
Optimal Sleep-Wakeup Algorithms for Barriers
of Wireless Sensors

Santosh Kumar, Ten H. Lai, Marc E Posner, and Prasun Sinha

The Ohio State University

Email: {kumar.74,lai.1,posner.1,sinha.43}@osu.edu

Abstract— The problem of sleep-wakeup is to determine
a sleeping schedule for sensors such that the lifetime of
the network is maximized while maintaining the desired
quality of monitoring. This problem has received consid-
erable attention in the literature. However, given the NP-
Hardness results even for the homogeneous lifetime case,
it is now widely accepted that the sleep-wakeup problem
does not have a polynomial-time solution for wireless sensor
networks, in general. Therefore, in practice, when a wireless
sensor network is prototyped or deployed, either heuristic
algorithms are used, or sleep-wakeup is not used at all. Both
of these choices lead to a wastage of valuable energy, which
in turn, requires over-deployment of sensors and/or causes
degradation in the quality of monitoring.

In this paper, for the first time, we propose polynomial-
time algorithms and prove its optimality to solve the sleep-
wakeup problem for a specific class of applications, where
a wireless sensor network is deployed as a smart barrier
or a tripwire for detecting moving objects as in intrusion
detection. We not only optimally solve the sleep-wakeup
problem for the homogeneous lifetime case but also for
the more practical case of heterogeneous lifetimes by using
the concept of multiroute network flows. Since intrusion
detection is an important application of wireless sensor
networks (as it has alreday been successfully demonstrated
on large scale sensor networks and is now in production
for real life deployments), we believe our work will have
a significant practical impact. Finally, our work can be
applied to other important applications as well, such as fire
detection.

I. INTRODUCTION

Energy efficiency is one of the most fundamental issues

in Wireless Sensor Networks. Although achieving a long
life for a sensor network deployed outdoors is a major

challenge for most applications, it is more so for those

applications that require continuous monitoring such as
intrusion detection or fire detection.

A widely proposed technique to extend the lifetime
of a sensor network deployed for continuous monitoring

applications is to use sleep-wakeup. Under this technique,
a sleeping schedule for sensors is calculated such that at

any given time only a subset of sensors are active and

the remaining are put to sleep. The challenge in this
scheme is to design a sleeping schedule that maximizes the

network lifetime while maintaining the desired quality of

monitoring. This preceding problem is referred to as the
problem of sleep-wakeup.

The problem of sleep-wakeup has been proved NP-

Hard in general, even when the lifetime of each sensor is

assumed to be the same [1], [2]. As a result, it has become

widely accepted that the problem of sleep-wakeup is

not polynomially solvable, leading to a proliferation of
different heuristic algorithms [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10]. In practice, therefore, when a wireless
sensor network is prototyped or deployed, it is implicitly

assumed that the the problem of sleep-wakeup is not

polynomially solvable and then either smart heuristic
algorithms are used for sleep-wakeup as in [5] or no sleep

wakeup is used as in [11]. Both of these options lead to

either a wastage of valuable battery energy or an over-
deployment of sensors, or both.

We are not aware of any work that explores the
tractability of the sleep-wakeup problem, i.e., for what

class of applications the sleep wakeup problem is polyno-

mially solvable. Such an exploration, we believe, will be a
valuable contribution to the advancement of wireless sen-

sor networks, given the importance of energy efficiency in

this domain.
In this paper, for the first time, we propose polyno-

mial time algorithms to optimally solve the problem of

sleep wakeup for a specific class of applications, where
a wireless sensor network is deployed as a smart barrier

or a tripwire for detecting moving objects as in intrusion
detection. The intrusion detection application has been

successfully demonstrated on large scale sensor networks

as part of at least two projects, the VigilNet project [5]
and the Extreme Scaling project [11]. It is already under

production for real-life deployments. As such, it is an

important application for wireless sensor networks.
The NP-Hardness results [1], [2] are for a specific

model of coverage, called full-coverage or blanket coverage,
where every point in the deployment region needs to

be covered by one or more sensors. Since full-coverage

is a very general concept of coverage, it is usually the
first model that comes to mind when considering any

application. Even if it is realized later, when developing

heuristics for sleep-wakeup, that not every point needs to
be covered at all times, as in [8], [3], it is still assumed

that the applicable model of coverage is that of full
coverage, and, therefore, the sleep-wakeup problem is NP-

Hard. In fact, for several applications, every point does

not need to be covered at all times, i.e., full-coverage is
not the most appropriate model of coverage. For example,

for intrusion detection applications, barrier coverage is a



more appropriate notion of coverage. This is because a
sensor network providing k-barrier coverage guarantees

that every moving object of interest will be detected by

at least k distinct sensors before it crosses the barrier
of wireless sensors, and this guarantee is sufficient for

intrusion detection. This guarantee is sufficient for several
other applications as well such as fire detection. If fire

detecting sensors are deployed as a smart barrier between

a forest and an adjoining city, any fire originating from
the forest will be detected as soon as it tries to cross the

barrier of wireless sensors, which can be well before the

city limits begin.
Our algorithms maximize the network lifetime while

guaranteeing that the network provides k-barrier cover-

age at all times. As such, our algorithms can be used
to maximize the network lifetime for all applications

for which barrier coverage is an appropriate model of
coverage.

By optimally solving the sleep-wakeup problem for the

heterogeneous lifetime case, we have made the sleep-
wakeup scheme even more practical. This is because

sensor lifetimes are rarely the same, except after the first

deployment. For example, upon sensor failures, which is
a frequent event in an outdoor deployment [12], [13],

a new sleeping schedule may need to be computed to

maintain the desired quality of monitoring and to main-
tain optimality. This time, however, the sensor lifetimes

will not all be the same. Also, when enough sensors have
failed so as to warrant additional sensor deployment,

the lifetimes of the newly deployed sensors will not be

the same as that of previously deployed sensors. Hence,
heterogeneous lifetime case is a more pracical one.

As is the case with general version of many problems,

solving the sleep-wakeup problem for the heterogeneous
case is harder than its homogeneous counterpart. We

make use of the results in the area of multiroute network

flows [14] to derive an optimal solution to the heteroge-
neous lifetime case. Prior to our work, multiroute network

flows were applied only to the routing problems.

Another difference between the two versions of the
sleep-wakeup problem is in minimizing the number of

sensor switches. Minimizing the number of such switches

simplifies network operation. This is because each time
a sensor or a group of sensors in turned off, neighbor

discovery, route computation, time synchronization, and
other such initialization activities have to be performed

afresh. Minimizing the number of times such initializa-

tion tasks are performed not only reduces the energy
consumption in the network, it makes the network more

available to perform the monitoring task, which is the

primary reason for deploying the network.
Our sleep-wakeup algorithm for the homogeneous case

minimizes the total number of times that a group of

sensors is turned off and on during its entire lifetime,
while for the heterogeneous lifetime case, we prove that

minimizing the number of sensor switches in NP-Hard.

