast overhead. As an example, the route
going through any node in regionR1 (Fig. 4) is close to the
optimal route. However, it is possible that nodes with good
enough routing metrics may not exist. For example, this will
happen if there is no node in regionR1 (Fig. 4). Hence if
the transmitter cannot find a better next hop than current one
after a duty cycle length, it starts to unicast packets to current
receiver and updates its cost regions. In this way, the packet
forwarding progressively converges from anycast to unicast
as the example shown in Fig. 5. After some time without
successful data packet reception, CMAC will timeout and
nodes will follow unsynchronized idle duty cycles.

The unicast after such convergence may or may not use
normal RTS/CTS. In our experiments, CMAC does not use
RTS/CTS after convergence for the comparison with BMAC.
In our simulations, CMAC uses normal RTS/CTS that is
similar as 802.11 after convergence for the comparison with

Fig. 5. Anycasting route converges to unicast route gradually.

802.11, SMAC and GeRaF.
If the event moves fast, the source nodes may continuously

change with each of them generating only a small number
of packets. In this case, the convergence may still happen
after the merge points of different flows. For some other cases
such as low data rates, the convergence may not happen, but
CMAC can still use aggressive RTS and anycast to make quick
progress towards the sink.

D. Synchronized Wake-up Schedule

In order to save more energy after convergence, nodes
can synchronize with their neighbor nodes to use some kind
of wake-up schedule instead of keeping fully awake. In our
simulations, we evaluate a CMAC variant using a staggered
scheduling similar to DMAC [4] after convergence. When
the transmitter intends to converge from anycast to unicast,
it synchronizes its schedule with the receiver. The two nodes
will maintain the staggered schedule as long as there is traffic
between them. After a certain duration without traffic, the
nodes go back to use unsynchronized duty cycling. This
CMAC variant are detailed in our technical report [24].

III. E XPERIMENTAL EVALUATION

We implement1 CMAC in TinyOS [18], and compare
CMAC with BMAC2 on the Kansei testbed [19]. This section
first describes our implementation and the experiment method-
ology, and then presents the results from the testbed.

A. Implementation and Experiment Methodology

Our implementation is based on XSM [25] which is similar
as Mica2 mote [26] in CC1000 radio [27] and processing
board. We set the mini-slot length to the transmission time of
1 byte on CC1000 radio which is416µs, a period long enough
to accommodate the propagation delay and busy channel
detection (One channel sampling takes about265µ to finish).
One CTS slot is set to 6 mini-slots, and the number of CTS
slots is set tom = 3. Thus the gap between two consecutive
RTS packets has to accommodate the transmission of18 bytes
which is roughly8ms. Then10ms(> 8ms) is chosen as the
interval in one double-check. The aggressive RTS packet size
is set to44 bytes including preamble and padding bytes such
that an RTS transmission duration is longer than10ms. The

1Code available athttp://www.cse.ohio-state.edu/ ˜ liusha/cmac .
2We plan to compare CMAC with BMAC plus SP in the future due to the

current unavailability of SP code in TinyOS distribution.
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aggressive RTS packet is comparable in size with the data
packet in TinyOS (36 bytes), but aggressive RTS serves mainly
to contact the receiver instead of providing collision avoidance,
and it is still much shorter than long preambles. Take duty
cycle length of300ms as an example, BMAC uses744-byte
preamble which is much longer than one44-byte RTS. The
padding bytes in each RTS after convergence could be saved
if the RTS/CTS based collision avoidance is desired.

The Kansei testbed [19] consists of105 XSM nodes forming
a 15 × 7 topology with node separation of 3 feet. The
transmission range is set to 4 rows/columns in the testbed.
Each XSM node is attached to a Linux-based stargate [28],
and those stargates are connected using Ethernet to the Kansei
server. Instead of creating real events, we issue messages to
XSM nodes as commands to emulate an event. Such command
messages are broadcast from the Kansei server and forwarded
by serial forwarder programs on stargates to the UART ports
of XSM nodes. XSM nodes then decide whether they “detect”
the event based on the prescribed event information.

