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Abstract

Recently several algorithms have been proposed to enhance noisy speech by estimating a binary
mask that can be used to select those time-frequency regions of a noisy speech signal that contain
more speech energy than noise energy. This binary mask encodes the uncertainty associated with
enhanced speech in the linear spectral domain. The use of the cepstral transformation smears the
information from the noise dominant time-frequency regions across all the cepstral features. We propose
a supervised approach using regression trees to learn the non linear transformation of the uncertainty
from the linear spectral domain to the cepstral domain. This uncertainty is used by a decoder that
exploits the variance associated with the enhanced cepstral features to improve robust speech recognition.
Systematic evaluations on a subset of the Aurora4 task using the estimated uncertainty shows substantial
improvement over the baseline performance across various noise conditions.
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I. INTRODUCTION

The performance of automatic speech recognizers (ASRs) degrades rapidly in the presence of
noise and other distortions [16]. To mitigate the effect of noise on recognition, noisy speech is
typically preprocessed by speech enhancement algorithms, such as spectral subtraction [6], [21].
However, the accuracy of these algorithms often varies widely across time frames. Additionally,
the variances of enhanced features also differ even within a time frame. Recently an uncertainty
decoding approach to robust speech recognition has been proposed to effectively account for the
varied accuracies of features derived from front-end preprocessing [13]. In this approach, com-
putation of the observation probability during recognition involves integration over all possible
speech feature values. Specifically, speech enhancement uncertainties contribute to an increase
in the variance of acoustic model variables. It is shown in [13] that the uncertainty decoder
significantly outperforms the conventional ASR operating on the enhanced speech features.

Currently most algorithms estimate the uncertainty associated with the enhanced speech fea-
tures in either the log Mel-frequency domain or directly in the cepstral domain [2], [13], [20],
[37]. Hence, the uncertainty decoder is coupled with speech enhancement algorithms operating
in these domains. However, several speech enhancement algorithms operate in the linear spectral
domain. In particular, many recent methods attempt to estimate a binary time-frequency mask
that can be used to select those time-frequency (T-F) regions of a noisy speech signal that
contain more speech energy than noise energy [1], [15], [30], [31], [42]. Some methods rely on
the observation that individual signals in a mixture are sparsely distributed in the time-frequency
domain [30], [42]. This enables them to handle a variety of mixing conditions, including those
involving more sources than sensors [26]. The use of a binary mask as the computational goal
makes only weak assumptions about interference conditions. Further, estimation of the binary
mask imposes a lesser demand on the speech enhancement front-end and is often more robust
than full-band speech enhancement [35], [39].

Signals reconstructed from such masks have been shown to be substantially more intelligible
for human listeners than original mixtures [10], [30]. However, conventional ASR systems are
extremely sensitive to the distortions produced during resynthesis. To minimize the effect of
distortions on recognition, these speech enhancement systems are currently coupled with a
missing-data recognizer [11], [22], [30]. Missing-data ASR attempts to improve robust speech
recognition by distinguishing between reliable and unreliable data in the T-F domain. It uses
the binary mask generated by speech enhancement algorithms to label the speech-dominant T-
F regions as reliable and the rest as unreliable. While the performance of the missing data
recognizer is significantly better than the performance of a system using front-end speech
enhancement followed by recognition of enhanced speech [11], a significant disadvantage of the
missing data recognizer is that recognition is performed in the spectral or the T-F domain. It is
well known that recognition using cepstral coefficients yields a superior performance compared
to recognition using spectral coefficients under clean speech conditions [12]. In addition, the
performance of the missing-data ASR degrades as the vocabulary size increases [35]. Attempts
to adapt the missing data method to the cepstral domain have centered around reconstruction
or imputation of the missing values in the spectral domain followed by transformation to the
cepstral domain [28]. This reconstruction is typically based on a trained speech prior.

Although the spectrogram reconstruction method in [28] provides promising results, errors
in mask estimation and subsequent reconstruction degrade the performance of the ASR. In this
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paper, we present a two-step, supervised learning approach to estimate the uncertainty associated
with the reconstructed cepstra. In the first step, we estimate the uncertainty in the spectral
domain by utilizing the statistical information contained in the speech prior used in spectrogram
reconstruction. In the second step, this uncertainty is transformed to the cepstral domain using
a nonlinear regression model. Specifically, we employ a nonparametric learning approach using
regression trees to directly estimate the uncertainties associated with the static, dynamic, and
acceleration cepstral coefficients. We thus convert the binary uncertainty encoded by the T-F
mask into a real-valued uncertainty associated with the cepstral features. The estimated cepstral-
domain uncertainty is utilized by an uncertainty decoder during recognition. We show that the
resulting system improves the recognition performance over that of the conventional ASR across
various noise conditions.

