
Image Based Streamline Generation and Rendering

Liya Li∗

The Ohio State University

Han-Wei Shen†

The Ohio State University

Figure 1: Streamlines generated and rendered with three different styles by our image based algorithm

ABSTRACT

Seeding streamlines in 3D flow fields without considering their pro-
jections in the screen space can produce visually cluttered render-
ing results. Streamlines will overlap or intersect with each other
in the final image, which makes it difficult for the user to perceive
the underlying flow structure. This paper presents a method to con-
trol the generation and rendering of streamlines in the image space
to avoid visual clutter and allow a more flexible exploration of the
flow fields. In our algorithm, two dimensional images generated
by a variety of visualization techniques can be used as input, from
which seeds are placed and streamlines are generated. The density
and rendering styles of the streamlines can be flexibly controlled
based on various criteria to further improve visual clarity. With the
image space approach, it becomes easy to implement level of de-
tail rendering and depth peeling of streamlines to allow for more
effective visualization of 3D flow fields.

Keywords: streamlines, Image based, Image space, Object space,
3D flow visualization

1 INTRODUCTION

Effective visualization of 3D vector fields plays an important role in
many scientific applications since many simulations now produce
both scalar and vector data. It is often necessary to have a com-
prehensive understanding of those data in order to obtain insight
into the underlying problem. To visualize three dimensional vec-
tor fields, researchers in the past have developed a variety of tech-
niques. Those techniques include geometry based methods such
as streamlines and particle animations, which resemble what the
scientists are used to see in their experiments, as well as more ad-
vanced techniques that utilize graphics hardware to generate realis-
tic flow textures. Generally speaking, texture based methods such
as Line Integral Convolution, Spot Noise, or the more recent Im-
age Based Flow Visualization (IBFV) [16] techniques are mostly
suitable for visualizing two dimensional flows. When extending
those techniques to three dimensions, occlusion becomes a major

∗e-mail: lil@cse.ohio-state.edu
†e-mail:hwshen@cse.ohio-state.edu

problem and they require additional means to identify regions of
interest before texture can be mapped. There is also a challenge to
extend the texture based methods to unstructured grids although the
recent work by Van Wijk [17] and Laramee et al. [7] have provided
excellent solutions to map flow textures to arbitrary surfaces.

Compared to texture based approaches, visualizing streamlines
or pathlines is still more frequently used in various scientific appli-
cations because it is more flexible to place the lines around regions
of interest and render them at interactive speeds. The challenge
for visualizing streamlines/pathlines, however, is that the scene can
quickly get cluttered when too many of them are displayed. In ad-
dition, visualizing three dimensional points and lines has more per-
ceptual difficulties compared to visualizing surfaces. It is much
harder to add three dimensional depth cues to points and lines since
they do not form effective occluders to reduce clutter in the scene.
Also it is much more difficult to show a coherent structure from
the lines even when lighting [13] is applied. Previously, researchers
have attempted to develop effective seed placement algorithms for
the purpose of better visualizing the streamlines as well as enhanc-
ing salient flow structures [5, 14, 12, 18]. However, most of the
algorithms were developed for two dimensional vector fields which
cannot be directly applied to visualizing three dimensional data.

In this paper, we present an image based approach for stream-
line generation and rendering. To better display three dimensional
streamlines and reduce visual cluttering, there is a need to con-
trol how the streamlines will distribute across the image after they
are projected to the screen. To achieve this goal, instead of plac-
ing streamline seeds directly in the three dimensional space, we
carefully select seeds from the image plane and then unproject the
seeds back to the object space before streamline advection takes
place. The three dimensional positions of the unprojected seeds
can be uniquely identified by taking as an input a two dimensional
image and its corresponding depth map. Those two dimwnsional
images are generated by the user on the fly as she/he is exploring
flow related scalar quantities. By carefully spacing out streamlines
in the image plane as they advect, we can effectively reduce visual
cluttering and minimize the depth ambiguity caused by overlapping
streamlines in the final image. With the two dimensional image, the
seeds can also be more effectively and flexibly placed. As the user
is exploring data using additional visualization techniques, when
she/he spots interesting features on the screen, the seeds can be di-
rectly dropped on the image without the need to have a separate
process to search for three dimensional regions of interest corre-
sponding to those features. Our image space streamline placement



algorithm lends itself well to achieve a variety of effects such as
level of detail rendering and depth peeling. We can also render the
streamlines in a variety of styles to enhance the perception of the
three dimensional flow lines.