Both of our algorithms (for the homogeneous and
heterogeneous lifetime cases) are global algorithms. In

Section V, we will describe why it is not possible to design

local algorithms for the sleep-wakeup problem for the
model of barrier coverage. In that Section, we will also

discuss how our algorithms may be implemented and the
complexity issue.

In summary, we make three contributions in this paper:

1) We point out that the sleep-wakeup problem is not

NP-Hard for all applications and thus open this
research area for further exploration.

2) We propose a polynomial-time algorithm to opti-

mally solve the sleep-wakeup problem for barrier
coverage for homogeneous sensor lifetime case. In

this case, our algorithm also minimizes the total

number of (groups of) sensor switches.
3) We propose a polynomial-time algorithm to opti-

mally solve the sleep-wakeup problem for barrier
coverage for heterogeneous lifetime case. In this

case, we prove that minimizing the number of

sensor switches is NP-Hard.

The rest of the paper is organized as follows: In Sec-
tion II, we present some definitions and summarize some

earlier known results. In Section III, we present our algo-

rithm for the homogeneous sensor lifetime case. In Sec-
tion IV, we present our algorithm for the heterogeneous

lifetime case. In Section V, we discuss implementation
issues. We conclude the paper in Section VI.

II. MODEL, DEFINITIONS, AND SOME EARLIER RESULTS

In this section, we introduce some definitions and state

some known related results.

Definition 2.1: Sensor Network, N. A sensor network is
a collection of sensors with the locations of sensor deploy-
ments. A sensor network is denoted by N.

For the purpose of this paper, we assume that a sen-
sor network is deployed over a belt region. Intrusion is

assumed to happen from top to bottom. As in [15], a
path is said to be a crossing path if it crosses from top to

bottom. Further, a crossing path is said to be k-covered if it

intersects the sensing region of at least k distinct sensors.
Finally, a sensor network N is said to provide k-barrier

coverage over a deployment region R if all crossing paths

through region R are k-covered by sensors in N .

Definition 2.2: Coverage Graph, G(N) [15] A coverage
graph of a sensor network N is derived as follows: Let
G(N) = (V, E). The set V consists of a vertex corresponding
to each sensor. In addition, it has two virtual nodes, s and
t to correspond to the left and right boundaries. An edge
exists between two nodes if their sensing disks overlap in the
deployment region R. An edge exists between u and s (or t)
if the sensing region of u overlaps with the left boundary (or
right boundary) of the region.
The coverage graph for the sensor network deployment

in Figure 1 is shown in Figure 2.



Fig. 1. A sensor network deployment that provides 3-barrier coverage.

ts

Fig. 2. The coverage graph of sensor network deployment of Figure 1.

Theorem 2.1: [15] A network N provides k-barrier cov-
erage iff there exist k node-disjoint paths between the two
virtual nodes s and t in G(N).

We assume that it is possible to estimate the remaining

lifetime of a sensor node. A profile of expected energy

consumption of every node may be built using analytical
models or using simulators such as PowerTOSSIM [16].

Definition 2.3: Sensor Switch. Any time a sensor is
turned off before it exhausts its lifetime and is turned on later,
it is referred to as a sensor switch. If a sensor is allowed to
fully exhaust its lifetime when it is turned on for the first time,
it is counted as zero sensor switches.

Definition 2.4: Path Switch. Any time a group of sensors
that together provide 1-barrier coverage is turned off before
any of the sensors in the group fully exhausts its lifetime, it
is referred to as a path switch. If this group of sensors is
allowed to fully exhaust its lifetime when it is turned on for
the first time, it is counted as zero path switches.
Minimizing the number of path switches has a similar

effect as minimizing the number of sensor switches in
terms of reducing the frequency of network initialization

and maintenance operations. Also, one path of sensors

may form a communication path from the one end of the
network to the other end if the communication range is

twice the sensing range, and used for communication with

the base station. In this case, no route recomputation may
be necessary when all sensors in a path are turned off and

on together.

III. HOMOGENEOUS LIFETIME

In this Section, we present our Stint algorithm to
determine an optimal sleeping schedule for individual

sensors when sensor lifetimes are homogeneous. The Stint

algorithm optimizes two objectives simultaneously — 1)
the network lifetime for providing k-barrier coverage, and

2) the number of path switches.

A. Upper Bound on the Network Lifetime

We begin by deriving an upper bound on the network
lifetime when the sensor lifetimes are homogeneous.

Consider the sensor network shown in Figure 1. What is
the maximum time for which this network can provide

2-barrier coverage, if all sensors have a lifetime of 1

unit? The following lemma enables us to compute the
maximum achievable network lifetime. If the maximum

number of node disjoint paths between s and t, m is

less than k then the sensor network can not provide k-
barrier coverage even if all sensors are turned on, and

therefore the maximum lifetime of the network is 0. In
the following, we only consider the case when m ≥ k.

Lemma 3.1: Consider a sensor network N. Let m(≥ k)
be the maximum number of node-disjoint paths between the
virtual nodes s and t in the coverage graph G(N). Also, let
the lifetime of an individual sensor node be unity. Then, the
maximum time for which the network N can provide k-barrier
coverage is at most m/k.

Proof: By assumption, there exist m node-disjoint

paths in the coverage graph of N. From Menger’s Theo-

rem [17], there exists a set of m nodes (corresponding
to m sensors) removing which will make virtual nodes s
and t disconnected in the coverage graph. Let these m
sensors be called critical sensors. Every path from s to t
must contain at least one of these critical sensors.

From Theorem 2.1, in order to provide k-barrier cov-
erage, a set of sensors must be activated such that they

form k node-disjoint paths between the two virtual nodes

s and t in the coverage graph. Each of these k paths must
contain at least one of the m critical nodes. Further, since

these k paths are node-disjoint, they can not share any
node. Therefore, each set of k node-disjoint paths must

contain at least k of the m critical nodes. Since at any

time instant at least k of the m critical nodes need to
be active, the maximum time that these m nodes can

remain active is at most m/k. Once these m critical nodes

run out of energy, the network can no longer provide
k-barrier coverage. Hence, the network can provide k-

barrier coverage for at most m/k units of time.

Applying Lemma 3.1 to the sensor network shown in

Figure 1, whose coverage graph appears in Figure 2, we
arrive at a maximum lifetime of 3/2. This is because the

value of m, the maximum number of node disjoint paths

between s and t is 3 in this case.

B. Achieving the Upper Bound

Having derived an upper bound on the network lifetime

that any sleep-wakeup algorithm can achieve for k-barrier

coverage in the homogeneous lifetime case in Section III-
A, we now present our Stint algorithm that achieves this

upper bound.



