
Locality Conscious Processor Allocation and
Scheduling for Mixed Parallel Applications

N. Vydyanathan†, S. Krishnamoorthy†, G. Sabin†, U. Catalyurek‡,
T. Kurc‡, P. Sadayappan†, J. Saltz‡

† Dept. of Computer Science and Engineering,
‡ Dept. of Biomedical Informatics

The Ohio State University

Abstract

Computationally complex applications can often be viewed as a collection of coarse-grained data-
parallel application components with precedence constraints. These applications can be modeled as
directed acyclic task graphs, with vertices representing parallel computations and edges denoting prece-
dence constraints and data dependences. In the past, researchers have shown that combining task and
data parallelism (mixed parallelism) can be an effective execution paradigm for these applications. In this
paper, we present an algorithm to compute the appropriate mix of task and data parallelism based on the
scalability characteristics of the tasks as well as the inter-task data communication costs, such that the
parallel completion time (makespan) is minimized. The algorithm iteratively reduces the makespan by
increasing the degree of data parallelism of tasks on the critical path that have good scalability and a low
degree of potential task parallelism. Data communication costs along the critical path are minimized by
exploiting parallel transfer mechanisms and use of a locality conscious backfill scheduler. A look-ahead
technique is integrated into our approach to escape local minima. Evaluation using benchmark task
graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently
performs better than previously proposed scheduling schemes.

I. I NTRODUCTION

Parallel scientific applications and workflows can often be decomposed into a set of coarse-

grained data-parallel tasks with precedence constraints that signify data dependences. These

applications can benefit from two forms of parallelism: task and data parallelism. In a purely

task-parallel approach, each task is assigned to a single processor and multiple tasks are executed

concurrently as long as precedence constraints are not violated and there are sufficient number

of processors in the system. In a purely data-parallel approach, the tasks are run in a sequence

on all available processors. However, a pure task-parallel or data-parallel approach may not

be the optimal execution paradigm. Many applications exhibit limited task parallelism due to

precedence constraints. Sub-linear speedups lead to the poor performance of pure data-parallel

schedules. Several researchers have shown that a combination of both, called mixed parallelism,

yields better speedups [1], [2], [3]. In mixed-parallel execution, several data-parallel tasks are

executed concurrently in a task-parallel manner.

In recent prior work [4], we developed an integrated algorithm for processor allocation

and scheduling under the assumption that inter-task data communication costs are negligible.

However, in practice, inter-task data communication and redistribution costs can be significant,

especially in the context of communication- and data-intensive applications. In this paper, we

extend our previous work, to model these costs and exploit data locality when computing the

schedule.

This paper proposes a single-step approach for locality conscious processor allocation and

scheduling of mixed-parallel execution of applications consisting of coarse-grained parallel tasks

with dependences. The goal is to minimize the parallel completion time (makespan) of an

application task graph, given the runtime estimates, speedup functions of the constituent tasks

and the inter-task data communication volumes. The proposed algorithm is an iterative one-

phase scheme that is designed to minimize the makespan of an application task graph. Starting

from a pure task-parallel schedule, the proposed algorithm iteratively reduces the makespan by

minimizing the computation and communication costs along the critical path. Computation costs

are minimized by increasing the degree of data parallelism of tasks that exhibit good scalability

and low degree of potential task parallelism. Communication costs are minimized by exploiting

parallel transfer mechanisms and using a locality aware priority based backfill scheduling scheme

to schedule the parallel tasks onto processor groups. Backfill scheduling also helps in improving

the effective processor utilization by minimizing idle time slots. A look-ahead mechanism is

in-built to escape local minima.

We evaluate the approach through comparison with our previous work, as well as two pre-

viously proposed scheduling schemes, Critical Path Reduction (CPR) [5] and Critical Path and

Allocation (CPA) [6], which have been shown to give good improvement over other existing

approaches like TSAS [3] and TwoL [7]. We also compare the algorithm against pure task-

parallel and pure data-parallel schemes. Evaluations are done using synthetic task graphs and

task graphs derived from real applications in the domains of Tensor Contraction Engine [8], [9]

and Strassen Matrix Multiplication [10]. We show that our scheme consistently performs better

2

than other approaches, by intelligently exploiting data locality and task scalability.

This paper is organized as follows. The next section introduces the task graph and system

model. Section 3 describes the proposed locality conscious allocation and scheduling algorithm.

Section 4 evaluates the proposed scheduling scheme and section 5 discusses related work. Section

6 presents our conclusions and outlines possible directions for future research.

II. TASK GRAPH AND SYSTEM MODEL

A mixed-parallel program can be represented as a macro data-flow graph [3] which is a

weighted directed acyclic graph (DAG),G = (V, E), whereV , the set of vertices, represents the

parallel tasks andE, the set of edges, represents precedence constraints and data dependences.