The rest of the paper is organized as follows. The next section briefly reviews the uncertainty
decoding framework for robust speech recognition. Section III contains a detailed presentation of
the proposed method for estimating the uncertainty associated with the reconstructed cepstra. The
method has been systematically evaluated on a subset of the Aurora4 noisy speech recognition
task and the evaluation results are presented in Section IV. This section also contains a perfor-
mance comparison of the missing-data ASR and the uncertainty decoder on a digit recognition
task. Finally, conclusions and future work are given in Section V.

II. UNCERTAINTY DECODING

A typical approach for robust speech recognition involves preprocessing a noisy speech signal
by a speech enhancement algorithm to produce an estimate of the clean speech features. These
features are then used directly in the evaluation of the acoustic model probability in ASR
systems. As discussed in the introduction, the performance of front-end denoising algorithms
is often inconsistent. This inconsistency could potentially change the mean and the variance
of the features extracted. Conventional ASR systems are especially sensitive to changes in the
variance of the features derived from the output of speech enhancement algorithms [8]. The
uncertainty decoding method accounts for such distortions in speech enhancement by integrating
the probability of the observed features over all possible speech feature values [13]. Hence, the
new observation likelihood is computed as

∫ ∞

−∞

p(z|M)p(z|θ)dz, (1)

wheres z is the clean speech feature seen during training and M denotes a parameterized
model of the observation density. Following the suggestion in [13] we assume that the front-end
compensation model, parameterized by θ, can be characterized as:

p(z|θ) = N(z; ẑ,Σẑ), (2)

where ẑ is the enhanced feature. The model in (2), therefore, states that the error in the estimation
of the clean speech feature, z − ẑ, is Gaussian distributed with zero mean and a variance of
Σẑ. For many speech enhancement algorithms, this is a valid assumption. Fig. 1 shows the
histograms of the deviation of two estimated cepstral coefficients from the true ones. The speech
samples are derived from the clean and noisy development portions of the Aurora4 database [24].
The noise source corresponds to a restaurant environment. The speech enhancement algorithm
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Fig. 1. Histograms of the errors in the estimation of clean speech features using a speech enhancement algorithm.
Statistics are obtained using clean speech and speech corrupted with restaurant noise from the Aurora4 database.
(a) Histogram of the estimation error for the 4

th order cepstral coefficient. (b) Corresponding results for the 11
th

order cepstral coefficient.

used is a spectral subtraction algorithm (see Section IV). Fig. 1(a) shows the error distribution
corresponding to the 4th order cepstral coefficient. Similarly, Fig. 1(b) shows the error distribution
corresponding to the 11th order cepstral coefficient. Note that the distributions can be well
approximated by zero mean Gaussians.

The observation density in each state of a hidden Markov model (HMM) based ASR is usually
modeled as a mixture of Gaussian densities. Therefore,

p(z|k, q) = N(z;µk,q,Σk,q) (3)

is the likelihood of observing z given state q and mixture k; µk,q and Σk,q are the mean and
the variance of the Gaussian mixture component. When noisy speech is processed by unbiased
speech enhancement algorithms, it is shown in [13] that the observation likelihood should be
computed as

∫ ∞

−∞

p(z|k, q)p(z|θ)dz = N(ẑ;µk,q,Σk,q + Σẑ). (4)

The role of the uncertainty associated with the enhanced features can be seen in (4) as that
of increasing the variance of individual Gaussian mixture components. Hence, those enhanced
speech features that deviate more from clean ones will contribute less to the overall likelihood.
For example, from Fig. 1 we can observe that the variance of the error distribution corresponding
to the 4th order cepstral coefficient is smaller than that of the 11th order coefficient. Hence, the
observation likelihood extracted from the former can be expected to contribute more to the final
acoustic model score.
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It is shown in [2], [4], [13] that the utilization of the speech feature uncertainty contributes
to a significant improvement in the ASR accuracy on small vocabulary tasks. The performance
improvement is particularly substantial when the variance of the enhanced features is known a
priori [13]. Hence, an accurate estimate of the speech feature uncertainty is critical for realizing
the full benefits from uncertainty decoding.

III. LEARNING CEPSTRAL UNCERTAINTY FROM SPECTRUM

Current methods for estimating the uncertainty involve the use of speech enhancement algo-
rithms operating in log-Mel frequency or cepstral domains [13], [20]. However, a large class of
speech enhancement algorithms use other frequency representations such as auditory frequency
(e.g. [15]), discrete Fourier transform (DFT) (e.g. [6]), etc. In particular, several recent algorithms
perform speech enhancement by attempting to estimate a binary mask that can be used to select
speech-dominant T-F regions of a noisy speech signal [30], [42]. Specifically, the T-F units in
a noisy mixture are selectively weighted (1 or 0) in order to enhance the desired signal. While
the subjective intelligibility of such enhanced signals is high [10], [30], the speech features
extracted for use in ASR suffer from distortion due to the mismatch arising from the noise
dominant T-F units. To mitigate the effect of these distortions on recognition, these algorithms
have been typically coupled to a missing-data ASR [22], [30]. The missing-data ASR treats the
noise-dominant T-F units as missing or unreliable and marginalizes them during recognition. As
mentioned in the introduction, this constrains the recognition to be performed in the spectral or
the T-F domain. The use of cepstral transformation smears the information from the noisy T-F
units across all the cepstral features, preventing its effective marginalization.