We first provide an informal description of the Stint

algorithm. We will use the coverage graph shown in

Figure 3 as a running example. The Stint algorithm first

computes m, the maximum number of node disjoint paths
between s and t. The value of m is 8 in Figure 3. It then

checks if m is divisible by k. If it is, then it divides the
m disjoint paths in ` groups of k paths each. If k = 2 in

the example of Figure 3, then, ` = 4. These four groups

of two disjoint paths each are activated in sequence. The
first group provides 2-barrier coverage till it fully exhausts

its energy. The second group is activated next, and so on.
If, on the other hand, m is not completely divisible by k,

e.g., k = 3 in Figure 3, then ` is set to bm/kc−1, which is
1 for Figure 3. Now, `(= 1) group of k(= 3) disjoint paths

is allowed to exhaust its lifetimes at a stretch. Let this

group be the set of paths (1, 2, 3). Next, the remaining
r = m − ` ∗ k(= 5) disjoint paths are arranged in f =
r/ gcd(r, k)(= 5) sets of 3 disjoint paths each. The five

sets in this case will be {(4, 5, 6), (5, 6, 7), (6, 7, 8), (7, 8, 4),
(8, 4, 5)}. Each of these five sets of paths is kept active for

gcd(r, k)/k = (1/3) of the total lifetime of a sensor. In this
way, the network provides 3-barrier coverage for 1+5/3 =
8/3 units of time, if each sensor has a lifetime of one unit.

This is the maximum possible according to Lemma 3.1.
The detailed Stint algorithm appears in Figure 4.

a7

s t

a6

a5

a4

a3

a2

a8

a1

Fig. 3. The coverage graph of a sensor network used to illustrate the
operation of the Stint algorithm.

We now prove that the Stint algorithm always maxi-
mizes the network lifetime for k-barrier coverage. We first

consider the case when k < m < 2k.
Lemma 3.2: Consider a sensor network N. Let m be the

maximum number of node-disjoint paths between the virtual
nodes s and t in the coverage graph G(N). Also, let the
lifetime of an individual sensor node be unity. If k < m < 2k,
then the Stint algorithm allows the network N to provide k-
barrier coverage for m/k units of time.

Proof: We first prove that no sensor in the sequences

Sm−r+1 through Sm completely exhausts its energy before

the end of the for loop in Line 18 through Line 21. Then,
we prove that this loop provides k-barrier coverage for

r/k units of time, to complete the proof.

Input: A sensor network N deployed over an open belt
region and the desired degree of coverage k. Assume that
each sensor has the same lifetime, which is one unit of
time.

Output: An optimal sleep-wakeup schedule for k-barrier
coverage.

The Stint Algorithm

1: Compute the Coverage Graph G(N).
2: Compute the maximum number of node-disjoint paths

between the two virtual nodes s and t in G(N). Denote
the number of paths by m.

3: if m > k then
4: Let Si, 1 ≤ i ≤ m be the sequence of sensors forming

the ith node-disjoint path.
5: if m mod k = 0 then
6: `← m/k
7: else
8: `← bm/kc − 1
9: end if

10: for j ← 0 to `− 1 do
11: Activate all the sensors in sequence

Sk∗j+1, . . . , Sk∗(j+1) for one unit of time.
12: end for
13: r← m− ` ∗ k
14: if r 6= 0 then
15: x← gcd(r, k)
16: f ← r/x
17: Partition the sequence of sensors Sm−r+1, . . . , Sm

into f sets of sequences, each consisting of x
sequences. Call these sets X0, X1, . . . , X(f−1).

18: for j ← 0 to f − 1 do
19: g ←

`

j + k
x
− 1

´

mod f
20: Activate all the sensors in sets Xj , . . . , Xg for

x/k units of time. Put all other sensors to sleep.
21: end for
22: end if
23: else
24: No schedule can achieve k-barrier coverage.
25: end if

Fig. 4. The Stint sleep-wakeup schedule assignment algorithm

To prove the first part, we proceed as follows. First,

notice that the sets Si, 0 ≥ i ≥ f−1 are disjoint. Whenever
one of these sets Si is active all the sensors in this set

are active. Since each sensor has a lifetime of unity, the
lifetime of each set is unity. In the for loop (Line 18

through Line 21), which runs f = r/x times, each set

is inactive in (r− k)/x iterations and, therefore, active in
exactly f−(r−k)/x = k/x iterations. Since each iteration

lasts for x/k units of time, no set will completely exhaust

its energy before the end of the loop.

To prove the second part, we observe that k/x sets are

active in each iteration of the loop and each of these node-

disjoint sets provides x-barrier coverage. Hence, each
iteration provides k-barrier coverage. Also, since each

iteration lasts for x/k units of time and there are a total of



f = r/x iterations, the for loop (Line 18 through Line 21)
provides k-barrier coverage for m/k units of time.

We now prove the optimality of the Stint algorithm for all
values of m.

Theorem 3.1: The Stint algorithm is an optimal sleep-
wakeup algorithm for k-barrier coverage.

Proof: Consider a sensor network N. Let m be the

maximum number of node-disjoint paths between the

virtual nodes s and t in the coverage graph G(N). Also, let
the lifetime of an individual sensor node be unity. From

Lemma 3.1, we know that any sleep-wakeup algorithm

for k-barrier coverage can achieve a lifetime of at most
m/k. To prove the theorem, we only need to prove that

the Stint algorithm achieves a network lifetime of m/k.
Lines 10 through 12 in the Stint algorithm provide k-

barrier coverage for ` units of time. If m mod k = 0,
the proof is complete. So, assume m mod k 6= 0 so that

k < r < 2k (see Line 13 in Figure 4), we apply Lemma 3.2

to conclude that Line 14 through 22 in Figure 4 provide
k-barrier coverage for r/k units of time. Since r = m −
` ∗ k, ` + r/k = m/k. Hence, we conclude that the Stint

algorithm provides k-barrier coverage for m/k units of

time and is therefore an optimal sleep-wakeup algorithm

for achieving k-barrier coverage.

C. Minimizing Path Switches

As discussed in Section I, minimizing the number of

times that sensors or a group of sensors is turned on

and off reduces the number of times that network ini-
tialization tasks such as neighbor discovery and route

computation, and makes the network more available for

the monitoring task. In this Section, we first illustrate why
minimizing the number of path switches is non-trivial. We

then derive a lower bound on the total number of path
switches that has to be performed in a network if the net-

work lifetime is to be maximized for k-barrier coverage.

Finally, we prove that the Stint algorithm achieves this
lower bound.

Consider again the network whose coverage graph
appears in Figure 3. Let k = 3. Form 8 groups of

3 disjoint paths each, e.g., {(1, 2, 3), (4, 5, 6), (7, 8, 1),
(2, 3, 4), (5, 6, 7), (8, 1, 2), (3, 4, 5), (6, 7, 8)}. Let each set of

3 disjoint paths be active for 1/3 units of time. This way

we can achieve a network lifetime of 8/3, while providing
3-barrier coverage. Notice that the total number of path

switches in this case is 16 since each path is turned off

twice before it exhausts its full energy.

The total number of path switches in the schedule

computed by the Stint algorithm, on the other hand, is
only 2. This is because, as described in the operation of

the Stint algorithm in Section III-B, only paths 4 and 5 are
turned off once each before they exhaust their full energy.