Each parallel task can be executed on any number of processors. There are two distinguished

vertices in the graph: thesource vertexwhich precedes all other vertices and thesink vertexwhich

succeeds all other vertices. Please note that the terms, vertices and tasks are used interchangeably

in the paper.

The weight of a vertex,vi ∈ V , corresponds to the execution time of the parallel task it

represents. The execution time of a task is a function of the number of processors allocated

to it. This function can be provided by the application developer, or obtained by profiling the

execution of the task on different numbers of processors. Each edge,ei,j ∈ E, of the task graph is

associated with the volume of data,Di,j, to be communicated between the two incident vertices,

vi and vj. The weight of an edgeei,j is the communication cost, measured as the time taken

to transfer dataDi,j betweenvi and vj. This is a function of the data volumeDi,j, network

characteristics, the set of processors allocated to tasks represented byvi and vj and the data

distribution over these processor sets. This function can be computed based on the data layout

scheme of the application and the network characteristics. is assumed to run non-preemptively

and can start only after the completion of all its predecessors.

The length of a path in a DAGG is the sum of the weights of the vertices and edges along

that path. Thecritical path of G, denoted byCP (G), is defined as the longest path inG. The

top levelof a vertexv in G, denoted bytopL(v), is defined as the length of the longest path

from the source vertex tov, excluding the vertex weight ofv. The bottom levelof a vertexv

3

in G, denoted bybottomL(v), is defined as the length of the longest path fromv to the sink,

including the vertex weight ofv. Any vertexv with maximum value of the sum oftopL(v) and

bottomL(v) belongs to a critical path inG.

Let st(t) denote thestart timeof a taskt, andft(t) denote itsfinish time. A task t is eligible

to start execution after all its predecessors are finished, i.e., theearliest start timeof t is defined

as est(t) = max(t′,t)∈E(ft(t′) + ct(t′, t)), wherect(t′, t) is the communication time to transfer

data from taskt′ to t. Due to resource limitations, the start time of a taskt might be later than

its earliest start time, i.e.,st(t) ≥ est(t). Note that with non-preemptive execution of tasks,

ft(t) = st(t) + et(t, np(t)), wherenp(t) is the number of processors allocated to taskt, and

et(t, p) is the execution time of taskt on p processors. The parallel completion time or the

makespan ofG is the finish time of the sink vertex.

The application task graph is assumed to be executed on a homogeneous compute cluster,

with each compute node having local disks. Each parallel task distributes its output data among

the processors on which it executes.

A single-port communication model is assumed, i.e., each compute node can participate in

no more than one data transfer in any given time-step. The system model initially assumes

a significant overlap of computation and communication, as most clusters today are equipped

with high performance interconnects which provide asynchronous communication calls. How-

ever, as this may not be feasible for systems where communication involves I/O operations

at the sender/receiver, we have included evaluations of the algorithms assuming no overlap of

computation and communication.

III. L OCALITY CONSCIOUSM IXED PARALLEL SCHEDULING ALGORITHM

This section presents LoC-MPS, a Locality Conscious Mixed Parallel allocation and Schedul-

ing algorithm. LoC-MPS is an iterative algorithm that makes integrated resource allocation

and scheduling decisions based on detailed knowledge of both application structure and re-

source availability. It minimizes the makespan of an application task graph by minimizing

the computation and communication costs along the schedule’s critical path, which includes

dependences induced by resource constraints. Computation costs are reduced by increasing the

4

Task t np(t) et(t, np(t))

T1 4 10
T2 3 7
T3 2 5
T4 4 8

Fig. 1. (a) Task GraphG, (b) Sample allocation of processors,
(c) Modified Task Graph,G′.

Number of Processors
Tasks 1 2 3

T1 10.0 7.0 5.0
T2 8.0 6.0 5.0
T3 9.0 7.0 5.0
T4 7.0 5.0 4.0

Fig. 2. (a) Task GraphG, (b) Execution time profile.

width of scalable tasks along the critical path with a low degree of potential task parallelism.

Communication costs are minimized by exploiting inter-task data locality and by increasing

the degree of parallel data transfers. A bounded look-ahead technique is used to escape local

optima. The backfill scheduling algorithm employed increases the overall system utilization.

These salient features allow LoC-MPS to compute better schedules than previously proposed

schemes. A detailed description of the algorithm is given in the following sub-sections.

A. Initial Allocation and Schedule-DAG Generation

LoC-MPS starts with an initial pure task-parallel schedule (i.e., allocation of one processor to

each task) and refines this schedule iteratively to minimize the makespan. At each iteration, LoC-

MPS selects thebest candidatecomputation vertex or communication edge from the critical path

of the schedule, whose weight/cost is to be reduced. The critical path of the schedule is given by

CP (G′), where the schedule-DAGG′ is the original DAGG with zero weight edges (pseudo-

edges) added to representinduced dependencesdue to resource limitations (see Figure 1).

ReducingCP (G′), which represents the longest path in the current schedule, potentially reduces

the makespan.