To utilize the advantage of cepstral features for recognition, it is suggested in [28] that the
information in the noise-dominant T-F regions be first reconstructed using a speech prior. This
allows for the subsequent use of the cepstral transformation. While promising recognition results
are reported in [28], as mentioned in Section I, the ASR performance is sensitive to errors in
mask estimation and reconstruction. Estimation of these errors would enable their use in the
uncertainty decoder for improved recognition results. Hence, we propose a two-step method for
estimating the uncertainty associated with reconstructed cepstra. In the first-step, we estimate
the uncertainty associated with the reconstructed spectra by utilizing the statistical information
contained in the speech prior used in reconstructing the speech information in the noise-dominant
T-F units. In the second step, a non linear regression is performed to transform the estimated
spectral-domain variance into the cepstral domain. We use the non-parametric method of decision
trees [7] for the regression operation.

A. Estimating the Uncertainty of Reconstructed Spectra

The noisy input is first analyzed using a short T-F decomposition. The T-F resolution is
20 ms time frames with a 10 ms frame shift and 257 discrete Fourier transform coefficients.
Frames are extracted by applying a running Hamming window to the signal. This signal is then
processed by a speech segregation algorithm that estimates an ideal binary mask. A T-F unit in
the ideal binary mask is 1 if in the corresponding T-F unit, the noisy speech contains more speech
energy than interference energy; it is 0 otherwise. The ideal binary mask may be obtained a
priori from premixing speech and noise. In practice, the ideal binary mask is not obtainable from
a noisy signal, but can be estimated using speech separation algorithms. A binary T-F mask thus
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estimated is used in conjunction with the spectrogram reconstruction approach to derive features
for recognition.

In the spectrogram reconstruction approach, a noisy spectral vector Y at a particular frame is
partitioned into reliable and unreliable constituents as Yr and Yu, where Y = Yr ∪ Yu [28]. The
reliable features are the T-F units labeled 1 (speech-dominant) in the binary T-F mask while the
unreliable features are the ones labeled 0 (noise-dominant). Assuming that the reliable features
Yr approximate well the true ones Xr, a Bayesian decision is then employed to estimate the
remaining components Xu given the reliable ones and a prior speech model. As in [28], we
model the speech prior as a mixture of Gaussians,

p(X) =
M
∑

k=1

p(k)p(X|k), (5)

where M = 1024 is the number of mixture components, k is the mixture index, p(k) is the
mixture weight, and p(X|k) = N(X;µk,Σk). The binary mask is also used to partition the
mean and covariance of each mixture into their reliable and unreliable components as:

µk =

[

µr,k

µu,k

]

, Σk =

[

Σrr,k Σru,k

Σur,k Σuu,k

]

. (6)

Note that Σru,k and Σur,k denote the cross-covariance between the reliable and unreliable com-
ponents.

It is shown in [11], [28] that a good estimate of Xu is its expected value conditioned on Xr:

EXu|Xr
(Xu) =

M
∑

k=1

p(k|Xr)X̂u,k, (7)

where p(k|Xr) is the a posteriori probability of the k’th mixture given the reliable data and X̂u,k

is the expected value of Xu given the k’th mixture. p(k|Xr) is estimated using the Bayesian
rule and the marginal distribution p(Xr|k) = N(Xr;µr,k,Σrr,k) as:

x(k|Xr) =
p(k)p(Xr|k)

∑M

k=1
p(k)p(Xr|k)

. (8)

The expected value in the unreliable T-F units corresponding to the k’th mixture can be computed
as shown in [14] as:

X̂u,k = µu,k + Σur,kΣ
−1

rr,k(Xr − µr,k). (9)

Besides estimating the speech spectral value in the unreliable T-F units, we are also interested
in computing the uncertainty in our estimates. The variance associated with the reconstructed
spectral vector X̂ can also be computed in a similar fashion to the computation of the mean
in (7) as:

Σ̂X̂ =
M
∑

k=1

p(k|Xr){

([

Xr

X̂u,k

]

− µk

)

×

([

Xr

X̂u,k

]

− µk

)T

+

[

0 0

0 Σ̂u,k

]

}, (10)



7

Time (sec)

F
re

q
u

en
cy

 (
H

z)

0.05 0.15 0.25 0.35 0.45
0

1000

2000

3000

4000

5000

6000

7000

8000

(a)

Time (sec)

F
re

q
u

en
cy

 (
H

z)

0.05 0.15 0.25 0.35 0.45
0

1000

2000

3000

4000

5000

6000

7000

8000

(b)