All other paths are allowed to exhaust their full energy

once they are turned on. Also, notice that achieving zero
number of path switches is not possible in this case since

8 is not divisible by 3. The following lemma derives a

lower bound on the total number of path switches, which
is equivalent to the total number of preemptions in the

domain of machine (or processor) scheduling.

Lemma 3.3: Consider a sensor network N. Let m be the
maximum number of node-disjoint paths between the virtual
nodes s and t in the coverage graph G(N). Also, let the
lifetime of an individual sensor node be unity. If k < m < 2k,
then the total number of path switches needed by any optimal
sleep-wakeup algorithm for providing k-barrier coverage is at
least k − gcd(m, k).

Proof: For the entire duration of m/k, there must be

k node-disjoint paths active for the network to provide k-
barrier coverage (using Theorem 2.1). Out of the total m
node disjoint paths, no path can be active for m/k units

of time since m/k > 1.
Let the k disjoint paths that are required for k-barrier

coverage be like k machines which have to process m jobs;

each job has a processing time of 1 unit on any machine.
Let the k machines be numbered 1, 2, . . . , k. The objective

of achieving a lifetime of m/k then becomes equivalent to

minimizing the makespan on k machines. The minimum
value of makespan is m/k and it will achieved only when

all machines are busy for m/k units of time. Also, the
number of path switches is the same as the number of

job preemptions. Hence, the claim to be proved in terms

of machine scheduling is that the minimum number of
preemptions needed to achieve a makespan of m/k is at

least k − gcd(m, k).
For any given optimal schedule, let aa be an arbitrary

machine. At least one job is not finished on a1. Let the

set of unfinished jobs be J. Since J 6= φ, pick an arbitrary

unfinished job j1 ∈ J. Let a2 be the machine on which j1 is
resumed. We thus have one preemption (for job j1). Add

all the unfinished jobs from machine a2 into set J . Again
pick an unfinished job from J and let a3 be the machine

on which it is resumed. We have another preemption.

We continue in this fashion until the set J of unfinished
jobs becomes empty. This way we construct a sequence of

machines a1, a2, . . . , aq1
such that each machine ai, i 6= 1

has at least one preemption. Also, these q1 machines
together finish some number of jobs completely within

m/k time units with at least (q1 − 1) preemptions. This
implies that q1 ∗m/k is an integer, which is possible only

when q1 is a multiple of k′ = k/ gcd(m, k).
If q1 6= k, we start with another new machine and

construct a new sequence of q2 machines, which finish

some number of jobs without any leftovers with at least

(q2−1) preemptions, where q2 is a multiple of k′. Let there
be σ such qi’s such that

∑σ
i=1 qi = k, where σ ≤ gcd(m, k).

The total number of preemptions thus encountered is at

least
∑σ

i=1 (qi − 1) = k − σ ≥ k − gcd(m, k). Since this
holds for any optimal schedule, the claim is proved.

The next theorem proves that the Stint algorithm

achieves the lower bound of Lemma 3.3.
Theorem 3.2: Of all the optimal sleep-wakeup algorithms

for achieving k-barrier coverage, the Stint algorithm involves



the minimum number of path switches.
Proof: Observe that zero path switches are involved

upto Line 13 in Figure 4, which is the minimum possible.

One or more path switches are involved only when k <
r < 2k. Therefore, we only need to prove that in this case,

the Stint algorithm involves the minimum number of path

switches.
Lemma 3.3 establishes that any optimal sleep-wakeup

algorithm for achieving k-barrier coverage will require at

least k − gcd(m, k) path switches, where m is the maxi-
mum number of node disjoint paths available between the

virtual nodes u and v in the coverage graph G(N) of the
given sensor network N, if k < m < 2k. So, to prove the

theorem, we only need to prove that the Stint algorithm

involves a maximum of k−gcd(m, k) path switches, which
we prove in the following.

Notice that any path switch is performed only in the for

loop in Line 18 through Line 21. So, we focus our proof
on these lines only. Each time a sensor is turned off, every

sensor in its group is turned off. Since a group consists of

x sequence of sensors, each of which provides 1-barrier
coverage, every on/off involves xpath switches.

A set Si, 0 ≥ i ≥ f − 1 of sensors is turned off before

it exhausts its lifetime only when the index of the loop
j < k

x − 1. This is because every group Si completely

exhausts its lifetime if it is active continuously for k/x
iterations. Except for the first k

x − 1 sets Si, 0 ≤ i < k
x − 1,

each of which is turned off once it is continuously active

for i + 1 iterations before it is turned off, every other set
of sensors Si,

k
x − 1 ≥ i ≥ f − 1 is active continuously

for k/x iterations. Further, the first k
x − 1 sets which are

turned off before completely exhausting their lifetime,
are not turned off again when they are turned on later.

Since each of these sets involves x path switches and they
are turned off and on exactly once, the Stint algorithm

involves exactly x ∗
(

k
x − 1

)

= k − x path switches. Since

x = gcd(m, k), the claim of the theorem is proved.

IV. HETEROGENEOUS LIFETIME

In this section, we present the Prahari1 algorithm for
maximizing the network lifetime when the lifetimes of

sensors are not equal. We then consider the problem
of minimizing the number of path switches. For some

special cases, the Prahari algorithm minimizes the number

of path switches. But, in general, the problem of dual
optimization of the network lifetime and the number of

path switches is NP-Hard, in contrast with the homoge-

neous case. This dual optimization problem continues to
be NP-Hard even if it is known that the coverage graph

associated with the given sensor network is node-disjoint.

A. Upper Bound on Network Lifetime

The problem of determining the maximum lifetime
achievable is made possible by Lemma 3.1 when the sen-

1The word ”Prahari” is a Sanskrit word for securityman who guards
a region for a fixed time interval.

sor lifetimes are all same. When the sensor lifetimes are
not all equal, the problem of determining the maximum

achievable lifetime becomes significantly more challeng-

ing. For example, consider the same network as shown
in Figure 1, but with sensors having distinct lifetimes,

as shown in Figure 5. What is the maximum time for
which this network can provide 2-barrier coverage? This

problem may appear NP-Hard at first. However, it is

polynomially solvable using the concept of multiroute
network flows [14].

8 8 10
10 10 10 10

10 10

5 5
5

5 5 5
5 5

1 1 1

1 1 1

1 11111

5

Fig. 5. The sensor network deployment of Figure 1, but with hetero-
geneous sensor lifetimes. The integers next to the filled squares denote
the lifetime of the sensors located there. What is the maximum time for
which this network can provide 2-barrier coverage?

We begin by stating some assumptions and relevant

definitions. We assume the lifetimes of the sensors can
be represented as integers.

