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ABSTRACT

Recent research in data mining has progressed from mining
frequent itemsets to more general and structured patterns
like trees and graphs. In this paper, we address the prob-
lem of frequent subtree mining that has proven to be vi-
able in a wide range of applications such as bioinformatics,
XML processing, computational linguistics, and web usage
mining. We propose novel algorithms to mine frequent sub-
trees from a database of rooted trees. We evaluate the use
of two popular sequential encodings of trees to systemat-
ically generate and evaluate the candidate patterns. The
proposed approach is very generic and can be used to mine
embedded or induced subtrees that can be labeled, unla-
beled, ordered, unordered, or edge-labeled. Our algorithms
are highly cache-conscious in nature because of the compact
and simple array-based data structures we use. Typically,
L1 and L2 hit rates above 99% are observed. Experimen-
tal evaluation showed that our algorithms can achieve up to
several orders of magnitude speedup on real datasets when
compared to state-of-the-art tree mining algorithms.

Categories and Subject Descriptors

H.2 [DATABASE MANAGEMENT]: Database Appli-
cations—Data Mining

General Terms
Algorithms

Keywords

Tree mining, Prufer sequences, Depth first order codes, Fre-
quent patterns, Embedding lists

1. INTRODUCTION

Data mining or knowledge discovery deals with finding
interesting patterns or information that is hidden in large
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datasets. Recently, researchers have started proposing tech-
niques for analyzing structured and semi-structured dataset-
s. Such datasets can often be represented as graphs or trees.
This has led to the development of numerous graph mining
and tree mining algorithms in the literature[23, 9, 11, 24,
15, 17, 20]. In this article we focus on the development of
efficient algorithms for mining trees.

Mining for frequent subtrees has been shown to be useful
in various applications. For example, mining user browsing
and access patterns on the world wide web can benefit from
frequent subtree mining [24, 5]. Also, researchers [15, 27|
have applied frequent subtree algorithms for solving bioin-
formatic tasks like finding the similarity of phylogenetic tree-
s. We have demonstrated that mining embedded sub-trees
can be helpful in estimating selectivity of XML twig queries
and in summarizing the XML documents [21]. Several re-
searchers have developed association rule mining algorithms,
and structure classifiers for XML documents based on their
subtree structures [16, 25]. Design of network multicast
routing algorithms can also benefit from frequent subtree
discovery [6]. Wang et al [22] have also shown that, in the
context of movie documents, mining for typical structures
(trees) can reveal substantial information about the data.

In this work, we develop a novel method for mining in-
duced or embedded subtrees from various types of rooted
trees (ordered, unordered, labeled, unlabeled, edge-labeled
etc.) [24, 10, 17, 20]. The proposed approach relies on a
sequential encoding of the database trees. Specifically we
examine the use of Priifer sequence and Depth First order
Sequence (DF'S) based encodings for this purpose. Our ap-
proach exploits the structure of the sequence encoding to
generate candidate subtrees efficiently and to compute the
support of said candidates in the database easily. It lever-
ages embedding lists in generating a set of complete and
non-redundant candidate patterns. One of the major advan-
tages of our approach is that the sequential encoding allows
us to operate on an array based representation of trees. This
results in very efficient and cache-conscious algorithms that
can suitably leverage the features of modern and emerging
architectures [7].

Our experimental results show that the proposed approach
is significantly faster than competing strategies on both real
and synthetic datasets (up to 355 times speedup). A more
in-depth analysis revealed that the proposed approach is
extremely cache conscious (L1 hit rate: 99.6, L2 hit rate:
99.94, Cycles Per Instruction (CPI): 0.72) when compared
to TreeMiner [24] (L1 hit rate: 96.59, L2 hit rate: 99.96,
CPI: 1.2). We find that, on the real and synthetic datasets



we evaluated, the Priifer sequence based encoding shows a
marginal yet consistent performance improvement over the
DF'S based encoding schemes.

Specifically, we make the following contributions in this
article: First, we propose a new algorithm to mine frequent
subtrees based on sequence encoding strategies (Priifer and
DF'S codes), that are very efficient on real datasets. Second,
we develop a novel methodology for generating complete and
non-redundant candidate subtrees that is based on sequen-
tial encodings of trees. Third, we show that the proposed
algorithms are generic in nature and can be adopted to mine
different types of trees.

2. RELATED WORK

There exist several algorithms in the literature that focus
on mining various types of trees such as free trees, rooted
trees, and ordered trees. Chi et al [3] present an excellent
overview on frequent tree mining. One of the first algo-
rithms in this area, TreeMiner, was proposed by Zaki [24].
TreeMiner mines for embedded subtrees from a forest (set) of
rooted, ordered, and labeled trees. Influenced by the design
of Eclat [26], TreeMiner represents trees in vertical format
and uses scoping to prune the search space and efficiently
mine for frequent sub-trees. A limitation of this method
is that it uses pointer-based dynamic data structures and
uses a lot of memory as we demonstrate in our experimental
evaluation.

Wang et al [20] have recently proposed two algorithms,
Chopper and XSpanner to mine frequent embedded sub-
trees. Chopper recasts subtree mining into sequence mining
and uses PrefixSpan [12] to compute the set of frequent se-
quences. These frequent sequences correspond to candidate
subtrees that are evaluated against the database and those
sub-trees that are infrequent are pruned away. A limitation
of this method, as pointed out by the authors, is that it will
only be effective if the set of candidate patterns (from the
sequence mining step) contains few false positives. Unfortu-
nately in many real datasets this is not the case. XSpanner
falls under the category of algorithms, which generate fre-
quent patterns without ezplicit candidate generation, draw-
ing inspiration from FPgrowth [8]. It recursively projects
the database and generates frequent subtrees. A potential
problem with this approach is that the recursive projection
may again lead to a lot of pointer chasing and poor cache
behavior.