The remainder of the paper is organized as follows. We first
briefly review the existing work on seed placement and streamline
rendering. We then introduce our image based seed placement and
streamline generation algorithm. We present a variety of ways to
utilize our image based algorithm for better visualization of three
dimensional streamlines. We then discuss strategies to generate the
input depth images to assist the process of streamline generation.

2 RELATED WORK

Streamlines rendering is still one of the most popular techniques
for visualizing flow fields. For 2D flow fields, there are several
techniques available for generating seeds to reduce visual clutter-
ing. The image guided streamline placement algorithm proposed in
[14] uses an energy function to measure the difference between a
low-pass filtered version of the image and the desired visual den-
sity. Then an iterative process is used to reduce the energy through
some pre-defined operations on the set of streamlines. For creat-
ing evenly spaced streamlines, Jobard et al. [5] proposed to con-
trol the distance between two adjacent streamlines to achieve the
desired density. Both the seed selection and the termination of ad-
vection are controlled by first measuring the distance to the existing
streamlines and then determining the desired actions. Mebarki et al.
[12] proposed a 2D streamlines seeding algorithm by placing a new
streamline at the farthest point away from all existing streamlines.
Verma et al. [18] applied various templates around critical points
to capture important flow patterns. Then a Poisson disk distribution
is used to randomly distribute additional seed points in those non-
critical regions. This work has been extended to 3D flow field in
[19].

Generating desirable and aesthetically pleasing streamlines in
three dimensional flow fields is much more difficult than in two
dimensional fields, because the projection process from the object
space to the image space can cause overlapping and intersection,
which is impossible for two dimensional streamlines. Ye et al.
[19]presented a strategy for streamline seeding through analyzing
the flow topology. Critical points are used to identify the flow re-
gions with important pattern, and then different seeding templates
are used at the vicinity of critical points. Finally, Poisson seeding
is used to populate the final empty region. Jobard et al.’s algorithm
[5] was extended to 3D in [10]. Spatial perception of the 3D flow
was improved by using depth cueing, halos. And also they applied
focus+context methods, ROI driven streamline placing, and spot-
lights to solve the occlusion problem.

There have been some techniques proposed for the rendering
of 3D flow fields for a better perception of the spatial informa-
tion. Lighting is one of the elements to improve spatial perception.
Stalling et al. [13] employed a realistic shading model to inter-
actively render a large number of properly illuminated field lines
by using 2D texture and texture transformation. The algorithm is
based on a maximum lighting principle, which gives a good ap-
proximation of specular reflection. To improve diffuse reflection,
Mallo et al. [9] proposed a view-dependent lighting model based
on averaged Phong/Blinn lighting of infinitesimally thin cylindrical
tubes. They used a simplified expression of cylinder averaging. To
emphasize depth continuities. Interrante et al. [3] used a visibility-
impeding 3D volumetric “halo function”to define the locations and
strengths of the gaps making the depth discontinuities.

3 ALGORITHM OVERVIEW

In this paper, we present a novel method to control scene clutter-
ing when visualizing 3D streamlines by placing streamline seeds

in the image plane in such a way that the depths and structures of
streamlines can be clearly presented. Figure 2 shows the visual-
ization pipeline of our image-based streamline generation scheme.
The input to our algorithm includes a 2D image and its correspond-
ing depth map, and a 3D vector field that the user is interested in
exploring. The 2D input images can come from a variety of sources.
They can be generated from rendering vector field related proper-
ties such as stream surfaces, or can be the output of other visual-
ization techniques such as isosurfaces or slicing planes of different
scalar quantities. Our algorithm will generate streamlines by plac-
ing seeds on the image plane following certain criteria mentioned
in the following sections of the paper. With the depth values of
the selected pixels, those seeds can be unprojected back to the 3D
space. Streamlines are then advected in the 3D object space. Our
algorithm ensures that streamlines will not come too close to each
other after they are projected to the screen.

Figure 2: Visualization pipeline of our image based streamline gen-
eration scheme.

There are several major advantages for placing seeds on the im-
age plane. One is to avoid scene cluttering caused by streamlines
having a very high depth complexity. Placing streamlines in 3D
positions without considering their screen projections often causes
visual cluttering, as 3D streamlines may intersect with or come arbi-
trarily close to each other in the image plane. Although researchers
have previously proposed to draw haloed lines to resolve ambiguity
of streamline depths [10], when a large number of short line seg-
ments generated from the haloing effect are displayed, the relative
depth relationship between the streamlines is still very difficult to
comprehend. By appropriately controlling the spacing of seeds as
well as the streamlines themselves in the image plane, we are able
to prevent the visualization from being overly crowded. As will be
seen in the later sections, placing seeds in the image space also al-
lows us to render the streamlines in layers, which will significantly
reduce the depth complexity of the streamlines displayed and hence
enhance the understanding of 3D flow structures.