Definition 4.1: Coverage Graph with Lifetime, GL(N).
A coverage graph with lifetime of a sensor network N, denoted
by GL(N), is a coverage graph where all nodes u ∈ V −
{s, t} are assigned a capacity, c(u), equal to their remaining
lifetimes. All the edges are assigned infinite capacities. The
vertex s is the source and t the sink.
The GL(N), corresponding to the network shown in Fig-

ure 5 appears in Figure 6. To convert a GL(N) = (V, E)
to a directed graph, we replace all the edges {u, v} with

a pair of directed edges (u, v) and (v, u). For the rest of
Section IV, we will regard a GL(N) as a directed graph.

ts

8 8 8
10 10 10 10

10 10

5 5 5 5 5 5
5 5

5

1 1 1
1 1 1 1 1 1

1 1 1

Fig. 6. The coverage graph with lifetime GL(N) of the sensor network
N shown in Figure 5. The integers next to the filled squares denote the
lifetime of the sensors located there.

Definition 4.2: s-t Flow. An s-t flow in GL(N) is defined
as f : E → R

+ such that
1) ∀u ∈ V −{s, t},

∑

(u,v)∈E f(u, v) =
∑

(v,u)∈E f(v, u) and
2) ∀u ∈ V − {s, t},

∑

(u,v)∈E f(u, v) ≤ c(u).



Definition 4.3: s-t Path Flow. A s-t path flow in GL(N)
is a s-t flow with the property that the flow network is a single
path from s to t.
Three path flows (Path Flow 1, Path Flow 2, and Path
Flow 3) from the coverage graph shown in Figure 6 are

shown in Figure 7.

ts

2
2 2 2 2 2 2 2 2

1

1 1

1
1

1 1
1 1 1 1 1

1

1
1 1

2

111 1

Path Flow 1

Path Flow 3
Path Flow 2

Fig. 7. A composite 2-flow of total value 4 for the sensor network N
shown in Figure 5. The edges are labeled with the flow value passing
through them. This composite 2-flow is of the maximum value possible
for the sensor network N.

Definition 4.4: Basic k-Flow of Value a. A basic k-flow

of value a in GL(N) is a set of k node-disjoint s-t path flows,
each of which has a value of a. The total value of the flow is
k ∗ a.
In Figure 7, Path Flow 1 and Path Flow 2, together make

a basic 2-flow of value 1. The total value of this basic
2-flow is 2.

Definition 4.5: Composite k-Flow. A set of flows in
GL(N) is called a composite k-flow if it can be expressed
as a sum of basic k-flows. The total value of this composite
k-flow is

∑m
i=1 λi ∗ k ∗ ai, for λi ∈ Z

+, if m basic k-flows
each with a value of ai make up this composite k-flow.
A composite 2-flow of total value 4 from the coverage

graph shown in Figure 6 appears in Figure 7. Notice that
Path Flow 1, which is of value 2, can be decomposed in

two path flows of value 1 each.
We now state the key result of this Section, which

makes deriving an upper bound on the network lifetime

tractable when the sensor lifetimes are heterogeneous.
The basic idea of our Prahari algorithm emerges from the

proof of the following theorem.
Theorem 4.1: Given a sensor network N, there exists a

sleep-wakeup schedule to achieve a lifetime of T time units
for k-barrier coverage iff there is a composite k-flow of value
k ∗ T in GL(N).

Proof: We first prove the “if” part. Given a composite

k-flow of T units in GL(N), we will construct a sleep-
wakeup schedule to achieve a lifetime of T time units. Let

F be a composite k-flow of value T. By its definition, F
can be decomposed into a set of m basic k-flows (for some
m > 0) such that

∑m
i=1 λi ∗ k ∗ ai = k ∗ T for λi ∈ Z

+,

where ai is the value of ith basic k-flow. In every basic k-
flow i, there are k node-disjoint flows each with value ai

(by the definition of basic k-flow). Consider the m basic

k-flows in order. Turn on the nodes in the basic k-flow
i at

∑i−1
j=1 λj ∗ k ∗ aj time units from the start of sleep-

wakeup schedule and keep them continuously active for

a duration of λi ∗ ai time units. With this schedule, the
network N provides k-barrier coverage for T time units

since each basic k-flow i provides k-barrier coverage for

λi ∗ ai units of time and
∑m

i=1 λi ∗ ai = T.
We now prove the ”only if” part. Given a sleep-wakeup

schedule that allows N to provide k-barrier coverage for

T units of time, we will construct a k-flow of value k∗T in

GL(N). Let t1 be the first time instant when some sensor
changes its state from off to on or vice versa. The set

of sensors that are on in the interval [0, t1] form a basic

k-flow of value t1 in GL(N) since by Theorem 2.1 there
exist k node-disjoint paths between s and t in GL(N) with

these sensors active. Denote this basic k-flow by F1. The
total value of Fi is k ∗ t1. Similarly, define Fi. Let there

be m such time instants when the sensors change state.

Since N provides k-barrier coverage for T units of time,
∑m

i=1 k ∗ ti = k∗T. Hence, the set of basic k-flows together

define a composite k-flow of value k ∗ T.
Corollary 4.1: The maximum time for which the sensor

network N can provide k-barrier coverage is equal to the
maximum value of composite k-flow in GL(N) divided by
k.

Proof: The proof follows from Theorem 4.1.

If we can devise a method to determine the maximum
value of a composite k-flow in a GL(N), we can derive

an upper bound on the network lifetime achievable by
N. For this purpose, we make use of the MEM algorithm

from [14]. Applying this algorithm, we determine that

the maximum value of composite 2-flow for the coverage
graph shown in Figure 6 is 4. Hence, the maximum time

for which this network can provide 2-barrier coverage is

4/2=2 (from Corollary 4.1).

B. Achieving the Upper Bound

Having derived an upper bound on the network lifetime
that any sleep-wakeup algorithm can achieve for k-barrier

coverage in the heterogeneous lifetime case in Section IV-

A, we now present our Prahari algorithm that achieves
this upper bound.

We first provide an informal description of the Prahari

algorithm. We will use the coverage graph shown in

Figure 6 as a running example.

The Prahari algorithm first invokes the MEM algorithm

from [14] to determine f̂ , the maximum value of compos-
ite k-flow in GL(N). Let FMEM (N) be the flow network

resulting from this step. Figure 6 shows FMEM (N) for the

network N shown in Figure 5. As can be seen from this
figure, the value of f̂ is 4 in this case.

If the flow network FMEM (N) is such that the indegree
and outdegree of every node other than s and t is 1, as

is the case in Figure 6, then the flow network can be
decomposed in m number of node-disjoint path flows for

some m > k. The value of m is 3 in our current exam-

ple. In this case, the Prahari algorithm uses a machine
scheduling approach to schedule the m paths to achieve

a lifetime of f̂/k time units, as is done in the scheduling of



m jobs on k machines to achieve a makespan of f̂/k. Since
k = 2 in our current example, two machines will be used

for scheduling. Also, the minimum makespan, which is

equivalent to the maximum network lifetime, for the jobs
is 4/2=2. As shown in Figure 8, Path Flow 1 is scheduled

on Machine 1 for 2 time units, Path Flow 2 and 3 are
scheduled on Machine 2 for 1 time unit each. This way

we have a schedule for the three paths. Path Flow 1 will

be active for 2 time units continuously. Path Flow 2 will
be active for 1 time unit starting at time t = 0. At t = 1,
Path Flow 2 will exhaust its energy and Path Flow 3 will

be activated. Thus, we achieve a lifetime of 2 time units,
which is the maximum possible in this case.