There exist various other algorithms which deal with a
slightly different problem. Very recently, Tan et al [17] have
proposed IMBS3-Miner that mines embedded subtrees us-
ing Tree Model Guided enumeration. This algorithm uses
occurrence match support instead of traditional transaction-
based support (definition that is used in frequent itemset
mining). Asai et al [1] have proposed an algorithm Freqt
that enumerates frequent ordered induced subtrees in a set
of ordered trees. CMTreeMiner [4] proposed by Chi et al dis-
covers all closed and maximal frequent subtrees from a set
of rooted unordered trees. Termier et al have proposed two
algorithms viz. Dryade and DryadeParent [18, 19] to mine
closed frequent subtrees. They assume that no two siblings
of a tree node can have the same labels. This assumption
makes the complex subtree mining very simple and it might
not be applicable in many real-world scenarios. Nijssen et al
[10, 11] have proposed an efficient graph mining algorithm,

Gaston. Gaston (and also other well known graph mining
algorithms like g-Span) can mine for special instances of
graphs i.e., paths and trees. Gaston mines for free trees;
moreover, it can only mine induced subtrees. Extension of
such approaches for mining embedded subtrees is not trivial.

Sequential representations have been used by many re-
searchers in several areas. For example, Priifer sequences are
used by Rao et al in the context of tree indexing [14]. They
have proposed a holistic method, PRIX, to efficiently in-
dex XML documents by transforming the tree isomorphism
problem into subsequence matching. Basagni et al [2] have
used priifer sequences to efficiently encode the Steiner trees
resulting from multicast groups, in their dynamic source
multicast protocol.

3. PRELIMINARIES

Graphs and Trees: A graph, G = (V, E) consists of set
of vertices (or nodes) V, and set of edges E C V X V. A
graph is called as labeled graph if its vertices and/or edges
are labeled. Graphs with no labels are referred to as unla-
beled graphs. A path in the graph is a sequence of vertices,
V1V2...0n such that (vi,vig1) € E,i=1,2,...,n—1. A graph
is said to be connected if for any two vertices v; and vj;, 4 # j,
there exists a path between them. A Cycle of length n in
the graph corresponds to a path whose start and end ver-
tices are the same, such as vive...v,v1. A tree is a connected
graph that has no cycles. A rooted tree is a tree in which
a vertex is distinguished from other vertices that is known
as the root of the tree. Consider the path from root v, to
some vertex v, in a rooted tree, v,v1...Umvz. All vertices
on the path from v, to v, are ancestors of v, and v, is a
descendant to those vertices. wv,’s immediate ancestor, v,
is the parent of v, and v; is a child of v,,. A node with no
children is known as a leaf node and all other non-leaf nodes
are referred to as internal nodes. Two nodes with the same
parent are siblings to each other. A tree is said to be ordered
if some order is imposed on each set of siblings. If there is
no order specified among children of a node, then the tree
is unordered. Henceforth, “tree” refers to a rooted ordered
tree unless otherwise stated.

Subtrees: Tree S = (V;, E;) is said to be an induced
subtree of T' = (V, E) if S is connected, V; C V, and E; C E.
In other words, Ve = (vp,v.) € Ej, vp is the parent of ve in T'.
Such a tree can be obtained by deleting vertices and edges
from T. Tree S = (V, E¢) is said to be an embedded subtree
of T'= (V,E) if S is connected, Ve C V, and Ve = (vq,vq) €
Ee, v, is the ancestor of v4 in T'. For a given subtree S, each
occurrence of S in T is known as the embedding of S in T'.
By embedding we mean the set of vertices of T', which are
matched with vertices in S.

Tree Traversal: Given a tree, nodes in the tree can be
traversed in many different ways. Two methods of inter-
est are post-order traversal and pre-order traversal. In post-
order traversal, a node is traversed or visited only after all of
its children are visited. In pre-order traversal, a node is vis-
ited before any of its children are visited. The node with the
post-order traversal number (PON) 1 is referred to as the
left-most leaf. The node with the largest pre-order traver-
sal number is known as the right-most leaf. The unique
path from the root to the left-most leaf is known as the Left
Most Path (LMP) and the unique path from the root to the
right-most leaf is referred as the Right Most Path (RMP).
Pre-order traversal on the tree explores nodes in depth-first



manner. We hence refer to the sequence generated by pre-
order traversal as Depth First order Sequence (DFS).

Priifer Sequences: Priifer sequences were first used by
Heinz Priifer to prove Cayley’s formula in 1918 [13]. Priifer
sequences provide a bijection between the set of labeled trees
on n vertices and the set of sequences of length n — 2 on the
labels 1 to n. A simple iterative algorithm can be used to
construct the priifer sequence of a tree with n vertices. The
algorithm starts with an empty sequence. At each step, the
leaf with the smallest label is removed and its parent is ap-
pended to an already constructed partial priifer sequence.
This process is repeated until only two vertices remain, i.e.,
it is repeated for n — 2 iterations. In the resulting sequence,
(p1, P2, ..., Pn—2), Di is the parent of a node with the i*" small-
est label. We extend this construction by repeating the pro-
cedure for n iterations to produce a sequence of length n.
When the last vertex is removed we leave the corresponding
entry in the priifer sequence empty, denoted by “-”. Inter-
estingly, for a given sequence S of length n — 2 on the labels
1 to n, there is a unique labeled tree whose Priifer sequence
is S. This can be proved fairly easily by induction on n.

In the above construction, labels are assumed to be unique
i.e., there can exists at most one vertex with any given label.
In practice, this is rarely true as multiple nodes in a tree can
share the same label. Therefore, a unique labeling system
is needed for our purpose with which priifer sequences can
be constructed. For a given tree in the database, we use
the post-order traversal numbers of vertices as the unique
set of labels over which the priifer sequence is constructed.
We refer to the priifer sequence constructed from post-order
traversal numbers as the Numbered Prifer Sequence (NPS).
Furthermore, the Label Sequence (LS) of a tree is given by
the sequence of labels of leaf nodes, which are deleted at
each step. Precisely, NPS denotes the priifer sequence rep-
resented using post-order numbers, and LS denotes the la-
bels of leaf nodes which are deleted. Both NPS and LS are
ordered by the post-order number (PON). We jointly re-
fer to these sequences as our Consolidated Priifer Sequence
CPS(T) = (NPS,LS)(T). Figure 1 (b) shows the example
priifer sequences for two trees, 71 and T5.

LEMMA 3.1. (NPS, LS) uniquely represents a rooted, la-
beled tree.