Another advantage of the image based approach is that it en-
hances the understanding of correlation between the underlying
flow field and other simulation variables. When analyzing a flow
field, the user often needs to visualize other variables as well in or-
der to obtain a comprehensive view of the underlying physical prob-
lem. Dropping seeds at the regions of interest defined by certain
properties can assist creating a better mental model to comprehend
the data. Traditionally, visualization of streamlines and other scalar
properties are often performed independently. Dropping streamline
seeds in region that is defined by other variables requires an explicit
search of the regions of interest in 3D space. In our work, instead of
considering the region of interest specification and seed placements
as two separate processes, we intend to provide a unified way by
allowing the user to drop seeds whenever they identify interesting
features in the image generated during a visualization session. This
makes the seed placement process much more flexible since there is
no need for the algorithm to know what is being rendered in the im-



age. As a result, the process of issuing queries to answer the user’s
hypotheses both in scalar and vector fields can be done in a more
coherent manner.

To implement our idea, one key issue to resolve in our research
is how we are going to place seeds and advect streamlines from
2D images so that the complexity of visualization is carefully con-
trolled. We are also interested in exploring a variety of ways to
generate and utilize the input 2D images and depth maps to assist
us creating a better visualization of streamlines. In the following,
we discuss those issues in detail.

4 IMAGE SPACE STREAMLINES PLACEMENT

The primary goal of our research is to generate well organized
streamlines in the image space from a 3D vector field. A key re-
search question to ask is how we can control the streamline spacing
in the 2D image when we are rendering 3D streamlines. Previously,
researchers have proposed several techniques to place streamlines
for 2D vector fields that can ensure an even or near even spacing
[14, 5, 12]. Researchers have also proposed to extend those ideas
to 3D fields by ensuring an evenly spaced streamlines in 3D [10].
Unfortunately, a straightforward extension of 2D streamline place-
ment methods for 3D vector fields does not work well since, for
example, evenly spaced streamlines in 3D space does not guarantee
evenly spaced streamlines in their 2D projection.

A key observation of our research is that in order to ensure that
the streamlines be well organized or evenly spaced out in the re-
sulting image, it is better to place the seeds directly on the image
plane. The control of streamline spacing should also be performed
in the image space. Since any screen pixel corresponds to an infi-
nite number of 3D points, the 3D screen points that define the seeds
need to be unprojected back to some 3D points. This is achieved
by using an input depth map resulted from other 3D visualization
techniques. We defer the discussion of possible ways to generate
the depth map in later sections. In this section, we only focus on
the placements of seeds and streamlines. With the idea of choosing
seeds and controlling streamlines in the image plane, it becomes
apparent to us that we are able to leverage the previous work in 2D
streamline spacing algorithms with a moderate amount of modifi-
cation. At present, our algorithm adopts the idea presented in the
evenly-spaced streamlines algorithm proposed by Jobard el at. [5],
but we are not limited to this algorithm only. For example, the tech-
nique proposed in [12] can most likely work equally well or better.
In the following, we discuss our algorithm.

4.1 Evenly-Spaced Streamlines in 3D

In order to have a good control of the density of streamlines in the
image space, seed selection and termination of streamline advection
are very important. In our algorithm, these two steps are performed
in the image space, while the advection is done in the object space.
This means we do not project the 3D vector field into 2D image
space and perform advections.

In our algorithm, at the beginning, a random seed is selected in
the projection region of a 3D surface in image space. This seed
is mapped back to object space after interpolating a depth value
from the depth map. The initial streamline is integrated from this
seed and placed into a queue Q. We will defer our definition of
the validness of sample points in section 4.1.2. We assume that
all streamlines need to be dsep apart from each other in the image
plane. The following steps are repeated until Q is empty:

1. Dequeue the oldest streamline in Q as the current streamline

2. Select all possible seed points at dsep apart from the projection
of the current streamline. For each projected sample point,

there are only two possible candidate points, one at each side
of the streamline

3. Integrate new streamlines from the valid candidate seeds as
long as possible before they are within dsep from other stream-
lines in the image space

The algorithm above is very similar to the 2D algorithm in [5],
which works well for 2D flow fields. However, for 3D vector fields,
because there is a projection process from the object space to the
image space involved, some problems need to be taken care of.