We evaluate the performance of CMAC for event-triggered
sensor networks, in which the packets are generated only when
sensors observe an event. We evaluate the throughput, latency
and energy efficiency of CMAC against BMAC for two basic
event scenarios, static event and moving event. Throughput
refers to the total number of packets received at the sink
in 600 seconds, latency is the average delay endured for a
packet to reach the sink, and energy efficiency refers to the
energy consumption of the entire network for delivering one
36-byte packet to the sink, and is called normalized energy.
To measure latency, nodes record the start time after receiving
the initiation command message. The time difference between
the packet generation and the recorded start time, denoted by
t1, is carried in that packet. After receiving this packet, the
sink calculates the difference between the reception time and
its own recorded start time, denoted byt2. Then t2 − t1 is
used as the latency of this packet. (We ignore the variation in
delay for the command message to reach each XSM node as
it is insignificant compared to the packet delivery latency.) To
calculate the energy consumption, we measure the time each
node spends on transmitting, receiving and channel checking,
and the energy consumption is calculated using the current
consumption values provided in Table 2 of [1].

Note that the double channel check almost doubles the times
of channel sampling in BMAC. Thus theoretically CMAC
consumes more energy on channel assessment than BMAC
using the same duty cycle length. To be fair, we evaluate
CMAC with duty cycle length double that of BMAC in
this section. For example, if BMAC uses300ms duty cycle
length, CMAC will use600ms. Since using300ms duty cycle
length in BMAC is roughly 1% duty cycle, we denote it by
BMAC 1%, and denote CMAC using600ms duty cycle length
as CMAC 1%. To provide the baseline for throughput and
latency evaluation, we also gathered the data for BMAC and
CMAC without duty cycling, denoted by BMAC 100% and
CMAC 100% respectively. The performance of CMAC 100%
is provided to show CMAC working at 100% duty cycle is

similar as always active BMAC.

B. Static Event Scenarios

In this set of experiments, we evaluate the throughput,
latency and energy efficiency of CMAC and BMAC for static
event scenario. We emulate an event happening at one corner
of the testbed using the method described in Section III-A.
The source node sends all packets to the sink located at the
diagonally opposite corner. We vary the data rate at source
nodes, and the results are shown in Fig. 6.

For low data rates (0.2 ∼ 0.5 packets/sec.), both CMAC
1% and BMAC 1% can deliver all packets (Fig. 6(a)), but Fig.
6(b) shows that CMAC 1% exhibits better latency performance
than BMAC 1% due to the capability of aggressive RTS and
anycast to discover awake potential forwarders.

Under high data rates (≥ 1 packet per second), BMAC
1% can not deliver all packets to the sink, and the flat curve
shows the channel capacity is reached (about 300 packets in
600 seconds) due to long preambles and multihop contention.
CMAC 1% saves unnecessary long preambles, and thus not
only significantly outperforms BMAC 1% but also provides
similar throughput as BMAC 100% and CMAC 100% (Fig.
6(a)). In some cases, e.g., data rate of 2 and 5 packets per
second, CMAC 1% even provides latency performance very
close to that of BMAC 100% (Fig. 6(b)). This is due to the
convergence of CMAC from anycast to unicast and the saving
on anycast overhead. At the data rate of 10 packets per second,
CMAC 1% does not provide throughput and latency very close
to BMAC 100% or CMAC 100% because the high contention
leads to some convergence duration timeouts which result
in more RTS/CTS, but CMAC 1% still exhibits significant
improvement over BMAC 1%.

Fig. 6(c) shows CMAC 1% utilizes the energy more ef-
ficiently than BMAC 1% and BMAC 100%, and the energy
efficiency becomes better as the data rate increases. It can also
be observed that the energy efficiency of BMAC 1% is even
worse than BMAC 100% for data rates beyond 5 packets per
second because the preamble length for 1% duty cycle is not
efficient in these cases. Hence, we conclude that CMAC is
more suitable for providing high throughput and low latency
while the idle duty cycle is low.