PRrROOF. We prove this informally by presenting the intu-
ition. NPS is constructed using post-order traversal num-
bers, which are unique in the tree. NPS thus determines
the topology of the tree, which can be constructed by fol-
lowing the steps of priifer sequence construction, in reverse
order. Once the topology is determined, LS gives the labels
of nodes in the order given by post-order traversal. Hence,
NPS and LS uniquely represents a rooted labeled tree in
which multiple nodes can share the same label. [J

Problem Statement: Let D = {T41,7%,...,T,} denote a
database of rooted trees and the support of a subtree S
with respect to a tree T is given by:

1, if S is a subtree of T’
sup(S,T) = { 0, otherwise
We define the support of S with respect to a database D as
sup(S, D) = %ﬂlf(s’n). S is considered as a frequent

pattern if sup(S, D) is greater than or equal to a user-defined
threshold minsup. Otherwise, S is said to be an infrequent

pattern. Given a database of trees D and the minimum sup-
port threshold minsup, the goal is to mine all frequent em-
bedded or induced subtrees i.e., {S/sup(S, D) > minsup}.
If D contains rooted ordered (or unordered) trees, the goal
of the subtree mining task is to mine for all frequent (em-
bedded or induced) ordered (or unordered) subtrees. The
definition of support can also be devised such that it takes
the number of embeddings of S in T into account [17].

Broadly, tree mining algorithms can be categorized into
two types, Apriori-based and Pattern-growth approaches. C-
andidate generation and support counting are the two key
steps in each algorithm. In Apriori-based algorithms, can-
didates are generated level-wise. At level ¢, all candidate
subtrees of length i are generated using frequent subtrees
found in level ¢ — 1. Pattern-growth algorithms partition
the search space into equivalence classes. They start with a
node (a seed pattern) and generate all the frequent subtrees
with that node as the root. The set of all subtrees resulting
from a seed pattern is referred to as an equivalence class.
In support counting step, generated candidate subtrees are
evaluated for frequency. The challenge in candidate gener-
ation is to traverse the exponential search space efficiently.
All algorithms leverage the anti-monotone property of fre-
quent patterns in efficiently pruning certain branches in the
search space. According to this property, no super pattern
of an infrequent pattern can be frequent. The challenge
in support counting is posed by the isomorphism problem
especially in the case of embedded trees. Pattern-growth
approaches are, in general, shown to be efficient compared
to traditional apriori-based approaches.

4. PROPOSED APPROACH

Our scheme is based on the pattern-growth approach. It
first transforms the database trees into sequences. Specific
properties of these sequences are then exploited to efficiently
generate the candidate subtrees. For a given subtree S, the
sequences of all the trees in which S occurs are scanned to
find the edges with which S can be extended. Each such edge
together with S defines a new candidate subtree. Candidate
subtrees with support greater than or equal to minsup are
then processed recursively to generate bigger subtrees. The
proposed method for generating candidates is non-redundant
as the process is guided by database tree sequences (Section
4.1). Our novel method for candidate generation renders
support counting step to be simple. Both candidate gener-
ation and support counting with respect to S can be done
simultaneously in one scan of the sequences in which S oc-
curs. This generic approach can be applied to any type
of sequential encodings as long as they exhibit some specific
properties (described later). In the following sections we will
show how our approach can be applied to priifer sequences
and depth-first order sequences. We first describe our TRee
mIning algorithm using Prifer Sequences (TRIPS). We then
point out the changes to be made for applying similar ap-
proach to depth-first order sequences.

4.1 Candidate Generation

In this section, we present our novel priifer sequence based
candidate generation technique. The pattern-growth ap-
proach is employed to systematically generate the candi-
date patterns (or subtrees). Hereafter, the terms “pattern”
and “subtree” are used interchangeably. Assume we want
to grow a subtree S with an edge e. Note that, growing S
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Figure 1: LMP-based growth, Database trees & their priifer sequences

with an edge and growing S with a vertex are synonymous.
The number of ways in which e can be added to S are very
large. e can be attached to any node in S and for a given
node v, e can be at any position in the list of v’s children®.
To avoid such large number of possibilities, we restrict the
positions at which e can be attached. Suppose the left most
path (LMP) in S is P = v,v1...Um, where v, is the root of
S and v, is the left-most node. We allow e to be attached
only to those nodes that are on the LMP of S. Further-
more, e is always added as the first child. By following such
an orderly mechanism we restrict the number of possibilities
in which S can be grown with e. It is fairly simple to see
that this mechanism indeed generates every possible subtree
in the search space and generates each subtree only once; this
is because the tree mining approach starts from frequent 1-
node subtrees and generates (frequent) subtrees of 2 nodes,
3 nodes, etc., recursively (see Section 4.4).

Each candidate pattern generated from S is denoted by

the tuple (I, p), where [ is the label of the node that is being
attached to S and p is the position at which [ is attached.
In other words, p gives the PON of the node in S to which
l is added as the first child. We refer to each such pair (I, p)
as an extension point of S.
Example: Consider Figure 1 (a), which shows two patterns
S1, S2 and their possible extensions. The edges, with which
S1 and S2 are extended, are shown as dashed lines in red
color. In Si, the edge e = (A, B) forms the left most path;
hence, the new edge can be attached to any one of the two
nodes of e. Therefore, S11,S12 are valid extensions from S
and their extension points are (A, 3) and (A, 1) respectively.
In S21, node B is added to node A, which is on the LMP of
S2. Therefore, S21 is a valid extension from Sz and its ex-
tension point is (B, 3). Note that, even though S21 contains
S1 as a subtree it cannot be generated from Si, as node D
is not on the LMP of S;.

It is worth noting that the extension points are defined
with respect to a particular embedding of S in T, a tree in
the database. Assume S has two embeddings F1 and E5 in a
database tree T'. An extension point of S in T with respect
to E1 might not be a valid extension point of S in T with
respect to F>. This is because the two embeddings might not

'If the trees are unordered then there is exactly one way in
which e can be attached to v.

have any node in common. An extension point with respect
to one embedding might not even be connected to a node
in another embedding. Even when two embeddings have
a common node, the position of the common node might
not be the same. Hence, an extension point must always be
defined with respect to a particular embedding.

We explore the interesting relation between the LMP-
based growth mechanism and priifer sequences to develop
a method that can efficiently generate the set of candidate
patterns by taking the structure of database trees into ac-
count. This relationship is captured in the following lemma:

LEMMA 4.1. Let S denote a pattern and its sequences are
given by CPS(S) = (NPS, LS). Eztension point (I,p) of S
corresponds to a prefix in the prifer sequence of the resulting
pattern, R =S U (I, p).