1 2t=0

Path Flow 2 (1)

Path Flow 1 (2)

Path Flow 3 (1)

Machine 1

Machine 2

Fig. 8. The machine scheduling approach followed by the Prahari
algorithm is illustrated for the flow network shown in Figure 7. The
numbers in the parantheses denote the lifetime of the individual paths.

If the flow network FMEM (N) is such that some node

in V − {s, t} has a degree of more than 2, then the
Prahari algorithm invokes the SEM algorithm from [14]

to decompose the flow network into α′ number of basic
k-flows for some α′ > k. It then merges identical basic

k-flows into a single aggregate basic k-flow. Let α be

the number of distinct basic k-flows resulting from the
preceding step. Since the set of nodes in each basic k
flow provides k-barrier coverage, the Prahari algorithm

schedules these α basic k-flows one by one. Since the
sum of total flow values of all basic k-flows is precisely

f̂ , the optimal network lifetime of f̂/k is achieved in this
manner. The details of the Prahari algorithm appears in

Figure 9.
Theorem 4.2: The Prahari algorithm is an optimal sleep-

wakeup algorithm for providing k-barrier coverage.
Proof: Consider a sensor network N. Let GL(N) =

(V, E) be its coverage graph with lifetime. Let fk(N)
denote the maximum value of its composite k-flow. Corol-

lary 4.1 established that the maximum lifetime of N for
providing k-barrier coverage is fk(N)/k. Therefore, to

prove the optimality of the Prahari algorithm, we only

need to prove that the algorithm allows the network N
to provide k-barrier coverage for fk(N)/k units of time,

which we prove in the following.
It has been proved in [14] that the MEM [14] algorithm

computes the value of fk(N). If the flows in the network

resulting from applying the MEM algorithm are node-
disjoint (besides s and t), then Lines 3 through 14 are

executed. We will prove that this scheduling achieves a

lifetime of fk(N)/k.
Since

∑m
i=1 fi = fk(N), at every time instant in the

duration [0, fk(N)/k], k node-disjoint paths are active.

Input: A coverage graph GL(N) = (V, E) for a sensor
network N, and k ∈ Z

+. The capacity of a node u is
denoted by c(u).

Output: A sequence
“

t
(i)
w (v), t

(i)
s (v)

”

, the wakeup time

and sleep time for each node v ∈ V.

The Prahari Algorithm

1: Invoke the MEM algorithm on GL(N). Let f̂ be the
value of maximum composite k-flow. Each vertex v ∈
V − {s, t} is assigned a flow, f(v).

2: Delete all vertices and associated edges from GL(N)
with f(v) = 0.

3: if ∀v ∈ V − {s, t}, the indegree and outdegree of v is
1 then

4: Decompose GL(N) into m disjoint path flows.
5: Sort these path flows in descending order of flow

value. Let the sequence of flows be F1, F2, . . . , Fm

with flow values f1, f2, . . . , fm.
6: t← 0.
7: for i← 1 to m do
8: if t + fi ≤ f̂/k then

9: ∀v ∈ Fi, set t
(1)
w (v)← t and t

(1)
s (v)← t + fi.

10: else
11: ∀v ∈ Fi, set t

(1)
w (v)← 0, t

(1)
s (v)← t+fi− f̂/k,

t
(2)
w (v)← t, and t

(2)
s (v)← f̂/k.

12: end if
13: t← t

(1)
s (v).

14: end for
15: else
16: Invoke the SEM algorithm to decompose the

k-flow into α′ basic k-flows. Denote them by
N1, N2, . . . , Nα′ .

17: Merge all the basic k-flows that have the same set of
vertices with positive flow into a single basic k-flow.
Let the distinct number of basic k-flows be α.

18: t← 0.
19: for i← 1 to α do
20: ∀v ∈ V −{s, t} such that f(v) > 0 in Ni, t

(i)
w (v)←

t and t
(i)
s (v)← f(Ni)/k.

21: t← f(Ni)/k
22: end for
23: end if

Fig. 9. The Prahari algorithm to determine sleep-wakeup schedule for
optimizing the network lifetime.

Each of these paths provides 1-barrier coverage. Further,
as the value of any individual flow (out of m flows) is at

most fk(N)/k, there is no schedule conflict for any node,
i.e. no node is assigned to provide more than 1-barrier

coverage at any time instant.

If the flows are not node-disjoint, the SEM algorithm
is invoked to decompose the k-flow computed by the

MEM algorithm in component basic k-flows. For a proof
of the correctness of the SEM algorithm, we refer the

reader to [18]. Since each basic flow Ni provides k-barrier

coverage for f(Ni)/k time units and the sum of basic k-
flows,

∑α
i=1 f(Ni) = fk(N), the network N provides k-

barrier coverage for fk(N)/k time units.



C. Minimizing Path/Sensor Switches

The problem of lifetime maximization becomes NP-

Hard if we additionally require the minimization of sensor

switches. We prove the decision version of this problem to
be strongly NP-Complete by reducing the 3-Partition [19]

problem to it. The problem remains NP-Hard even if we

are given a network where all paths between s and t in
the associated coverage graph are node-disjoint so that

we try to minimize the number of path switches instead
of sensor switches.

We first make few observations about the Prahari al-
gorithm in terms of the number of path switches, if the

path flows resulting from applying the MEM algorithm are
node-disjoint:

1) The number of path switches involved is at most m′

(for m′ ≤ m), where m′ is the number of flows with
value strictly less than fk/k.

2) Let A = {fi, 1 ≤ i ≤ m} be the set of flow values.
Let P be the following predicate

∃B ⊂ A :
∑

fi ∈ Bfi/k′ =
∑

fi ∈ Afi/k,

for some k′ < k. If P does not hold, then the

number of path switches involved in the Prahari

algorithm is optimal.

It can be verified that the above observations hold.

We now prove the NP-Hardness of the dual optimiza-

tion problem. We first define the decision version of the
optimization problem. Barrier Coverage Lifetime With Zero

Sensor switches (BCLZSS):

INSTANCE: Integers L, k ∈ Z
+, location of n sensors each

with a sensing radius of r, and the lifetime of sensors i is

`i ∈ Z
+ units.

QUESTION: Can the network provide k-barrier coverage

for L units of time with 0 sensor switches?

We use the 3-partition problem, defined below, in the

proof. 3-Partition

INSTANCE: Set A of 3m elements, a bound B ∈ Z
+, and a

size s(a) ∈ Z
+ for each a ∈ A such that B/4 < s(a) < B/2

and such that
∑

a∈A s(a) = mB.
QUESTION: Can A be partitioned into m disjoint sets

A1, A2, . . . , Am such that, for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B?