Time (sec)

F
re

q
u

en
cy

 (
H

z)

0.05 0.15 0.25 0.35 0.45
0

1000

2000

3000

4000

5000

6000

7000

8000

(c)

Time (sec)

F
re

q
u

en
cy

 (
H

z)

0.05 0.15 0.25 0.35 0.45
0

1000

2000

3000

4000

5000

6000

7000

8000

(d)

Time (sec)

F
re

q
u

en
cy

 (
H

z)

0.05 0.15 0.25 0.35 0.45
0

1000

2000

3000

4000

5000

6000

7000

8000

(e)

Time (sec)

F
re

q
u

en
cy

 (
H

z)

0.05 0.15 0.25 0.35 0.45
0

1000

2000

3000

4000

5000

6000

7000

8000

(f)

Fig. 2. Comparison between estimated and ideal uncertainties of the reconstructed spectra. (a) The spectrogram of
a clean speech utterance. (b) The spectrogram of a mixture of the clean speech utterance and restaurant noise. (c)
The binary T-F mask produced by spectral subtraction. Reliable T-F units are marked black and unreliable white.
(d) The spectrogram obtained from (b) by applying the mask in (c) followed by reconstruction of the unreliable T-F
units. (e) The true uncertainty associated with the reconstructed spectrogram in (d). (f) The corresponding estimated
uncertainty.
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where
Σ̂u,k = Σuu,k − Σur,kΣ

−1

rr,kΣru,k. (11)

Fig. 2 shows the comparison between ideal and estimated uncertainties. Fig. 2(a) shows
a spectrogram of a clean speech utterance from the Aurora4 database. Fig. 2(b) shows the
spectrogram of a mixture of the speech and restaurant noise from the same database. A binary
T-F mask, estimated using a spectral subtraction-based algorithm (see Section IV), is shown in
Fig. 2(c). The reliable T-F units in this mask are black and the unreliable ones white. This mask
is applied to the mixture as explained above and the results are presented in Fig. 2(d). Note
that the application of the binary mask and the spectrogram reconstruction algorithm results in a
significant reduction of noise in the mixture, especially in the mid- and high-frequency regions.
However, the enhancement is not perfect and deviations from clean speech exist. Fig. 2(e)
and Fig. 2(f) show the ideal and the estimated uncertainties associated with the reconstructed
spectrogram in Fig. 2(d), respectively. The ideal uncertainty is computed as the squared difference
between the spectral energies of the enhanced and the clean speech utterances. We use the
diagonal components of Σ̂X̂ as the estimate of the uncertainty associated with the reconstructed
spectral vector X̂ . Observe that the estimated uncertainty is similar to the ideal uncertainty,
especially in those time frames that contain voice activity. The cesptra ẑ derived from X̂ is used
as input to the ASR in the experiments reported in Section IV. Note that no information about
the noise source is used in the estimation of Σ̂X̂ .

B. Transforming Spectral Uncertainty into Cepstral Domain

In the second step, we use a set of regression trees to transform diag {Σ̂X̂} into Σ̂ẑ, the
estimated variance associated with the reconstructed cepstra. Regression tree is a flexible and
easy-to-interpret tool for non-parametric and multivariate regression analysis. It is a particularly
attractive option if a parametric form of relationship between the predictor and the dependent
variables is unavailable from domain knowledge. Since regression trees are fairly well docu-
mented in the literature [7], we only provide a brief overview here. A regression tree performs a
histogram analysis of the regression surface. In essence, this involves the use of a binary decision
tree to partition the input space using a sequence of yes/no questions that form the leaf nodes of
the tree. Depending on the answers, the tree is traversed until a terminal node is reached. The
terminal nodes contain the values of the dependent variable. In regression analysis, a question is
chosen so that the answer partitions the predictor variable space in such a manner as to minimize
the weighted sample variance of the dependent variable at that node [7].

For each frame, the input to the regression tree consists of diag {Σ̂X̂} corresponding to
that frame. It is also found to be useful to supplement the spectral domain variance by the
reconstructed cepstra in that frame and in one frame before and after. The desired output, as
suggested in [13], is a diagonal matrix formed by the squared difference between the recon-
structed and clean cepstra. The feature vectors used in the recognition experiments reported in
Section IV consist of 12 Mel-frequency cepstral coefficients and the log frame energy along with
the corresponding delta and acceleration coefficients. Hence, the uncertainties corresponding
to a 39 dimensional output feature are required. We estimate the uncertainty corresponding
to static, delta and acceleration coefficients independently. Note that the cepstral transform
approximately orthogonalizes the spectral features [34]. While it is certainly possible to use
the same transformation used in the computation of the difference coefficients to compute their
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Fig. 3. Choosing the best tree size by cross-validation. The plot shows how the regression error variance changes
as the number of terminal node increases on the cross-validation dataset. The plot also shows the number of terminal
nodes for the best tree chosen. The best tree has an error variance one standard deviation higher than the minimum
variance.

uncertainties from the static ones [13], [18], it may be advantageous to estimate them directly.
It is shown in [41] that the difference features are more robust than static features. However, the
computation of the uncertainties of the dynamic coefficients from the static ones using typical
linear transforms would result in increased uncertainty of the static ones. Additional justification
for the independence modeling assumption using difference coefficients can be found in [40].
Hence, we train a separate tree for each output dimension using the same input feature set.