C. Moving Event Scenario

To evaluate the performance of CMAC when the event is
moving, we move the emulated event along the bottom edge
of the testbed at different speeds (Fig. 7). A program on the
Kansei server calculates when and which nodes are supposed
to detect the event, and it triggers packet generations at these
time points by sending messages to these nodes. Each node
generates one packet once it receives such a message. The
event restarts from the bottom left corner each time it reaches
the bottom right corner. The sink is located at the top right
corner of the testbed, and each experiment duration is600
seconds. We vary the speed of event moving such that faster
movement will trigger more packets. The results of throughput,
latency and energy efficiency are shown in Fig. 8.
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Fig. 6. Experiment results of throughput, latency and energy efficiency performance of CMAC and BMAC under different data rates.

Sink

Event moving

Fig. 7. Moving event scenario in experimental evaluation. The sink locates
at top right corner, and the event moves along the bottom edgeat different
speeds

Fig. 8(a) shows the advantage of CMAC 1% over BMAC
1% in throughput. The throughput of BMAC 1% increases
with the increase of the moving speed for slow speeds, but
it gradually drops after the moving speed exceeds 1 row/sec.
However, the throughput of CMAC 1% increases proportion-
ally with the increase of moving speed with 100% packet
delivery ratio. Fig. 8(b) shows remarkable advantage of CMAC
1% over BMAC 1% in latency. Unlike BMAC 1% whose
latencies are in tens of or even over one hundred seconds,
CMAC 1% provides less than one second latency on average
to deliver one packet to the sink. For BMAC 1%, the queueing
delay contributes most of the latency and is caused by using
long preamble in each packet transmission. While for CMAC
1%, due to its capability to find a “quick” forwarder in the
forwarding set and the convergence from anycast to unicast,
heavy queuing is avoided and the latency is much lower. Fig.
8(c) shows the advantage of CMAC 1% in energy efficiency.
CMAC 1% saves75% ∼ 95% energy of BMAC 1% to deliver
one packet. In addition, the normalized energy consumptionof
CMAC 1% decreases gradually with the increase of moving
speed. This is because CMAC has better chance to converge to
unicast when the event moves faster, where more packets are
generated and the convergence happens after the merge points
of multiple flows. But for BMAC 1%, the energy efficiency
increases sharply due to the inefficiency of long preamble for
fast event moving speeds.

D. Anycast Performance

For low data rates, CMAC may not be able to converge
from anycast to unicast since the awake period after receiving
a data packet may timeout before the next packet arrives.

In such cases, the performance of CMAC depends on the
aggressive RTS and anycast mechanism. Thus we evaluate the
performance of the aggressive RTS and anycast mechanism in
this section. The duty cycles are 1% and 0.1%, where each
cycle is 3000ms and 6000ms respectively for BMAC 0.1%
and CMAC 0.1%. The source node is located at one corner,
and the sink is at the diagonally opposite corner. We vary
the node density by adjusting the transmission range from 3
rows/columns to 8 rows/columns and run each experiment for
600 seconds. The data rate is chosen such that every packet
is purely anycast enroute without convergence to unicast or
experiencing queuing delay. Thus for each generated packet,
it is a fresh start for the entire network.

Since the Kansei testbed has fixed physical topology, in-
creasing transmission range leads to decrease in hop count.
Therefore, we present the latency normalized by the hop count
of unicast, i.e.,Latency/Hops, and the results are shown in
Fig. 9(a) and 9(b) (Figures for throughput are omitted since
all protocols can deliver all packets to the sink).

CMAC reduces the latency of BMAC by about 33% at both
1% and 0.1% duty cycles except for transmission range of 8
rows with 1% duty cycle, where the improvement is not very
significant. The reason for this is that there are only two hops
for unicast if one transmission can go through 8 rows of the
testbed, and the optimization space left for CMAC is only one
hop since CMAC does not use anycast once the sink can be
reached in one hop. The per hop latency does not decrease
with the increase of node density in Fig. 9(a) and 9(b), this
is because anycast may have a small forwarding set near the
sink due to the limited scale of the Kansei testbed.