PrOOF. For the sake of exposition, we only present the
proof informally. Since (I,p) is an extension point of S, I
is attached to a node at position p (say that node’s label
is v). By the definition of an extension point, v is on LMP
of S and [ is added as the first child of v. Therefore, post-
order traversal on R visits [ before any other node that was
present in S. As the priifer sequence is ordered by PON, [ is
the first node in the priifer sequence of R. Hence, extensions
on the LMP of S corresponds to the prefixes of R’s priifer se-
quence. More precisely, CPS(R) can be obtained by prefix-
ing CPS(S) with (p+1,1)i.e., NPS(R) = (p+1) . NPS(S),
and LS(R) =1 . LS(S), where “” symbolizes concatena-
tion. Obviously, NPS[v], Vv € S must be incremented by 1
while constructing R’s sequence. []

The LMP-based candidate generation is systematic, but it
does not deal with the problem of exponential search space
efficiently. Though it uses the anti-monotone property of
frequent patterns to prune the search space, it can still po-
tentially generate redundant candidate patterns. A pattern
is considered redundant if its support is zero. Consider the
example database and patterns in Figure 1. Both Si1 and
Si2 are valid LMP-based extensions of S1, but their support
is zero as they do not occur either in 73 or in T%. Therefore,
generating S11 and Si2 is redundant and should be avoided.
On the other hand, S2;1 is not only a valid extension of Sz but
also a subtree of 7. Thus, S21, whose support is 1, is not a
redundant pattern. To avoid false positives like S11 and Sz,



the candidate generation technique should take the topology
of database trees into account. Such schema-conscious can-
didate generation is not new and has been used in several
algorithms like Gaston [11] and IMB3-Miner [17]. This can
be achieved by using a special data structure called Embed-
ding Lists. For a given pattern S and a database tree T, the
embedding list stores the information about all the embed-
dings of S in 7. This information can be used to quickly
find the vertices with which S can be grown such that the
resulting pattern is supported by T. We use a simple array-
based embedding structure (section 4.1.1) that makes our
algorithm cache-conscious and facilitates efficient implemen-
tation. Since extension point, (I, p) is generated in schema-
conscious manner, S U (I,p) corresponds to a subtree in at
least one tree in the database.

THEOREM 4.1. Consider extending a pattern S whose em-
bedding is E in T, a database tree. Say, v is a node that is
on the left of E in CPS(T). If v is connected to a node u
that is part of E, then v defines a valid extension for S in
T with respect to E.

PRrROOF. From the definition of extension point: for a node
to be a valid extension of S, it needs to be connected to a
node that is on the LMP of FE. From Lemma 4.1, the exten-
sions of S corresponds to the prefixes of resulting pattern’s
prifer sequence. Hence, the extensions of S with respect to
E should present on the left of E in CPS(T). Therefore, v
is a possible extension for S with respect to E. Since, v is
connected to u that is part of E, u must be on the LMP of
E. If u is not on the LMP of E then v cannot be on the left
of E in CPS(T). Since v is connected a node w that is on
the LMP of F, v defines a valid extension for S with respect
to . O

Theorem 4.1 plays a critical role in determining the nodes
with which S can be extended to generate larger subtrees.
For simplicity, consider the case of induced subtrees. Ac-
cording to the theorem, it is sufficient to check the nodes
which are on the left of F when finding extensions with re-
spect to E. For each node that is on the left of E (say v
whose label is 1), we need to check if v’s parent is part of E
or not. Precisely, we need to check whether LS[NPS[v]] is
part of E or not. We refer to this check as connectivity check.
The position at which v is connected to E (i.e., p) can be
computed by maintaining a simple counter that is updated
while traversing E. Extension point (I,p) thus generated
uniquely defines a new subtree. When evaluating a node v,
connectivity checks need to be carried out against each of the
embeddings that is on the right of v in CPS(T'). Since ex-
tension points are generated by traversing the C'PS of trees
in D, false positive (or redundant) patterns are avoided.
This method can only mine for induced subtrees as the
connectivity check is performed only for the parent of v.
When mining for embedded subtrees, node v is considered
as an extension point if any of its ancestors is part of the em-
bedding. Hence, connectivity checks need to be carried out
for each ancestor of v and against each embedding. As soon
as an ancestor that is part of some embedding F is found,
the connectivity check for v with respect to E needs to be
stopped. Essentially, connectivity check finds parent-child
relationships (in case of induced subtrees) and ancestor-
descendant relationships (in case of embedded subtrees).
Example: Consider the running example in Figure 1 (b),
assume pattern S is being extended to generate the exten-

sion points. The embeddings of S in 17 and T» are marked
as dashed lines in red color. There are two embeddings F:
and F»> in T and one embedding F3 in T>. In this example,
we denote a node as [l, n], where [ is the label of the node
and n is its PON. In T}, search for extension points should
be carried out from [D, 5] to [B,1] (Lemma 4.1). Consider
the node v = [D, 5], whose parent is [C, 6]. LS[NPS[v]] =C
is part of embedding E1 and hence v is a valid extension to
S (Theorem 4.1). wv is attached to E; at position 1 (the
PON of D’s parent in S). Hence, (D, 1) defines an exten-
sion point for S in 77 with respect to E1. Consider the node
[F, 4], whose parent [D, 5] is not part of any of the two em-
beddings. However, F’s ancestor [C,6] is part of Ei. As
a result, (F,1) is a valid extension point. Note that, (F, 1)
is not an extension point when mining for induced subtrees
because the connectivity check stops with F’s parent, [D, 5].
Node [B, 3] is attached to E; at position 2 (the PON of B’s
parent in S) generating an extension point (B,2). Though
[C,2] is part of Fa, it must be evaluated against E; as it
resides on the left of Fi. Therefore, one node can be part
of multiple embeddings but at different positions. Similarly,
[B, 1] gives an extension point (B,1) with respect to Es.
Note that, evaluating [B, 1] involves a connectivity check
with respect to both E1 and E2, because [B, 1] is to the left
of both Fy and F> in CPS(Th). Since [B, 1] is not connected
to E1, it does not generate any extension point with respect
to E1. Thus, the algorithm generates four extension points,
(D, 1), (F,1), (B,2), and (B, 1) by scanning 77. Similarly,
the algorithm generates (D, 1) and (B, 2) by processing T5.