Two parameters critical to the successful use of regression trees are the minimum splitting
threshold and the tree size. The minimum splitting threshold refers to the minimum number
of training samples in a terminal node for it to be a valid one [32]. In our experiments, we
set the minimum splitting threshold to 10. To avoid over-fitting, a 10-fold cross-validation is
used to find the best tree size [7], [32]. Fig. 3 shows how the regression error variance changes
on the cross-validation data as the tree size increases. The data corresponds to regressing the
uncertainty of the 1st order cepstral coefficient. Note that the regression error variance decreases
as the number of terminal nodes is increased. However, to avoid over-fitting, we choose the best
tree size as the one that has an error variance one standard deviation higher than the minimum
regression error variance. Fig. 3 also shows the tree size and the cross-validation error variance
of the best tree so chosen.

Fig. 4(a) and Fig. 4(b) show the true and the estimated cepstral uncertainties for the same
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Fig. 4. Comparison between true and estimated cepstral domain uncertainties. (a) The true uncertainty associated
with the static, the dynamic and the acceleration cepstral coefficients. (b) The corresponding estimated uncertainty.

noisy mixture as used in generating the results shown in Fig. 2, respectively. The brightness of a
pixel is related to the degree of the uncertainty of the corresponding cepstral coefficient. Greater
brightness indicates higher uncertainty. Fig. 4(a) shows the true uncertainties corresponding to
the static, the delta and the acceleration (Acc.) coefficients. The figure supports the conclusion
in [41] that the dynamic cepstral coefficients are more reliable than the static ones. Fig. 4(b)
shows the uncertainties estimated using the set of 39 regression trees. Notice that the estimated
uncertainties approximate well the true ones.

IV. EXPERIMENTAL RESULTS

We have evaluated the proposed method of uncertainty estimation in conjunction with the
uncertainty decoder on the Aurora 4, 5000 word closed-vocabulary recognition task [24]. This
task is based on the Wall Street Journal (WSJ0) database [25], which is created by recording
speakers reading articles from the Wall Street Journal. Aurora4 consists of several test sets
corresponding to different noise sources digitally added to the clean speech recordings. The
signal to noise ratio (SNR) is randomly chosen from 5 dB to 15 dB, with an average SNR of
10 dB. This database also includes other test sets that incorporate microphone and sampling
rate variations. As the focus of this paper is on noise robustness, we consider only a subset of
the Aurora4 task. This subset corresponds to training and testing on the recordings from the
Sennheiser microphone at 16 kHz and processed by a P.341 filter [24]. The use of the P.341
filter simulates the transmission characteristics for wideband telephony [17]. In particular, 7138
utterances from 83 speakers in the “training clean sennh” set are used for training the acoustic
model and the speech prior used in reconstruction (see Section III-A). The acoustic model
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TABLE I
WER (%) OF UNCERTAINTY DECODING AND RECOGNITION WITH RECONSTRUCTED

CEPSTRA WHEN USING THE SPECTRAL SUBTRACTION MASK ON THE AURORA4 TASK. FOR

COMPARISON, BASELINE RECOGNITION RESULTS AND RESULTS OBTAINED USING THE ETSI
ADVANCED FEATURE EXTRACTION ALGORITHM ARE ALSO SHOWN.

System
Test Set

2 3 4 5 6 7
Baseline 57.5 55.4 55.4 63.0 54.1 65.9

Enhanced Speech 23.3 47.3 54.6 50.4 50.5 49.1
UD 22.1 43.5 51.5 49.5 47.6 46.9

consists of state-tied, cross-word triphone-based HMMs. The observation density in each state
is modeled using a mixture of 4 Gaussians [23]. We use the same bigram language model and
the CMU pronunciation dictionary-based lexicon [9] as used in generating the baseline results
on Aurora4 [23]. Testing is performed on noisy utterances from 6 different noise sources: car,
babble, restaurant, street, airport and train. These noisy utterances correspond to test sets 2-7
respectively. We use the standard “short test set definitions” consisting of 166 test utterances
for each noise condition. This set gives results representative of the complete test set [24]. The
number of speakers in the test set is 8. Training and testing on clean speech are performed using
the toolkit and scripts developed for Aurora4 [23]. For testing on the noisy datasets, the decoder
in [23] is modified to incorporate the uncertainty decoding method. The word error rate (WER)
under clean speech conditions is 10.5%.