4.1.1 Perspective Projection

The algorithm in [5] approximates the distance between a seed
point to the nearby streamlines using the distance from the seed
point to the sample points of the streamlines. The assumption to
make this approximation acceptable is that the distance between
sample points along a streamline must be smaller than dsep. In our
algorithm, as the integration step size is controlled in object space,
after being projected to screen through perspective projection, the
distance between sample points along streamlines might be short-
ened or elongated, which may violate the minimum dsep require-
ment. We proposed two ways to solve this problem.

The first method is achieved by adding more check points be-
tween two sample points. For each integration step, the projected
distance between two consecutive points in advection is computed
in image space. If the distance is larger than dsep, some interme-
diate sample points are generated by interpolation, and the corre-
sponding image space points are inserted into the grid based struc-
ture if they are still dsep apart from other streamlines. This checking
process takes place after integrating the current point, and before
accepting the new sample points.

The first method uses a fixed step size to perform integration. In
the case that an adaptive step size is more desired, for each step of
the integration, we first project the velocity at the current point to
then image space, and get an approximate step size by advecting
some distance smaller than dsep in the image space. We then use
this step size to integrate the point.

4.1.2 Depth Comparison

Streamlines can overlap or intersect with each other after being pro-
jected to image space, unless the depth map is generated from a
stream surface. Although the property of stream surface guarantees
that streamlines on the surface never intersect with each other, our
image based algorithm is not limited to use only stream surfaces as
the source to generate the 2D input depth map. In the 2D algorithm
[5] a new sample point is not valid if it is within dsep from existing
streamlines, or when it leaves the 2D domain defining the flow field.
In those cases, the streamline will be terminated as a result. When
extending this algorithm to 3D, only checking the distance between
the sample points with existing streamlines in the image space is
not sufficient. This is because a streamline closer to the the view-
point should not be terminated by the one far behind, even when the
newly generated sample point is too close to the existing streamline.
To deal with this issue, in our algorithm, when the newly gener-
ated sample point is too close to an existing streamline, we check
whether the line segment from this newly sample point intersects
with the existing streamline. If they intersect and the new segment
is closer to the viewpoint, the segment of the existing streamline
becomes invalid, and the advection of the current streamline con-
tinues. If they do not intersect, the advection continues. If the newly
sample point is far behind the existing streamline, the advection is
terminated. In this way, we can ensure a correct depth relationship
between streamlines in the projection space. Figure 3 shows an ex-
ample of our evenly spaced streamlines on a flow field generated
from a data set simulating the core collapse of supernovas.



Figure 3: Evenly-spaced streamlines on a stream surface.

4.2 Importance Driven Seed placement

Although the algorithm described above works well for maintain-
ing a set of evenly-spaced streamlines in the image plane, it is not
always suitable when there is a need to drop more seeds in cer-
tain hot spots in the image plane. This is because in the algorithm
above, which was primarily derived from the 2D algorithm pro-
posed by Jobard et al.[5], the placement of seeds only considers the
requirement of maintaining particular spacing, which is less flexi-
ble if other factors such as region importance need to be considered.
In fact, seed placement and the control of streamline spacing can be
considered separately. Streamlines can be computed from seeds
generated in the image plane based on any other criteria, and spac-
ing control of streamlines can be done after the streamlines are com-
puted. In this section, we present an alternative method to achieve
this goal.

To generate seeds based on region importance, we assume that
the pixels in the input 2D image will have intensity values propor-
tional to their importance. For instance, if the goal is to visualize
flows in regions which have higher local velocity gradients, we can
color the geometry to be rendered based on this property and then
render the geometry to the screen. Then, seeds can be generated in
the image plane where more seeds are placed in regions of higher
importance and fewer seeds are placed elsewhere. We achieve this
through a random seed placement process that reflects the region
importance as follows. To place each seed, we first select a random
position (x,y) within the image plane. Then we generate another
random number v within the range of image intensity and then com-
pare this number with the intensity i at (x,y) from the importance
image. If the random number v is larger than i, we discard this seed
otherwise we place the seed in (x,y). Assuming there is an equal
probability for the random number v to be anywhere in the image
intensity range, this process will stochastically generate more seeds
in regions which are more important, i.e., with a higher image in-
tensity.

After all seeds are generated using the stochastic process,
streamlines are generated although not drawn to the screen. To
adequately control the spacing, during the process of generating
the streamlines, we divide the screen into a regular lattice and then
deposit all sample points of streamlines to the lattice element. Af-
ter the generation of streamlines is completed, we choose a limited
amount of streamlines to display in the screen with a goal not to
violate the minimum spacing requirement. This is done by walking
through every points of the streamline to check the local neigh-
borhood in the lattice whether there are already streamline points
being drawn previously. Streamline segments that are within the
minimally allowed radius will not be displayed. To favor longer
streamlines, we traverse the streamlines from the longest one in a

descending order since streamlines drawn earlier will prevent from
lines that come later from growing. We also take into account the
3D depth comparison issue as described in the previous section.