Theorem 4.3: The Barrier Coverage Lifetime With Zero

Sensor switches problem is NP-Complete.
Proof: We first show that the Barrier Coverage

Lifetime With Zero Sensor switches is in NP. Assume we
are provided with a schedule, i.e. a sequence of intervals

Ij and the set of sensors that are active in that interval.

It can be checked in polynomial time whether the active
time for any sensor exceeds its available lifetime. Next, we

can invoke the algorithm described in [15] to verify for
each interval Ii whether the sensors active in this interval

provide k-barrier coverage. Notice that n intervals are

enough since at least one sensor must be exhausted to
cause a schedule switch, and there are a total of at most

n sensors that will be used to provide k-barrier coverage.

Finally, we can check for each sensor if it involves an
on/off.

To prove that the Barrier Coverage Lifetime With Zero

On/off problem is strongly NP-Complete, we reduce 3-

Partition to it. Given an instance of the 3-Partition prob-
lem (i.e. a set A of 3k nodes each with a size of s(a) for

each a ∈ A, and a number B), we construct a coverage

graph as follows: Set L = B and k = m. Create two
disjoint sets of k nodes each, called S and T, so that

n = 3m + 2k = 5k. For each i ∈ S ∪ T, `i = B = L
units, and ∀i ∈ A, `i = s(i). Connect the k nodes in set

S to the virtual node s in the coverage graph and also

connect it to all the 3k nodes in set A. Connect the k
nodes in T with the virtual node t and also to all the 3k
nodes in the set A. (See Figure 10 for an example.) Now,

we claim that the network provides k-barrier coverage for
L units of time with zero sensor switches iff the set A can

be partitioned in m disjoint sets A1, A2, . . . , Am such that,
for 1 ≤ i ≤ m,

∑

a∈Ai
s(a) = B.

a6

s1

s2

t1

t2

s t

a5

a4

a3

a2

a1

Fig. 10. The coverage graph constructed from an instance of 3-partition
when A = {a1, a2, a3, a4, a5, a6}.

Let us first prove the if part. Assume the set A can
be partitioned in m disjoint sets such that 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B. Since for each a ∈ A, B/4 < s(a) <

B/2, each set Ai consists of exactly three elements.

Number the k nodes in set S as 1, 2, . . . , k. Do the same

numbering for the k nodes in T. Now, form a set of three
paths Pi, 1 ≤ i ≤ k, that consist of node i from set S, node

i from set T, and nodes in the set Ai. Since
∑

a∈Ai
`a = L,

each path set Pi provides 1-barrier coverage for B = L
units of time. Since the set of paths Pi are node-disjoint,

the network provides k-barrier coverage for L units of

time.

We now prove the only if part of the claim. Assume that
the network provides k-barrier coverage for L units of

time with zero sensor switches. Since every path between

the virtual nodes s and t has to include one or more nodes
from the set A,

∑

a∈A s(a) = kL, and the network has to

provide k barrier coverage for L units of time, every node
in set A will fully exhaust its lifetime in L time units.

Without loss of generality, we may assume that no node

in set A will be shared by two nodes in set S, or by any
two nodes in set T. Suppose a node a ∈ A is shared by

two nodes s1, s2 ∈ S. Also, assume that a is first used by



s1 and then by s2. Further assume that this is the first time
instant that a node is transferred between two nodes of S
and that the node in A that was in use by s2 prior to this

instant was fully exhausted. Then, we can switch all the
nodes that had been used by s1 and s2 prior to this instant

and have no effect on the system lifetime. Now, there is
no sharing upto this time instant. All other sharing can

be eliminated in a similar fashion.

Since the network provides k-barrier coverage for L
units of time, it must be the case that there are m disjoint

sets of nodes in set A such that for 1 ≤ i ≤ m = k,
∑

a∈Ai
`a = L = B. Let Ai be the set of nodes in A that

are used by node i ∈ S. This gives us the desired 3-

partition of set A. This completes the proof.

We now prove that minimizing the number of path
switches is NP-Complete even if it is known that all the

paths between the virtual nodes s and t in the underlying
coverage graph are node-disjoint. We reduce the Partition

problem to it. We first define the two problems.

Node Disjoint Barrier Coverage Lifetime With Zero Path

Switches:

INSTANCE: Integers L, k ∈ Z
+, location of n sensors each

such that all the paths between the virtual nodes s and
t in the associated coverage graph are node-disjoint, and

the lifetime of sensors i is `i ∈ Z
+ units.

QUESTION: Can the network provide k-barrier coverage
for L units of time with 0 path switches?

3-Partition

INSTANCE: Set A of integers c1, c2, . . . , cn.
QUESTION: Does there exist a set S ⊂ {1, 2, . . . , n} such

that
∑

j∈S cj =
∑

j /∈S cj?
Theorem 4.4: The Node-Disjoint Barrier Coverage Life-

time With Zero Path Switches problem is NP-Complete.
Proof: The fact that the Node-Disjoint Barrier Cov-

erage Lifetime With Zero Path Switches problem is in NP
can be verified in the same way as was done for the

Barrier Coverage Lifetime With Zero Sensor Switches in
Theorem 4.3.

We reduce the Partition problem to the Node-Disjoint

Barrier Coverage Lifetime With Zero Path Switches problem.
Given an instance of the partition problem we construct a

sensor network as follows: Let the deployment region be

rectangular with the left bottom corner at the origin, i.e.
with coordinate (0, 0). Let the right bottom corner be at

the coordinate (2r, 0). Let ε > 0. For every integer cj ∈ A
we place a sensor at coordinate (r, (j − 1) ∗ (2r + ε)) . Set
k = 2 and L =

∑n
j=1 cj/2. Notice that in the coverage

graph of this sensor network, all the n paths between the
two virtual nodes s and t are node-disjoint.

If the answer to the partition problem is “yes,” then

∃S ⊂ {1, 2, . . . , n} such that
∑

j∈S cj =
∑

j /∈S cj . Now,
the sensor network can achieve k barrier coverage for L
units of time since the set of sensors can be partitioned

into two sets corresponding to S and {1, 2, . . . , n} − S
and each of these sets will provide 1-barrier coverage for

L units of time.

Conversely, if the sensor network can provide 2-barrier
coverage for L units of time, the sensors can be parti-

tioned into two disjoint sets such that each set provides

1-barrier coverage for L units of time. This is because
any sensors that is turned on remains on until it exhausts

its lifetime (cj for some j), and every sensor has to
completely exhaust its lifetime if the network is to provide

2-barrier coverage for L units of time.

V. IMPLEMENTATION ISSUES

In this Section, we discuss some implementation issues.

We first describe why local sleep-wakeup algorithms are
not possible for barrier coverage, then describe how our

two sleep-wakeup algorithms may be implemented in a

typical sensor network. Finally, we discuss the complexity
of our two algorithms.