For training the regression trees (Section III-B), we use only a 40-utterance development-
subset corresponding to one of the noise sources, restaurant noise. Note that for robust speech
recognition, it is desirable to utilize as little a priori information about noise as possible.
Hence, we avoid using other noise sources in training the set of regression trees. To obtain
the reconstructed spectra during the regression learning, we use ideal binary T-F masks (see
Section III-A). As the Aurora4 corpus does not separately provide the noise source used to
construct the noisy test sets, the noise signal is estimated from the mixture and the clean speech
signals by assuming that speech and noise are uncorrelated in the mixture. The noise signal is then
estimated by subtracting the clean speech signal from the mixture signal. Finally, the enhanced
(reconstructed) cepstra ẑ and its associated variance Σẑ, estimated using the method described
in Section III, are used in (4) to perform uncertainty decoding in the following experiments.

Spectral subtraction is frequently used to generate binary T-F masks in missing data studies [3],
[11]. Hence, we first report results using binary masks generated by spectral subtraction. The
spectrum of noise is estimated as the average spectrum of the first and the last 50 frames of the
noisy speech spectrum. The noise spectrum is then used to estimate the local SNR in each T-F
unit. As in [11], a T-F unit is labeled speech-dominant in the mask if the local SNR exceeds a
threshold. The choice of this threshold represents a trade-off between providing more T-F units
with reliable labels to the spectrogram reconstruction algorithm (Section III-A) and preventing
wrong labeling of T-F units [29]. The optimal value is also dependent on the SNR [29], [33].
For simplicity we set this threshold to a constant. The value of 5 dB is found to give the best
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recognition performance on the development set and is used for all the test sets. Additionally,
as suggested in [28] the estimated noise spectrum is used to “clean” the reliable T-F units by
subtracting the noise energy from the mixture energy.

Table I summarizes the performance of the uncertainty decoder (“UD”) on the reconstructed
cepstra by utilizing the estimated uncertainty. Performance is measured in terms of percentage
WER. For comparison, we also show the performance of the conventional decoder on the recon-
structed cepstra (“Enhanced Speech”). Additionally, the baseline performance of the conventional
decoder on the noisy data is also shown (“Baseline”). As can be seen from Table I, across all
noise conditions, the performance of the uncertainty decoder using the estimated uncertainty
shows significant improvement over that of the conventional ASR on the reconstructed cepstra.
The average reduction in error rate is 5.2%. Moreover, large improvement over the baseline
performance is obtained, with an average error rate reduction of 27.34%. Notice that the system
is able to generalize well across noise conditions not seen during the regression tree training.

We now present results using the masks generated by a computational auditory scene analysis
(CASA) system [15]. This system is a voiced speech separation system based on two main stages:
segmentation and grouping. In segmentation, the input signal is decomposed into a collection of
contiguous T-F units that are dominated by one sound source. During grouping, those segments
that likely belong to the same source are grouped together based on common periodicity. In the
low-frequency range, the system generates segments based on temporal continuity and cross-
channel correlation, and groups them based on periodicity similarity. For high-frequencies, the
signal envelope fluctuates at the pitch rate and amplitude modulation rates are used for group-
ing [15]. Provided that the speech pitch contour can be estimated, this segregation mechanism
produces a binary mask that labels those T-F units where speech dominates the interference.
The CASA system shows a robust performance when tested with a variety of noise intrusions.
For input to the system in [15], a pitch estimate is derived from the noisy speech signal using
Praat [5]. The system in [15] uses an auditory filterbank decomposition of the input signal. For
consistency with the DFT decomposition used in our spectrogram reconstruction, this mask is
mapped into the DFT domain prior to reconstruction by labeling the corresponding DFT bins.
Note that the system in [15] segregates only voiced speech. Hence, if a valid pitch is not detected
in a particular frame, we use the mask obtained by spectral subtraction in those frames. Table II
shows the performance of the uncertainty decoder when using the combined mask from [15]
and spectral subtraction. As before, across all SNR conditions, significant improvement over
the performance of the conventional ASR on the enhanced speech is obtained when using the
estimated variance. The average reduction in WER is 7.6%. Note that under non-stationary
noise conditions (e.g. restaurant, test set 4), the performances of both the conventional ASR
and uncertainty decoder using the combined mask are significantly better than their performance
when using the spectral subtraction mask alone. However, Mask estimation based on spectral
subtraction appears to be better for the stationary noise conditions in the present study. This
is due to the inability of the voice separation system to recover the inharmonic components
of speech in the voiced frames. On the other hand, under non-stationary noise conditions, this
drawback is more than offset by improved segregation of harmonic components.