The fundamental difference between the algorithm here from the
previous one is that we decouple the process of seed generation and
streamline spacing control to offer additional flexibility. Instead of
carefully planning where to drop the next seed so as not to violate
the spacing constrain, we generate streamlines from any given seed
sets and delete the streamlines that violate the spacing requirement
afterwards. Here our focus is more on avoiding scene cluttering
rather than guaranteeing all streamlines are evenly spaced out in an
absolute sense since most applications do not have such a strong
constrain that all streamlines should be evenly spaced out. Our
algorithm can also allow us to perform a more global control as
opposed to being purely greedy in the sense that if the goal is to
generate longer streamlines, we can more easily put effort to re-
tain those longer ones since we have the whole set of streamlines to
make the selection.

Figure 4(c) shows an example of our importance driven scheme
applied on a simulated flow field of thermal downflow plumes in the
surface layer of Solar. Figure 4(a) displays the vectors using a false
color map on a velocity magnitude isosurface. Seeds are focused on
regions with higher velocity gradients as shown in Figure 4(b). The
spacing of streamline advections is also controlled by the velocity
gradient as in Figure 4(c).

(a)

(b)

(c)

Figure 4: Importance driven seed placement: image (a) displays vectors

by mapping (u,v,w) to (red, gree, blue) on a velocity magnitude isosurface.

(b) more seeds are dropped at the places with higher local velocity gradients

evaluated in the image space. (c): Streamline spacing is controlled by the

local velocity gradients, where a shorter distance is used for regions that have

higher velocity gradients

4.3 Run Time Control of Streamline Generation

In this section, we discuss some additional controls of streamline
placements to further enhance the clarity of visualization.



Figure 6: Level of detail streamlines generated at three different scales. It can be seen that as the field is projected to a larger area, more
streamlines that can better reveal the flow features are generated.

Figure 5: An example of peeling away one layer of streamlines by
not allowing them to advect beyond a fixed distance from the input
depth map.

4.3.1 Layered Display of Streamlines

One major problem when visualizing 3D streamlines is that stream-
lines may overlap with each other in the image plane after projec-
tion. A streamline scene with a high depth complexity can cause
difficulties in perceiving the underlying 3D structure of the flows.
Previously, researchers have proposed to use haloing effect when
rendering the streamlines. However, halos can only alleviate the
scene cluttering problem to a very limited extent as it is still diffi-
cult to make sense of a large number of broken line segments when
the underlying depth complexity of the scene is too high. To ef-
fectively control the clarity of the visualization, it is necessary to
reduce the rendered streamlines to a few depth layers. One type
of techniques that is related to controlling of the depth of rendered
scene is depth peeling [1] for polygonal models. However, depth
peeling for lines is not well defined since lines themselves cannot
form effective occluders because the space between lines are not
occupied.

Our image space method lends itself well to effective depth con-
trol and peeling. This is because seeds are placed on top the depth
map in the image plane. We can “peel” into the 3D flows by slowly
increasing a δ z from the original depth map to drop the initial seeds
and generate the streamlines. We can also control the display of
streamlines by constraining them to advect within a +/- δ z away
from the input depth map. This will effectively control the depth
complexity of the rendered scene. This is essentially to create clip-

ping planes to remove streamlines outside the allowed depth range.
In our case, the clipping planes have shapes conforming to the ini-
tial depth map. This can be more powerful compared to the tradi-
tional planar clipping planes. Figure 5 shows an example of open-
ing up a portion of the streamlines in the middle section by not
allowing streamlines to go beyond a small δ z from the input depth
map.

4.3.2 Level of Detail Rendering

Level of detail is often used as an effective way to control scene
complexity as well as avoid unnecessarily computation. Comput-
ing and displaying streamlines at subpixel positions in the image
plane does not add any value to the visualization other than caus-
ing cluttering and aliasing. Our image space method can be used to
generate level of detail display of streamlines automatically. When
a fixed image plane spacing between streamlines are specified, as
we zoom in and out of the scene, more and fewer streamlines will
be generated in the domain automatically since the seeds are placed
in the screen space and the space between streamlines will never
goes below a prescribed distance. Figure 6 shows an example of
the streamlines generated at different zoom scales.