4.1.1 Embedding Lists

We now briefly describe the structure of our array-based

embedding lists. As mentioned earlier, this structure stores
the information of all the embeddings of a pattern S in the
given database tree 1. This structure is maintained in a per
tree basis. Fach entry in the embedding list corresponds to
a node in T that is matched with a node in S. These entries
are of the form (m, ptr) where m is the PON of the matching
node and ptr is the pointer to the parent node in the pat-
tern. The matching nodes of the two different vertices are
separated by a special entry, (0, —2). Entries corresponding
to the nodes, which are matched to the root of a pattern,
have their ptr set to a value of —1. This is because they are
the initial nodes which were added to the embedding list.
Please note that the number of nodes in the last section of
the embedding list (between last two separators) is equal
to the number of embeddings of the pattern. Each node
in the last section together with nodes pointed to directly
or indirectly by them defines the LMP of the embedding.
Therefore, when a pattern is being extended, the traversal
of the embedding list is constrained only to the LMP of the
embedding.
Example: Consider again the example database in Figure
1 (b). A pattern and corresponding embedding lists with
respect to Th and T» are shown in Figure 2 (a). The first
section of T7’s list (before the first separator) gives the PON
numbers of nodes matched to the root of the pattern, A.
Since the patterns are grown on LMP, A is extended with
C and the corresponding matching nodes are recorded in
the second section of the embedding list. For each matching
node, a pointer is created to its parent node in the embed-
ding. That is, when A — C' is extended with the node B,
matching nodes of B point to A.



Such an array-based structure is simple and gels well with
the recursive structure of our algorithm. To illustrate the
point, assume the pattern A — C has two extension points,
B and D. First A—C'is extended with B (say, the resulting
pattern is P) to generate all the subtrees extending from
P. Once the mining with respect to P is completed, A — C
needs to be extended with D. At this time, the matching
nodes of C' in the embedding list can be replaced with the
matching nodes of D as C’s matchings nodes are no longer
required. Hence, our array-based embedding list not only is
simple but also facilitates efficient recursive implementation
of our algorithm.

The space overhead incurred by embedding lists needs
special mention as their maintenance demands a non-trivial
amount of memory. The amount of overhead is directly de-
pendent on the distribution of distinct labels (L) over the set
of nodes (N) of a given tree (T). If |L| and |N| are compara-
ble in number, then the number of matches in T for a given
pattern would be very few. This results in small embedding
lists. Instead, if |L| << |N| then the number of matches for
a given pattern would be large. Let us consider the worst
case scenario where all the |N| nodes in a given tree has the
same label (i.e., |L| = 1), say v. This tree results in |V|
matches for a one-node pattern (every node in the tree is
a match). When the pattern has two nodes (edge v — v),
the number of matches can be up to |[N|* |N —1]. Add to
that, when the dataset contains a very large number of such
trees, the overhead incurred in maintaining the embedding
lists of all trees increases tremendously. Such extreme but
rare scenarios demand algorithms which do not require to
maintain embedding lists.

4.2 Support Counting

The candidate generation mechanism makes the support
counting step trivial, normally a costly step. This is done
by maintaining a hash table H, known as Support Struc-
ture that stores the counts for each of the extension points
found. Whenever a new extension point (I,p) is generated,
H is probed to see if (I,p) is already present in H or not.
If (I,p) € H, then the count associated with (I,p) is incre-
mented by 1 to reflect its new support. If not, the new
entry is added to H with a count of 1. Once all the trees are
scanned for extension points, H contains the set of extension
points and associated supports. The resulting set of patterns
is given by, R = SU{(l,p)/(l,p) € H A support((l,p)) =
minsup}. Each pattern in R is considered again by the can-
didate generation algorithm to generate larger patterns.
Example: For the example database in Figure 1 (b), sup-
port structure is shown in Figure 2 (b). When T} is scanned
for extension points for S, one entry is created for each of the
four extension points resulted from 73. Each entry is created
with support 1 representing the occurrence of a new pattern
in 7h. When (D, 1) is generated from 75, count associated
with it is incremented by 1 as it is already present in H.
Similarly, count associated with the extension point (B, 2)
is incremented by 1. If the minimum support is 2 then only
two ((D,1) and (B,2)) of the four extension points would
be frequent and will be considered again for candidate gen-
eration.

4.3 DFS-based Approach

Though TRIPS is based on priifer sequences, the idea of
extending sequences for candidate generation can be applied

to other sequence encodings. In this section, we describe
such an application by devising Tree mIning algorithm using
DEpth first order Sequences (TIDES). TRIPS and TIDES
differ only in their candidate generation step. The support
counting step is the same for both the algorithms. Method
of candidate generation in both the algorithms is quite sim-
ilar in its spirit except for a few differences. While TRIPS
restricts the growth points to the Left Most Path of the pat-
tern, TIDES restricts them to the Right Most Path (RMP).
Therefore, an extension point (I, p) now refers to the addi-
tion of a node with label [ at a node whose depth first order
number is p. Use of RMP instead of LMP is motivated by
the relation between RMP and depth first order sequences
that is similar to the relation between LMP and priifer se-
quences. Hence, similar to Lemma 4.1 and Theorem 4.1, we
can prove the following lemmas in the context of depth first
order sequences.

LEMMA 4.2. Let S denote a pattern with depth first order
sequence DFS(S). Extension point (I,p) of S corresponds
to a postfix in the depth first order sequence of the resulting
pattern, R = S U (l,p)

THEOREM 4.2. Consider extending a pattern S whose em-
bedding is E in T, a database tree. Say, v is a node that is
on the right of E in DFS(T). If v is connected to a node u
that is part of E, then v defines a valid extension for S in
T with respect to E.