To show the ceiling performance of the proposed method, we also report results obtained
using the ideal binary T-F masks. These masks are generated in a similar fashion to those used
in our regression tree training. For comparison, recognition results using the ideal uncertainties
(“Ideal UD”) are also shown. Ideal uncertainty is computed as the squared difference between
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TABLE II
WER (%) OF UNCERTAINTY DECODING AND RECOGNITION WITH RECONSTRUCTED

CEPSTRA WHEN USING THE COMBINED VOICE SEPARATION AND SPECTRAL SUBTRACTION

MASK.

System
Test Set

2 3 4 5 6 7
Enhanced Speech 31.1 45.5 50.4 51.6 53.2 53.2

UD 27.5 42 46.9 51.5 47.1 49.2

TABLE III
WER (%) FROM UNCERTAINTY DECODING WITH ESTIMATED AND IDEAL VARIANCE AND

RECOGNITION WITH RECONSTRUCTED CEPSTRA WHEN USING THE IDEAL BINARY MASK.

System
Test Set

2 3 4 5 6 7
Enhanced Speech 14.7 22 25.2 29 19.6 26

Estimated UD 14 20 22 24.9 17.5 25.7
Ideal UD 14 20.1 22.2 25.1 16.8 24.9

the reconstructed and clean cepstra as suggested in [13]. Table III shows that the performance
of the uncertainty decoder using the estimated uncertainty (“Estimated UD”) is close to its
performance using the ideal uncertainty. This indicates that the proposed approach estimates the
uncertainty associated with the reconstructed cepstra accurately. Notice that even with the use
of ideal binary masks, the uncertainly decoder can still improve recognition results compared to
the conventional ASR; the average reduction in error rate is 8.75%. Note that for test sets 3-5,
the performance of uncertainty decoder using the ideal uncertainties is slightly worse compared
to its performance using the estimated ones. However, the performance difference is statistically
insignificant.

It can also be seen from Table III that use of the ideal binary mask results in an excellent
performance for both the conventional ASR and the uncertainty decoder. This supports that use
of the ideal binary mask as a computational goal for speech separation systems (see also [39]).

A. Comparison of Regression Trees and Multilayer Perceptrons in Learning the Cepstral Domain
Uncertainty

In an earlier study [36], we used a multilayer perceptron (MLP) to transform the spectral
domain uncertainty into the variance associated with the reconstructed cepstra. Since MLP is
well known as a universal function approximator [27], it can also be used for learning this
transformation. Specifically, we trained a one-hidden-layer (374-800-39) MLP [27]. The input
and the output features are the same as those described in Section III-B. The transfer functions of
the hidden and output layer neurons are tangent hyperbolic sigmoid and linear respectively. The
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TABLE IV
COMPARISON OF WER (%) USING TWO DIFFERENT TRANFORMATION METHODS.

Transformation Method
Test Set

2 3 4 5 6 7
Regression Tree 22.1 43.5 51.5 49.5 47.6 46.9

MLP 22.7 45.5 51.5 51.9 47.6 49.4

MLP is trained using backpropagation, optimized by the scaled conjugate gradient method [27].
The network is trained for 100 epochs and a 10-fold cross-validation is used to avoid over-fitting.

Table IV compares the WER of the uncertainty decoder using regression trees and MLP to
transform the uncertainty from the spectral domain to the cepstral domain. For both methods,
the enhanced speech was produced using the binary masks generated by spectral subtraction.
From Table IV, we can see that the performance of the two methods is similar. Hence, both
methods are suitable for learning the uncertainty transformation. For this task, the regression tree
is slightly better perhaps due to its non-parametric property which enables it to make minimal
assumptions about the nature of the regression surface.

B. Comparison of Uncertainty Decoding with Missing-data Recognition.

As mentioned in Sections I and III, for robust speech recognition, speech segregation systems
that compute a binary T-F mask have been coupled to a missing-data ASR. While previous
studies have shown that the performance of the missing-data ASR degrades as the vocabulary size
increases [28], [35], here we investigate whether uncertainty decoding can be a valid alternative to
missing-data recognition even on a small vocabulary task. The specific missing-data method used
is the bounded marginalization algorithm which is known to provide the best recognition results
on small vocabulary tasks [11], [28]. In the marginalization method, the posterior probability
using only the reliable constituents is computed by integrating over the unreliable ones [11].
Feature vectors for the missing-data ASR are the spectral energies extracted as described in
Section III-A. The bounded marginalization method uses the knowledge that the true value of
the spectral energy in the unreliable parts lies between 0 and the observed spectral energy. These
bounds are used as limits on the integral involved in marginalizing the posterior probability over
the unreliable features.