We also collect the route stretch of anycast, which is repre-
sented by the average number of hops of anycast normalized
by the hop count of unicast. Fig. 9(c) shows CMAC 0.1% has
larger stretch than 1%. This is because for higher duty cycle,
the probability for more than one node to wake up and reply
the same RTS is also higher, and better routing metrics could
be found among more awake nodes. As Fig. 9(a) and 9(b)
show, even with route stretch, CMAC 1% can still outperform
BMAC 1% because of the fast progress made to the destination
using aggressive RTS and anycast.
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Fig. 8. Experiment results of throughput, latency and energy efficiency performance of CMAC and BMAC under different event moving speeds.
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Fig. 9. Experiment results of anycast latency performance of CMAC 1% and CMAC 0.1% under different node densities.

IV. SIMULATION BASED EVALUATION

We also conduct simulations3 for large scenarios to compare
the throughput, latency and normalized energy consumptionof
CMAC with other protocols using the network simulatorns2
[20]. Our study is based on the following six protocols:

• CSMA/CA: Using unicast RTS-CTS-DATA-ACK 802.11
protocol with radio fully awake. This protocol servers as
the baseline for throughput and latency performance.

• Anycast: Using the anycast mechanism described in
Section II-B with radio fully awake.

• GeRaF: Using the anycast protocol in Section II-B with
10% duty cycle and3ms active period. This GeRaF
variant does not use busy tone, and the anycast protocol
is similar in essence to but slight different from [6] [7].

• CMAC: Our proposed scheme described in Section II
working on 1% idle duty cycle.

• CMAC-S [24]: Similar to CMAC, but after convergence,
nodes use a DMAC-like [4] staggered wake-up schedule.

• SMAC: SMAC with adaptive listening working at 10%
duty cycle. In our simulation, SMAC can barely send
packets to the sink using 1% duty cycle, therefore we
use 10% duty cycle for SMAC.

The simulations are conducted on2000m×2000m network
with an event moving randomly at10m/s. We use250m as
the transmission range, but our protocol works for any radio
transmission range. Other parameters are shown in Table I.

3Code available athttp://www.cse.ohio-state.edu/ ˜ liusha/cmac .

TABLE I

SIMULATION PARAMETERS

Tx range 250m RTS size 14 bytes
Bandwidth 38.4Kbps CTS size 14 bytes
Tx power 27mA ACK size 28 bytes
Rx power 10mA Data header 20 bytes
Idle power 10mA Data payload 50 bytes
CTS slot 0.2ms Anycast CTS 22 bytes
Active period 3ms Preamble+PLCP 24 bytes

In this section, we present results in mobile event scenarios
for varying initial idle duty cycle, node density, and data rate.
More simulation results on other aspects, such as static event
and link quality, are available in our technical report [24].

A. Initial Duty Cycle

First we evaluate the impact of the idle duty cycle by
varying it from 0.1% to 1%. This set of tests shows which
protocol has more potential to work at low duty cycles. Fig.
10 shows the performance for different idle duty cycles using
data rate of 10 packets/s. In the simulations, GeRaF and SMAC
can barely deliver any packet to the sink when working under
1% duty cycle. Therefore we use 1% to 10% for them.

We can see that the throughput decreases gradually with
the decrease of initial duty cycle. For CMAC, the throughput
decreases about 25% when duty cycle changes from 1% to
0.1%, and the normalized energy consumption decreases about
30%. However, this energy saving at 0.1% duty cycle comes
at the expense of higher initial detection latency. Through
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Fig. 10. Simulation results for throughput, latency and energy efficiency performance of CMAC, SMAC, GeRaF and CSMA/CA under different idle duty
cycles. In our simulations, GeRaF and SMAC barely receive packets at the sink when working below 1% duty cycle, thereforewe use 1% to 10% duty cycle
for GeRaF and SMAC in the simulation. SMAC has high delay whenthe duty cycle is less than 3% and is not shown in the figure.

tracing the simulation data, we found that the delay for the
first packet to arrive at the sink increases from 2 seconds to
near 14 seconds, but this is still better than SMAC and GeRaF
since they can not deliver even one packet to the sink with such
a low duty cycle (0.1%).