Since the depth first order sequences are based on pre-

order traversal of trees, growth on the right most path is the
same as growing the sequence on the right hand side. The
embedding list in TIDES keeps track of the nodes, which
form the RMP of the pattern at hand.
Comparison of TRIPS and TIDES: TIDES can of-
fer certain optimizations, which are difficult to achieve in
TRIPS. In the candidate generation step, TRIPS scans the
entire sequence that is to the left of embedding. This in-
volves processing of nodes, which are not in the subtree of
the pattern. Consider the example shown in Figure 1 (b)
and assume the pattern being extended is an edge A — D.
In T4, only [B, 3] and [A, 4] are valid candidates, as they are
present in the subtree of the pattern. In TRIPS, the connec-
tivity check is performed not only on these two nodes but
also on [B, 1] and [C, 2], as they are on the left of embedding
of the pattern. TIDES can avoid such redundant processing
by making use of scope data structures similar to the ones
described in [24]. Scope structures enable us to focus only
on nodes that are part of the subtree of the pattern. This
benefit comes at the cost of higher space overhead that is
incurred by storing the scope values (two integers) for every
match. In other words, every embedding now needs to be
associated with the scope. This overhead can be quite high
if the number of embeddings of a pattern in the tree is very
large (e.g. large trees with very few distinct labels). TIDES
also has certain drawbacks when compared to TRIPS. The
connectivity check on a node v involves traversing all the
ancestors of v i.e., exploring the path from v to the root of
the tree. Such a traversal is straight forward in TRIPS, as
priifer sequences are constructed based on parent-child rela-
tionships. To derive such relationships efficiently in TIDES,
explicit pointers to parent nodes must be created for each
node in the depth first order sequence.

In a nutshell, our sequence based candidate generation
technique can be applied to any type of sequential encod-
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ing schemes as long as one can relate the growth in the
trees to the growth in the corresponding sequences. This in-
volves building relationships similar to the ones mentioned
in Lemma 4.1 and Lemma 4.2. We now consolidate our main
contributions in the next section.

4.4 Putting it All Together

Algorithm 1 Subtree Mining Algorithm
Require: D = {T1,T>,..
1: Fi = readTrees (D)

2: for all v in F; do
3:  mineTrees (NULL, (v, —1), D)
4: end for

., TN}, minsup

In this section, we abstract out the ideas that are inher-
ent in both TRIPS and TIDES to summarize our subtree
mining algorithm (Algorithm 1). During the first scan of D,
frequent nodes are identified (F1). For each node v in Fi, the
procedure mineTrees (Algorithm 2) is called to recursively
mine the equivalence class of v, i.e., all subtrees whose root
is v. maneTrees is a recursive procedure that applies the
candidate generation algorithm on the given pattern, pat.
At every level of recursion, a new pattern newpat is gen-
erated by extending pat with an extension point (I, pos).
tidlist provides the projection of database with respect to
pat. It contains the identifiers of trees in which pat occurs
as a subtree. When extending pat, only the sequences of
trees in tidlist need to be scanned. For a given pattern and
an extension point, mineTrees first identifies the location of
(I, pos) in each tree of tidlist and updates the corresponding
embedding list (lines 3-8 in Algorithm 2). At the same time,
newtidlist is constructed to include the identifiers of trees in
which newpat has an embedding (line 6). Once the all em-
beddings of newpat are found, the candidate generation al-
gorithm is applied to find the extension points with respect
to newpat (lines 10-13). For each frequent extension point,
mineTrees is called recursively to mine larger patterns (lines
14-18). Note that, Algorithm 2 shows two different loops
in lines 3 and 10: one for finding the embedding of newpat
and the other for extending the embedding. In the actual
implementation, these two loops can be combined so that
only one scan on the tidlist is performed. Thus, our algo-
rithm, for a given pattern, can generate and find the patterns
simultaneously, in a single scan of priifer sequence.

As described in section 4.1, our algorithm can easily be
adopted for mining both induced and embedded subtrees.
Induced subtrees can be mined by adjusting the range of
nodes for which the connectivity check is performed. Though
the algorithm described deals with labeled trees, it is fairly

Algorithm 2 Mining a given pattern

mineTrees (pat, (I, pos), tidlist)
newpat = extend (pat, I, pos)
newtidlist = NULL
for all T in tidlist do
if (I, pos) is an extension point for pat in T then
update embedding list of T'
add T to newtidlist
end if
end for
9: H = NULL
10: for all T in newtidlist do
11:  Scan T for extension points of newpat
12:  Add generated extension points to H
13: end for
14: for all h in H do
15:  if h.support > minsup then

16: mineTrees (newpat, (h.l, h.pos), newtidlist)
17:  end if
18: end for

easy to see that it is applicable even if the trees which are
not labeled. Moreover, it can be modified to handle edge
labels by making simple extensions to the algorithm while
maintaining the simplicity in representation. Each pair in
CPS(T)ie., (NPS[v], LS[v]) represents an edge in T'. If the
edges are labeled, a new sequence can be incorporated into
CPS to provide the edge label for each pair in the priifer
sequence. Note that, this change in the representation is
minimal and we cannot do better than this.

Our algorithm can also be used to mine unordered trees.
The only change that is required in Algorithm 2 is at line
11, scanning T for extension points. Assume, a node v in
the tree T is matched with the pattern’s root node. Since
the children of v are unordered, connectivity check needs to
be performed for every descendant of v (not just the descen-
dants of the left-most child of v). We thus need to start the
scan from a position that is immediately to the left of v,
while searching for extension points. The modified pattern
growth mechanism can potentially yield duplicate patterns.
To avoid the generation of duplicates, a strict total order
must be enforced on the set of labels, e.g., lexicographic or-
dering. Furthermore, we have shown that our algorithms
can be applied to any type of sequence encodings that follow
specific properties (last para of section 4.3). Hence, our ap-
proach is generic with respect to the representation of trees
as well as the type of subtrees to be mined.

5. EXPERIMENTAL RESULTS



In this section, we present the experimental evaluation of
the proposed approach on both synthetic and real datasets
shown in Table 1. We compare the performance of our ap-
proach against TreeMiner [24]. All the experiments were
performed on an Itanium 2 based system with 4 GB of main
memory and a 1.3GHz processor. In the following discus-
sion, dataset sizes are expressed in terms of number of trees,
and minsup refers to the absolute support rather than the
fraction, as defined earlier.

Name Description
DS1 -T 10 -V 100
DS2 -T 10 -V 50
DS3 -f 15 -d 10 -n 100 -m 100
DS4 -f 15 -d 10 -n 1000 -m 100
CSLOGS 59,691 trees
TREEBANK 52,581 trees

Table 1: Datasets

5.1 Synthetic Datasets

In the first set of experiments, we evaluate our TRIPS
algorithm on four different synthetic datasets. As shown in
Table 1, the synthetic datasets DS1 and DS2 are gener-
ated using the PAFT toolkit developed by Kuramochi and
Karypis (PafiGen)®. The datasets DS3 and DS4 are gen-
erated from the tree generator created by Zaki (TreeGen)®.
The table also shows the parameter settings used for creat-
ing these datasets. Since PafiGen can create only graphs,
we have extracted spanning trees from these graphs and used
in our analysis. Please note that the input parameters are
just the guidelines to the generator (especially to TreeGen).
Actual data that is created might not have the exact same
statistics as the parameters provided. In the following, no-
tation D — num refers to a dataset D with num trees.