We evaluate the two recognition approaches on a speaker independent connected digit recog-
nition task. The grammar for this task allows for the repetition of one or more digits. This is the
same task used in the original study in [11]. Thirteen (1-9, a silence, very short pause between
words, zero and oh) word-level models are trained for both recognizers. All except the short
pause model have 8 emitting states. The short pause model has a single emitting state, tied to
state 4 of the silence model. The output distribution in each state is modeled as a mixture of
10 Gaussians, as suggested in [11]. The TIDigits database’s male speaker dataset is used for
both training and testing [19]. Specifically, the models are trained using 4235 utterances in the
training set of this database. Testing is performed on a subset of the testing set consisting of
461 utterances from 6 speakers. All test speakers are different from the speakers in the training
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Fig. 5. Comparison of conventional recognition of enhanced speech, uncertainty decoding and missing-data
recognition. The figures show the WER with respect to deviations from the ideal binary mask. (a) WER at 10 dB
SNR. (b) WER at 5 dB SNR. (c) WER at 0 dB SNR.

set. The signals in this database are sampled at 20 kHz. The noise source is factory noise from
the NOISEX corpus [38], which is also used in [3], [11]. Factory noise is chosen as it has
energy in formant regions, therefore posing challenging problems for recognition. An HMM
toolkit, HTK [43], is used for training. During testing, the decoder is modified to incorporate
the uncertainty decoding and the bounded marginalization methods.

For both methods, the binary T-F mask used is the ideal binary mask. As pointed out earlier,
this mask needs to be estimated in practice. Hence, we investigate how robust the two recognizers
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are to deviations from the ideal binary mask. Specifically, we randomly flip a certain number of
1’s and 0’s in the mask. The percentage deviation is measured using the fraction of 1’s flipped,
which takes on the values of 0%, 5%, 10%, 20% and 50%. Since the spectral energy in a T-F unit
has a large dynamic range, we additionally calculate the energy deviation as the ratio of the total
energy corresponding to the flipped bits to the total energy corresponding to T-F units labeled
1 in the ideal binary mask. The resulting masks are used directly by the missing-data ASR.
For use by the uncertainty decoder we reconstruct the speech spectral energy in the missing
T-F units and derive cepstral features along with the associated uncertainties as described in
Section III. Fig. 5(a-c) summarizes the performance of the two recognizers at SNR values of
10 dB, 5 dB and 0 dB respectively. Additionally the performance of the conventional ASR on
the reconstructed cepstra is also shown. Performance is given in terms of WER across various
energy deviation ratios. To better illustrate the differences between the two recognition methods,
the error rates in Fig. 5 are plotted to different scales for the three different SNRs. Fig. 5(a)
shows that at 10 dB SNR, both the conventional ASR and the uncertainty decoder outperform
the missing-data recognizer. The uncertainty decoder also outperforms the missing-data ASR at
5 dB SNR as shown in Fig. 5b. Fig. 5(c) shows that the performance of the uncertainty decoder
and the missing-data recognizer are comparable at the 0 dB SNR condition. Hence, the proposed
uncertainty decoding approach gives a strong alternative to the missing-data approach for robust
speech recognition using binary T-F masks. Note that across all SNRs the uncertainty decoding
outperforms the coventional recognition of the reconstruted cepstra.

V. CONCLUDING REMARKS

We have proposed a general solution to the problem of estimating the uncertainty of cepstral
features derived from the output of front-end preprocessing algorithms that use a binary T-
F mask for speech enhancement. Using the uncertainty decoding approach in [13] on the
Aurora4 task, we have shown that the estimated uncertainty yields significant reductions in
WER compared to conventional recognition on the enhanced cepstra. We have also obtained
substantial improvements over the baseline ASR performance. Furthermore, our experiments on
the digit recognition task suggest that the proposed method provides a valid alternative to the
missing-data approach for robust speech recognition.

The principal advantage of the proposed method is that it neither requires that noise conditions
be known a priori nor assumes a noise model. Our training of regression trees requires a limited
amount of aligned clean and noisy speech data, corresponding to one of the noise sources used
in the evaluation. However, as seen in Section IV, the system is able to generalize across noise
sources not seen during training. We wish to emphasize that the exact choice of the noise source
used in learning the uncertainties is not crucial for the performance. In an earlier study [36],
for example, we used a different noise source, street noise, but the resulting performance was
very similar. Hence, the proposed method can be used in conjunction with CASA systems that
do not require noise conditions known a priori for robust speech recognition.

An alternative approach for estimating the uncertainties associated with the reconstructed
cepstra is given in [18]. The variance of the static coefficients is approximated using the
unscented transform. The variance of the dynamic coefficients is estimated using the same
linear transformation employed in obtaining the dynamic features. As described in Section III-B,
this approach is not optimal. A key advantage of the proposed method is the direct estimation
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of uncertainties corresponding to the static, the delta and the acceleration coefficients. This
enables us to exploit the differences in the a priori accuracies of the static and the dynamic
coefficients [41].

For learning the transformation of spectral domain uncertainties to cepstral ones, we used
the ideal binary T-F mask. This transformation was then applied to the masks generated using
spectral subtraction and a CASA system. Although the resulting uncertainty estimates provide
promising results, additional improvements may be obtained by training the regression trees
directly on the output of particular speech enhancement algorithms. Future work will address
this issue.
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