4.3.3 Temporal Coherence

As the user zooms in and out, or rotates the scene, the projection
area of the surface will also be changed. A brute force algorithm
is to generate new streamlines whenever such changes occur. How-
ever, in this way, some unwanted flickering and other annoyances
might happen. To avoid these, temporal coherence of the rendered
streamlines must be ensured. When the user zooms into the surface,
the projection area becomes larger. The streamlines from previous
projection need to be retained, and placed into the queue as the
initial set of streamlines (see section 4.1). These streamlines are
first elongated before new ones are generated. Some sample points
along the streamlines might be out of the view frustum and thus
becomes invalid. When the user zooms out, we validate the sam-
ple points along the streamlines from previous projection and mark
those invalid points. After this, new streamlines will be added in,
even though some of them may be short streamlines. For the ro-
tation operation, it involves both the elongation and validation and
insertion of new lines similar to zooming in and out. Figure 7 shows
examples of streamlines generated during a continuous rotation.



(a) (b)

Figure 7: Our image based method preserves temporal coherence.
Images (a) and (b) were generated when the user rotated the scene.
Notice similar lines are present in those two images.

4.3.4 Stylish Drawing

One advantage of our image based streamline placement algorithm
is that the streamlines are well spaced out in the image plane. With
the spacing controlled, it becomes much easier to draw patches of a
desired width on the screen to enhance the visualization of stream-
lines, since we can easily avoid the stream patches overlapping with
each other. To compute the stream patches, we use the screen pro-
jection of the streamlines as the skeletons. Then, we extend the
width of the stream patches along the direction that is perpendic-
ular to the streamline’s local tangent direction on the screen. The
width of the stream patches is controlled by the local spacing of the
streamlines, which is known to our image based algorithm. With
the stream patches, we can map a variety of textures to simulate
different rendering styles. We can also vary the width and trans-
parency of the stream patches based on local flow properties. Figure
1 shows three examples of our stylish drawing of streamlines.

4.4 Strategies for Generating Depth Maps

In this section, we discuss several strategies for generating the depth
maps, which can be used as the input to our streamline generation
algorithm to guide the user visualizing the flow fields.

4.4.1 implicit stream surfaces

Stream surfaces are the surfaces whose normals are everywhere per-
pendicular to the local flow directions. In other words, every point
on the surface satisfies the following rule:

~N ·~V = 0 (1)

where N is the normal of the stream surface at the point and V
is the vector. Previously, Van Wijk [15] proposed a method to gen-
erate implicit stream surfaces by computing a backward streamline
from every grid point in the volume and recording its intersection
point at the domain boundary. If a scalar field is assigned to the
boundaries, values from the boundaries can be assigned to the grid
points according to the intersection points of their backward stream-
lines. Isosurfaces can then be generated from this scalar field to
represent the stream surfaces.

Images of rendering stream surfaces can be used as an input to
our image based algorithm. It has a unique property that streamlines
lie entirely on the surface and will not cross each other even in the
image space. By rendering implicit stream surfaces in layers using

different isovalues, we can place seeds on the surfaces to visualize
streamlines in layers.

(a) (b)

(a) (b)

Figure 8: Images of stream surfaces generated by using different
isovalue.

In the case that the user computes a large number of streamlines
in 3D space in a separate process, we can use implicit stream sur-
faces and our image based method to create a better visualization of
those streamlines. This can be done by first generating the implicit
stream function derived from the streamlines, and then visualizing
the stream surfaces in layers and dropping more seeds on the im-
age plane to enhance the understanding of the streamline structures.
To create the implicit stream function, instead of assigning scalar
values to the boundaries without considering the streamlines to be
visualized, we first calculate the intersection of those streamlines to
the boundaries. Then we treat each intersection point as a source
point of a potential function that emits energy to its surrounding
boundary points. The energy distribution can be calculated using a
Gaussian function.

Each intersection point or energy source receives a weight based
on their locations. We assign a higher weight for points that are
toward the center of the intersection point group and lower weights
to the outer ones, again, using a gaussian function.

Then we calculate the scalar value for every boundary point by
summing up the energy contribution from all sources and use the
resulting scalar field on the boundaries to create the 3D implicit
stream function. With such setup, we are able to create stream sur-
faces enclosing the streamlines in layers and drop more seeds on
each of the layer to enhance the streamline structure.

Figure 8 show two examples of the stream surfaces using our
method.