The performance of TRIPS against TreeMiner on the syn-
thetic datasets is shown in Figures 3 (a) and (b). TRIPS
is clearly scalable and continues to perform better as the
dataset size increases. It achieves a speedup of 11.6 on DS1-
40K and a speedup of 8.6 on DS4-100K. We have observed
that the skewness of the dataset directly affects the min-
ing time. If the dataset is skewed, most of the frequent
subtrees are produced from a small number of equivalence
classes (F1 in line 2 of Algorithm 1). This results in smaller
mining times. The trees generated from PafiGen are less
skewed compared to the trees from TreeGen. Therefore, the
mining times of the PafiGen datasets are large, even when
the datasets are small. For example, on the datasets with
40,000 trees, TRIPS (TreeMiner) spent 790 (8042) seconds
in mining trees in DS1 whereas it spent only 315 (2711) sec-
onds in mining trees in DS4. Higher speedups from the Pafi
datasets shows that TRIPS can handle the difficulty posed
by (lesser) skewness better than TreeMiner.

Figures 4 (a) and (b) depict the effect of minsup on the
mining time and the number of frequent patterns found in
the PafiGen datasets. Not surprisingly, the execution time
and the number of patterns increases as minsup decreases.
Notably, the performance difference between TRIPS and

2http://glaros.dtc.umn.edu/gkhome/pafi/overview/
3http://www.cs.rpi.edu/”zaki/software/

TreeMiner continuously goes up with the decrease in min-
sup. On DS2-40K, as the value of minsup decreases from
5 to 1, the number of frequent patterns increases by 339
times. In this case, the execution time of TreeMiner in-
creased by 65 times, whereas the execution time of TRIPS
increased only by 15 times. This is because of two reasons:
large number of join operations; large number of false pos-
itive patterns. First, at low support levels, TreeMiner has
to perform costly join operations on a very large number
of scope lists. Though TRIPS has to perform more connec-
tivity checks (at low minsup), the increase in run time is
not very high. The time taken for a connectivity check, in
general, is very small because it is performed only on nodes
present on LMP. Moreover, for a given pattern the set of
nodes for which the connectivity check is performed does
not depend on the support level. It only depends on the
tree size and the matching nodes of the pattern (Theorem
4.1). Whereas in TreeMiner, the number of scope lists and
hence the number of joins performed is highly dependent on
the value of minsup. Second, TreeMiner naively performs
the join operation on scope lists and hence it has the poten-
tial for generating a large number of false positive patterns.
For example on DS1-10K, at minsup = 1, TreeMiner pro-
duced 1041 million candidates out of which only 173 mil-
lion (approximately 16%) are frequent. On the other hand,
TRIPS will never generate a redundant candidate pattern
as the candidate generation is guided by the topology of
the database trees. Thus, the strategies adopted by TRIPS
enable us to mine large datasets at very low support levels
efficiently. The performance of TIDES is similar to that of
TRIPS on all synthetic datasets.

5.2 Real Datasets

In the second set of experiments, we evaluated the pro-
posed algorithms on two different real datasets CSLOGS and
TREEBANK. CSLOGS" contains web logs collected over a
month in the Computer Science Department at the Rensse-
laer Polytechnic Institute. It contains 59, 691 user browsing
access patterns for 13,361 different web pages. On average,
a tree in CSLOGS dataset has 12.94 nodes and the largest
tree is of 428 nodes. The TREEBANK dataset® is made
up of language treebanks, which have been widely used in
computational linguistics. Treebanks are XML documents,
which capture the syntactic structure of English text and
provide a hierarchical representation of the sentences in the
text by breaking them into syntactic units based on part
of speech. TREEBANK has a total of 52,581 XML docu-
ments, which are narrow and have deep recursion of element
names. The largest tree in this dataset has 648 nodes and
the average number of nodes in a tree is 68.03.

Figure 5 (a) presents the run time comparison of our al-
gorithms against TreeMiner on CSLOGS. The overall per-
formance trend is similar to the one observed in synthetic
datasets, but the speedup achieved is much larger in case of
real datasets. At minsup = 800, TreeMiner spent 8748.5 sec-
onds in mining the frequent patterns, whereas TRIPS spent
only 24.61 seconds giving a speedup of 355.43. When min-
sup is decreased, time spent by TreeMiner increases much
more quickly than TRIPS and TIDES. With the decrease in
minsup from 1000 to 900, quick rise in mining time in all the
algorithms is due to the presence of frequent patterns inside

4http://www.cs.rpi.edu/”zaki/software/

5
“http://www.cs.vashington.edu/research/xmldatasets/
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very large trees (which were not frequent at minsup= 1000).
The mining time of TreeMiner increased by 300 times, while
it is increased only by 6 times in TRIPS.

Figure 5 (b) shows the amount of virtual memory (Res-
ident Set Size) used by the algorithms. TIDES memory
consumption is slightly higher compared to TRIPS because
of the extra pointers to the parent nodes (for traversing
RMP efficiently). If TIDES employs the scope values for
each embedding, the difference in memory usage would be
much higher. At low support levels the amount of mem-
ory consumed by our algorithms is much lower compared to
TreeMiner. At minsup = 800, TreeMiner used 2505 MB of
memory and TRIPS completed the mining process by using
just 60.84 MB of memory. Furthermore, the memory space
consumed by TreeMiner raises exponentially with decrease
in minsup. We suspect that this is because of the trees
with large number of nodes and very few distinct labels. As
mentioned in section 4.1.1, in such trees the number of em-
beddings for a given pattern would be high. This results
in large scope lists (in TreeMiner) and large embedding lists
(in our algorithms). Since an entry in embedding list is a lot
simpler and smaller than an entry in scope list, TreeMiner
experiences a quick rise in memory usage. At minsup="700,
TreeMiner was aborted after 54 hours with memory usage
more than 4 GB (TRIPS: 300.27 seconds & 335.97 MB).
At very high support values (for example, 1200 in the fig-
ure), both TRIPS and TIDES use slightly more memory
compared to TreeMiner because of the embedding lists.