While it is possible to locally determine whether a

region is not k-fully covered [20], it is not possible
to determine locally whether a region is not k-barrier

covered, as is shown in [15]. It is the local check for
violation of k-full coverage that allows the development

of local heuristic algorithms for sleep wakeup for the full

coverage model. Non-locality of such a check for barrier
coverage implies nonexistence of not only optimal sleep-

wakeup algorithms but also nonexistence of heuristic

sleep-wakeup algorithms for barrier coverage.

Although non-local distributed versions of our sleep-

wakeup algorithms are possible, there are several reasons

why a global algorithm may be practical and sometimes
more desirable than a distributed algorithm in wireless

sensor networks. First, sensor networks are often op-
timized for sensor-to-base station communication, and

hence the implementation of a global algorithm is well

supported by the sensor network architecture as we dis-
cuss in the next paragraph. Second, base stations are typ-

ically wall powered and have much higher computation

capability as compared to the sensors. Third, performing
one global computation, if it saves computation and

communication among the sensors, may sometimes be
prefered over distributed computation at the sensors.

We now discuss how our algorithms may be imple-

mented. Both of our algorithms need two basic informa-
tion about the network — the location information of all

sensors, and a list of healthy sensors. The location infor-

mation is available as a result of localization operation
which is usually done at the time of initial deployment. A

list of healthy sensors is also usually available at the base

station because regular health monitoring is an integral
part of most deployed sensor networks [21]. With these

information, our algorithms can be executed at a base
station to determine an optimal sleeping schedule. This

sleeping schedule, as well as any subsequent updates to

it, can be communicated to the sensors using SNMS [21]
like protocols. Note that there is no need for any extra

sensor-to-sensor communication in our algorithms.



In terms of complexity, both of our algorithms (Stint

and Prahari) have the best comlexity possible in terms

of traditional measure of comlexity. This is because the

complexity in both of these algorithms is dominated by
the standard graph theoretic computations. In the Stint

algorithm, the dominant part is the computation of node-
disjoint paths, whose best known complexity is higher

than that for other steps in the Stint algorithm. Simi-

larly, in the Prahari algorithm, the dominant part is the
computation performed by the MEM algorithm and the

SEM algorithm. Again, the best known complexity of these

algorithms or their alternatives is higher than that for the
remaining steps of the Prahari algorithm.

VI. CONCLUSIONS

The problem of optimal sleep-wakeup is a fundamental

problem for wireless sensor networks given the criticality
of energy efficiency. It has been widely accepted that the

sleep-wakeup problem is not polynomially solvable. How-

ever, the NP-Hardness results proved for sleep-wakeup
are for a specific model of coverage called full coverage.

It is an open issue to explore whether sleep-wakeup is
polynomially solvable for other models of coverage.

In this paper, we showed that the sleep-wakeup prob-
lem can be optimally solved in polynomial-time for the

barrier coverage model, thus enabling applications such
as intrusion detection to use sleep-wakeup in practical

situations to maximize the network lifetime. We not only

solved the case of homogeneous sensor lifetimes but also
the more general case of heterogeneous lifetime.

Our results open the area of sleep-wakeup for further
exploration. It will be interesting and useful to determine

the class of applications and the class of coverage mod-
els for which the sleep-wakeup problem is polynomially

solvable. Such an exploration will enable the use of sleep-

wakeup in several practical applications with tangible
benefits in terms of network lifetime maximization.

REFERENCES

[1] M. Cardei, M. Thai, and W. Wu, “Energy-efficient target coverage
in wireless sensor networks,” in IEEE INFOCOM, Miami, FL, 2005.

[2] S. slijepcevic and M. Potkonjak, “Power efficient organization of
wireless sensor networks,” in IEEE International Conference on
Communications, Helsinki, Finland, 2001, vol. 2, pp. 472–476.

[3] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards optimal
sleep scheduling in sensor networks for rare event detection,” in
IPSN, Nashville, TN, 2006.

[4] T. He and et al, “Energy-efficient surveillance system using
wireless sensor networks,” in International Conference on Mobile
Systems, Applications, and Services (ACM Mobisys), Boston, MA,
2004, pp. 270–283.

[5] T. He, P. Vicaire, T. Yan, Q. Cao, L. Gu, G. Zhou, J. A. Stankovic,
and T. Abdelzaher, “Achieving long term surveillance in vigilnet,”
in IEEE INFOCOM, Bercelona, Spain, 2006.

[6] R. Iyer and L. Kleinrock, “Qos control for sensor networks,” in
IEEE International Communications Conference (ICC), 2003.

[7] J. Hui, Z. Ren, and B. H Krogh, “Sentry-based power management
in wireless sensor networks,” in IPSN, Palo Alto, CA, 2003, pp.
448–47.

[8] Chao Gui and Prasant Mohapatra, “Power conservation and quality
of surveillance in target tracking sensor networks,” in International
Conference on Mobile Computing and Networking (ACM MobiCom),
Philadelphia, PA, 2004, pp. 129–143.

[9] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated
coverage and connectivity configuration in wireless sensor net-
works,” in ACM Conference on Ebmedded Networked Sensor Systems
(SenSys), Los Angeles, CA, 2003, pp. 28–39.

[10] H. Zhang and J. Hou, “Maintaining sensing coverage and connec-
tivity in large sensor networks,” in NSF International Workshop on
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wirelsss, and
Peer-to-Peer Networks, 2004.

[11] “Extreme scale wireless sensor networking,” Tech. Rep.,
http://www.cse.ohio-state.edu/exscal, 2004.

[12] Sandip Bapat, V. Kulathumani, and A. Arora, “Analyzing the yield
of exscal, a large scale wireless sensor network experiment,” in
IEEE International Conference on Network Protocols (ICNP), Boston,
MA, 2005.

[13] R. Szewczyk, J. Polastre, A. M. Mainwaring, and D. E. Culler,
“Lessons from a sensor network expedition,” in EWSN, Berlin,
Germany, 2004.

[14] Wataru Kishimoto, “A method for obtaining the maxmimum
multiroute flows in a network,” Networks, vol. 27, no. 4, pp. 279–
291, 1996.

[15] S. Kumar, T. H. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” in International Conference on Mobile Computing and
Networking (ACM MobiCom), Cologne, Germany, 2005, pp. 284–
298.

[16] V. Shnayder, M. Hempstead, B. Chen, B. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in ACM Sensys, Baltimore, MD, 2004.

[17] Douglas B. West, Introduction to Graph Theory, Prentice Hall,
2001.

[18] Wataru Kishimoto and M. Takeuchi, “On m route flows in a
network,” IEICE Transactions (in Japanese), vol. J-76-A(8), pp.
1185–1200, 1993.

[19] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, New York, 1979.

[20] C. Huang and Y. Tseng, “The coverage problem in a wireless
sensor network,” in ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA), San Diego, CA, 2003, pp. 115–
121.

[21] Gilman Tolle and D. E. Culler, “Design of an application-
cooperative management system for wireless sensor networks,” in
EWSN, Istanbul, Turkey, 2005.