4.4.2 Slicing planes

Slicing planes have been used as a common way to visualize 3D
scalar fields as an alternative (perhaps more popular) way com-
pared to direct volume rendering or isosurfacing. Although simple,
in some cases it is more effective since it does not suffer from oc-
clusion or depth ambiguity. Slicing is used less often in visualizing
3D vector fields, however, because projecting the vectors onto the
slices may not show enough information about the 3D flow struc-
ture while compute streamlines originated from the slicing plane
may still generate cluttered scenes. With our image space method,
we can first generate an arbitrary slicing plane and map appropri-
ate property to the slice. After render the slice to the image plane,
we can select screen space points on the slice based on the scalar
values on the slices and then emit streamlines from those points.
Using our streamline generation algorithm, we are able to control
the depth complexity and show only the outer layer of the stream-
lines without intersection. We can control the seed placement on



the image plane to control the layering. Figure 9 shows an example
of streamlines computed from seeds dropped on a slicing plane.

(a) (b)

(a) (b)

Figure 9: (a) A slicing plane colored by the velocity field. (b) Stream-
lines advected from the slicing plane using our algorithm.

4.4.3 External Objects

Another application of our image space method is to drop seeds
on the surface of an external object. This external object can be
thought of as a 3D rake [2] from which seeds of streamlines are
emitted. While previously people have proposed to use 3D wid-
gets as seed placement tool, the seeds were explicitly placed to the
3D surface of the widget. This require an explicit discretization of
the rake surface to determine the 3D seed positions. In our image
space method, we only need to have the rendered image of the ob-
ject/widget but not its geometric representation. ¿From the image
and the depth map, the user can place seeds on the image space and
streamlines are computed from the unprojected seed points in 3D.
This way, any image/depth map can be used to drop seeds. Fig-
ure 10(a) shows streamlines computed from seeds originated from
the surface of a cylinder on the image plane.

4.4.4 Flow Field Related Scalar Quantities

Many scalar quantities are related to the properties of flow fields.
For instance, vorticity magnitude can often reveal the degree of lo-
cal rotations, while Laplacian can show the second order derivatives
of the flows. These scalar quantities are important to reveal the flow
structures although they are not related directly to the flow direc-
tions. Using our method, we can first generate images from the
scalar techniques such as isosurface of those variables. To enrich
the image and highlight the correlations between those properties
to the underlying flow directions, we can drop seeds in the image
space and visualize the results together. Figure 10(b) shows an ex-
ample of dropping seeds on the surface of a vorticity magnitude
isosurface on the image plane.

5 IMPLEMENTATION AND PERFORMANCE

We have tested our algorithm on a PC with an Intel Pentium IV 2
GHz processor, 768 MB memory, and an nVIDIA 6600 GT graph-
ics card with 128 MB of video memory.

5.1 Dataset

Two 3D flow data sets were used to test our program and show the
images througout the paper - Plume and TSI. Plume is a 3D turbu-
lent flow field with dimensions of 512x512x512. The original data
is a time-varying 3D flow field, which was to compute the turlence
in a solar simulation done NCAR scientists. TSI data is a 3D flow

(a) (b)

(a) (b)

Figure 10: Streamlines generated from seeds dropped on a cylinder
at different place in the image plane.

field with dimensions of 200x200x200. It was to model the core
collapse of supernova and generated by collaboration among Oak
Ridge National Lab and eight universities. We tested our algorithm
using a few steps of these two data sets.

5.2 Timing

Since our method is image based streamline generation scheme, we
chose to use separating distance in screen space between points to
estimate the density of streamlines. A 3D flow field is much more
complicated than 2D fields, in particular for turbulence data. A ma-
jor part of time spent on generating streamlines include validation
for streamline points, 3D to 2D projection, and streamline advec-
tion. Our seed selection and streamline advection algorithms was
implemented on a CPU, and the illumination of streamlines was im-
plemented on GPU. We separate the discussion of timing for these
two data sets.

Time Separating dist. number of streamlines
0.156 12.0 59
0.547 8.0 122
1.203 6.71 146
2.375 3.48 354
4.578 2.12 923

Table 1: The time and number of streamlines for different separating
distance (in seconds) on Plume data set.

Time Separating dist. number of streamlines
0.281 12.0 64
0.516 9.2 127
1.25 6.22 281
3.546 3.24 492
4.578 2.12 923
7.218 2.74 1102

Table 2: The time and number of streamlines for different separating
distance (in seconds) on TSI data set.

6 CONCLUSIONS AND FUTURE WORK

We present an image based approach for streamline generation and
rendering. Our main goal is to reduce scene cluttering and allow



the user to flexibly drop streamline seeds on the screen when they
identify hot spots from the visualization of other scalar or flow re-
lated variables. The rendering output from a variety of visualization
techniques, such as isosurfaces or slicing planes, can be used as in-
put to our program to assist seed selections, and unprojecting the
seeds back to the three dimensional space. As streamlines are ad-
vected in the object space, our algorithm monitors and controls their
distances to other existing streamlines that have already been plot-
ted. Besides reducing visual cluttering, our algorithm can be used
to achieve a variety of effects such as importance driven seed place-
ment, level of detail rendering, depth layering, and stylish drawing
of streamlines. We also allow a variety of ways for the user to cre-
atetwo dimensional images as input.