Similar conclusions can be drawn from experiments con-
ducted on the TREEBANK dataset (Figure 6). The time
spent in mining and the amount of virtual memory used
increased very sharply when using TreeMiner. For our al-
gorithms, increase in execution time and virtual memory
is slower when compared to TreeMiner, but is faster when
compared to the increase observed on CSLOGS (Figures 5 &
6). This can be attributed to the narrow and deep structure
of the XML trees in the TREEBANK dataset. Even in this
case, our algorithms exhibit excellent performance in terms
of both execution time and memory consumption. At a sup-
port level of 40, 000, TreeMiner ran for 7.3 hours consuming
2.2 GB of virtual memory. TRIPS, on the other hand, spent
only 266 seconds with memory usage of 221 MB, resulting
in a speedup of 98.93. Please note that for the experiment at
minsup = 30,000, TreeMiner was ran on a Itanium 2 based
system with 12 GB of main memory. This system has been
used only for this experiment.

Finally, a note on the performance differences between
TRIPS and TIDES: as shown in Figures 5 & 6, TRIPS
performs marginally better than TIDES. In terms of mem-
ory consumption, TIDES uses more memory than TRIPS
for the reasons presented in the above discussion. We as-
cribe the difference in execution times to the structure of
database trees and frequent patterns. Tree and frequent
pattern structures govern the number of connectivity checks
performed and affect the execution time. The difference
in run times is higher on the CSLOGS dataset than the
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TREEBANK dataset. However, in all cases both TIDES
and TRIPS perform several orders of magnitude better than
TreeMiner.

5.3 Performance Analysis

We use the Intel VTune Performance Analyzers® to per-
form cache performance analysis of our algorithms. This
tool profiles the program execution at the level of source
code and provides performance characteristics for each func-
tion in the implementation. Results presented in this sec-
tion are obtained using the TREEBANK dataset at min-
sup = 45000. Both TRIPS and TIDES exhibit excellent
cache performance with (L1 hit rate, L2 hit rate, C'PI)
of (99.6, 99.94, 0.72) and (99.7, 99.96, 0.7), respectively.
Whereas, TreeMiner produced hit rates and CPI of (96.59,
99.96, 1.2). We observed that TreeMiner has slightly lower
L1 hit rate. It also suffers from memory management is-
sues. 49% of TreeMiner’s time is spent in the library, libc-
2.3.4.s0 which contains several memory management rou-
tines like malloc() and free(). TRIPS and TIDES, on the
other hand, spent only 2.3% and 3.7% of time in that library.
The simple array-based data structures (sequence encodings
and embedding lists) we use facilitate efficient memory man-
agement and make our algorithms cache-conscious. On the
other hand, TreeMiner’s pointer-based dynamic structures
make the memory management a difficult task. This prob-

6h1:tp ://www.intel.com/cd/software/products/asmo-na/eng/vtune/
index.htm

lem worsens with decreasing values of minsup because of
the exponential increase in memory size that is occupied by
scope lists.

In all the three algorithms, candidate generation is the
most expensive step. TreeMiner spent about 75 seconds
(22.8% of run time) in scope-list joins (functions check_ins,
check_outs, and compare). Both TRIPS and TIDES spent
only about 31 seconds (63.7% of execution time) in travers-
ing the embedding list and performing the connectivity chec-
ks. High percentage of time spent in user-level code depicts
the better CPU utilization by TRIPS and TIDES. Similar
results are observed on synthetic datasets, Figure 7. For
example, CPU utilization of TRIPS (TreeMiner) is 99.3%
(90.0%) and 99.3% (72.5%) on DS1— 50K and DS4— 1M,
respectively.

As part of our analysis, we also compared our approach
against XSpanner [20], using the binary provided by the au-
thors. Please note that the following results are obtained
on an Intel P4 based system with a 2.4GHz processor and 4
GB of main memory. While we expected our approaches to
outperform XSpanner, we also expected XSpanner to out-
perform TreeMiner as demonstrated in [20]. The results we
obtained are surprising in that XSpanner achieves perfor-
mance that is typically much worse than that of TreeMiner
for many datasets. One possible explanation for this behav-
ior is the fact that the memory footprint can be very large
for such pattern-growth projection based approaches, poten-
tially resulting in memory thrashing and large 1/O costs [7].
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Additionally, XSpanner is likely to suffer from poor cache
performance due to the complexity of the pseudo-projection
step. For example, on DS1 XSpanner took 1166 seconds
whereas TreeMiner has taken only 38.31 seconds. On DS3,
the mining time of XSpanner and TreeMiner are 245 and 3.1
seconds, respectively. On all the datasets, TRIPS ran faster
than TreeMiner even on this architecture (DS1 : 24 seconds
and DS3 : 1.1 seconds). We observed similar results on both
DS2 and DS4. All the results were obtained from datasets
with 50,000 trees and at minsup = 25. Only on some toy
datasets with 5 to 10 trees, the run times of XSpanner are
comparable to TreeMiner. We could not evaluate XSpanner
on the two real datasets because XSpanner binary expects
the number of distinct labels to be less than 10,000. In the
CSLOGS and TREEBANK datasets, the maximum label
number is 13,361 and 1, 387, 266, respectively.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed new algorithms for mining
frequent induced or embedded subtrees from rooted trees.
Novel sequential encoding based strategies are proposed,
which facilitate the fast generation of complete and non-
redundant set of candidate subtrees. We evaluated the pro-
posed algorithms against TreeMiner on various synthetic
and real datasets. We show that our approach achieves
several orders of magnitude improvement on real datasets,
when compared to state-of-the-art algorithms. Specifically,
we obtained speedup of 355 and 98 on the CSLOGS and
TREEBANK datasets, respectively. Our algorithms make
use of simple array-based data structures and show excellent
cache and memory performance. We also have demonstrated
that our techniques are generic and can easily be adopted to
mine various types of trees i.e., ordered, unordered, labeled,
unlabeled, edge-labeled, etc.

In the future, we would like to extend the proposed ap-
proaches to devise parallel algorithms for tree mining. We
would like to develop algorithms which do not employ em-
bedding lists as the overhead incurred by them can poten-
tially be prohibitive. We also want to characterize different
tree mining algorithms in terms of their cache behavior and
the type of datasets on which they perform well.
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