CMAC and CMAC-S have lower throughput compared to
CSMA/CA and Anycast protocols due to several reasons. First,
the duty cycle is only 1% initially, which limits the initial
throughput. Second, the event may move out of the sensing
range of a source node before the convergence fully completes.
However, CSMA/CA and Anycast achieve higher throughput
as the cost of very high power consumption as nodes remain
100% awake. Anycast has the highest throughput because of
its ability to forward packets through multiple paths, but this
high throughput is achieved by keeping all nodes active all the
time which is not energy efficient.

SMAC with 10% duty cycle can only achieve1/5 through-
put of CMAC 1%, together with latency 4 times and nor-
malized energy consumption 8 times that of CMAC 1%. In
SMAC, transmissions can only happen during active periods.
Thus the available time for transmissions is quite limited.

The throughput of GeRaF is lower than CMAC even if it
works on the duty cycles 10 times higher due to two main
reasons. First, GeRaF uses anycast for each packet which
incurs higher overhead. Second, in GeRaF, nodes receive
RTS only if they happen to wake up during the preamble
transmission of the RTS, which is inefficient compared to pulse
based double channel check in CMAC.

B. Node Density

Next we evaluate the performance of CMAC in networks
with different node densities. We vary the number of nodes
in the network from100 to 625 while keeping the area and
event size unchanged.

From Fig. 11 we can see that the throughput, latency and
normalized energy consumption all increase with increase
of node density. This is because more nodes are generating
packets with higher node density. The throughput of anycast
is the best because it can always take alternate path during high
contention. CMAC provides similar throughput as CSMA/CA

and outperforms others (Fig. 11(a)). For latency, CMAC is
also among the best. More importantly, CMAC outperforms
all other protocols in normalized energy consumption.

C. Data Rate

Fig. 12 shows the simulation results of throughput, latency
and normalized energy consumption of different protocols for
different date reporting rates. CMAC and CMAC-S use the
least energy, while achieving about 95% of throughput of
CSMA/CA (at data rate 10 pkts/s).

V. CONCLUSION

Existing MAC layer solutions for low duty cycling either
consume a lot of energy on periodic synchronization messages
or incur high latency due to the lack of synchronization. Thus
in this paper we proposes CMAC, a MAC layer protocol for
maximizing network lifetime while maintaining high through-
put and low latency for sensor networks. During idle periods,
nodes follow unsynchronized low duty cycles and use a novel
technique calleddouble channel check to assess the channel.
When transmitting packets, CMAC initially uses aggressive
RTS and anycast to exploit the diversity in the forwarding set,
and then converges to unicast to reduce the overhead.

The experiment results from Kansei testbed show that
CMAC 1% can approach the throughput and latency perfor-
mance of fully awake BMAC, while outperforming BMAC
1% in all aspects. Using simulations, we compare CMAC
with SMAC, CSMA/CA and a GeRaF variant in moving event
scenarios. CMAC not only outperforms SMAC and the GeRaF
variant, but also achieves 95% throughput of CSMA/CA with
similar latency and 88.5% less energy. With higher tolerance
for initial latency, CMAC can even work at 0.1% duty cycle
with long-term throughput comparable to CSMA/CA.

Based on our study, we conclude that CMAC is highly
suitable for wireless sensor networks that require low latency
and high throughput as well as long network lifetime.
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[12] M. Heissenbüttel, T. Braun, T. Bernoulli, and M. Wälchli, “BLR:
Beacon-Less Routing Algorithm for Mobile Ad-Hoc Networks,” Com-
puter Communications, vol. 27, no. 11, pp. 1076–1086, July 2004.
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