Future work will be on experimenting a wider range of input
images for detecting domain specific flow features. We will also
enhance the depth cues of the streamlines generated by our algo-
rithms. Finally, we will apply our algorithm to generate various
non-photorealistic rendering effects to have a better illustration of
three dimensional vector fields.

ACKNOWLEDGEMENTS

The authors would like to acknowledge John Clyne at National
Center for Atmospheric Research and Oak Ridge National Lab for
providing the PLUME and TSI data.

REFERENCES

[1] C. Everitt. Interactive order-independent transparency. Technical re-
port, NVIDIA Corporation, 2001.

[2] K. Herndon and T. Meyer. 3d widgets for exploratory scientific visu-
alization. In ACM Symposium on User Interface Software and Tech-
nology, 1994.

[3] Victoria Interrante and Chester Grosch. Strategies for effectively visu-
alizing 3d flow with volume LIC. In IEEE Visualization, pages 421–
424, 1997.

[4] B. Jobard and W. Lefer. Unsteady flow visualization by animating
evenly-spaced streamlines. Computer Graphics Forum (Proceedings
of Eurographics 2000), 19(3), 2000.

[5] Bruno Jobard and Wilfrid Lefer. Creating evenly-spaced streamlines
of arbitrary density. In W. Lefer and M. Grave, editors, Visualization in
Scientific Computing ’97. Proceedings of the Eurographics Workshop
in Boulogne-sur-Mer, France, pages 43–56, Wien, New York, 1997.
Springer Verlag.

[6] R. Laramee, C. Garth, and H. Schneider, J.and Hauser. Texture advec-
tion on stream surfaces: A novel hybrid visualization applied to cfd
simulation results. In Proceedings of EuroVis 2006. IEEE Computer
Society Press, 2006.

[7] R. Laramee, B. Jobard, and H. Hauser. Image space based visual-
ization of unsteady flow on surfaces. In Proceedings of Visualization
2003, pages 131–138. IEEE Computer Society Press, 2003.

[8] G.-S. Li, H.-W. Shen, and U. Bordoloi. Chameleon: An interactive
texture-based rendering framework for visualizing three-dimensional
vector fields. In Proceedings of Visualization 2003. IEEE Computer
Society Press, 2003.

[9] O. Mallo, R. Peikert, C. Sigg, and F. Sadlo. Illuminated lines revisited.
In IEEE Visualization, pages 19–26, 2005.

[10] Oliver Mattausch, Thomas Theul, Helwig Hauser, and Meister Eduard
Gröller. Strategies for interactive exploration of 3d flow using evenly-
spaced illuminated streamlines.

[11] N. Max, R. Crawfis, and Ch. Grant. Visualizing 3D velocity fields
near contour surfaces. In IEEE Visualization ’94 Proceedings, pages
248–255. IEEE Computer Society, 1994.

[12] A. Mebarki, P. Alliez, and O. Devillers. Farthest point seeding for
efficient placement of streamlines. In Proceedings of Visualization
2005, pages 479–486. IEEE Computer Society Press, 2005.

[13] D. Stalling and M. Zockler. Fast display of illuminated field lines.
IEEE Transactions on Visualization and Computer Graphics, 3(2),
1997.

[14] G. Turk and D. Banks. Image-guided streamline placement. In
Proceedings of SIGGRAPH ’96, pages 453–460. ACM SIGGRAPH,
1996.

[15] J. van Wijk. Implicit stream surfaces. In IEEE Visualization, pages
245–252, 1993.

[16] J van Wijk. Image based flow visualization. In Proceedings of the 29th
annual conference on Computer graphics and interactive techniques,
pages 745–754. ACM Press, 2002.

[17] J. van Wijk. Image based flow visualization on curved surfaces. In
Proceedings of Visualization 2003, pages 123–131. IEEE Computer
Society Press, 2003.

[18] Vivek Verma, David T. Kao, and Alex Pang. A flow-guided streamline
seeding strategy. In IEEE Visualization, pages 163–170, 2000.

[19] Xiaohong Ye, David T. Kao, and Alex Pang. Strategy for seeding 3d
streamlines. In IEEE Visualization, pages 471–478, 2005.