Consider the scheduling of the task graph displayed in Figure 1(a) on 4 processors. The

processor allocation information is given in Fig 1(b). For simplicity, let us assume zero commu-

nication costs along the edges. Due to resource limitations tasksT2 andT3 are serialized in the

schedule. Hence, the modified DAGG′ (Fig 1(c)) includes an additional pseudo-edge between

verticesT2 andT3. The makespan of the scheduleG′, which is the critical path length ofG′,

is 30.

5

B. Best Candidate Selection

Once the critical path of the schedule-DAGG′, CP (G′), is computed, LoC-MPS identifies

whether the makespan is dominated by computation costs or communication costs. The com-

putation cost along the critical path is estimated as the sum of the weights of the vertices in

CP (G′), and the communication cost is computed as the sum of the edge weights. The vertex

weight, which denotes the execution time of a task on the allocated number of processors is

obtained from the task’s execution profile. The edge weight denotes the communication cost to

redistribute data between the processor groups associated with each task/endpoint of the edge.

The weight of edgeei,j (between tasksti and tj), is estimated as:

wt(ei,j) =
di,j

bwi,j

wheredi,j is the total data volume to beredistributed, andbwi,j is the aggregate communication

bandwidth betweenti and tj. The aggregate communication bandwidthbwi,j is given by:

bwi,j = min(np(ti), np(tj))× bandwidth

where bandwidth would correspond to the minimum of disk or memory bandwidth of the system

depending on the location of data and the network bandwidth. In each iteration, LoC-MPS

determines whether the makespan is dominated by the computation or communication cost, and

attempts to minimize the dominating cost.

C. Minimizing Computation Cost

If computation cost dominates, LoC-MPS selects thebest candidatefrom the tasks on a critical

path (candidate tasks). The best candidate task is allocated one additional processor. We leverage

our previous work [4] in choosing the best candidate task.

The choice of the best candidate is made by considering two aspects: 1) the scalability of the

tasks and 2) the global structure of the DAG. The goal of choosing a best candidate task is to

choose a task that can give the greatest makespan reduction. First, the improvement in execution

time of each candidate taskct is computed aset(ct, np(ct))−et(ct, np(ct)+1). However, picking

6

the best candidate task based solely on the execution time improvement is a greedy choice that

does not consider the global structure of the DAG and may result in a poor schedule. An increase

in processor allocation to a task limits the number of tasks that can be run concurrently. Consider

that the task graph in 2(a) is to be scheduled on 3 processors. Each task is initially allocated one

processor each. TasksT1 andT2 lie on the critical path andT1 has the maximum decrease in

execution time. However, increasing the processor allocation ofT1 will serialize the execution

of T3 or T4, resulting finally in a makespan of17. A better choice in this example is to choose

T2 as the best candidate, and schedule it on 3 processors, leading to a makespan of15.

Taking this into account, LoC-MPS chooses a candidate task that not only provides a good

execution time improvement, but also has a lowconcurrency ratio. The concurrency ratio of

task t, cr(t), is a measure of the amount of work that can potentially be done concurrent tot,

relative to its own work. It is given by:

cr(t) =

∑
t′∈cG(t) et(t′, 1)

et(t, 1)

wherecG(t) represents the maximal set of tasks that can run concurrent tot. A task t′ is said

to be concurrent to a taskt in G, if there is no path betweent and t′ in G. This implies there

is no direct or indirect dependence betweent′ and t, hencet′ can potentially run concurrently

with t. Depth First Search (DFS) is used to identify the dependent tasks. First, a DFS from task

t on G is used to compute a list of tasks that depend ont. Next, a DFS on the transpose of

G, GT (obtained by reversing the direction of the edges onG) computes the task whicht is

dependent on. The remaining tasks constitutes the maximal set of concurrent tasks inG for task

t: cG(t) = V − (DFS(G, t) + DFS(GT , t)).

To select the best candidate task, the tasks in the critical path of the schedule are sorted in non-

increasing order based on the amount of decrease in execution time. From a certain percentage

of tasks at the top of the list, the task with the minimum concurrency ratio is chosen as the

best candidate. Inspecting the top 10% of the tasks from the list yielded good results for all

our experiments. To summarize, LoC-MPS widens tasks along the critical path that scale well

and are competing for resources with relatively few other “heavy” tasks and thus minimizes

7

computation costs.

Algorithm 1 LoC-MPS: Locality Conscious Mixed Parallel Scheduling Algorithm
1: for all t ∈ V do
2: np(t)← 1
3: best Alloc← {np(t)|t ∈ V } . Best allocation is the initial allocation
4: < G′, best sl >← LoCBS(G, best Alloc) . Compute the schedule and the schedule length
5: repeat
6: {np(t)|t ∈ V } ← best Alloc . Start with best allocation
7: old sl← best sl . and best schedule
8: LookAheadDepth← 20
9: iter cnt← 0

10: while iter cnt < LookAheadDepth do
11: CP ← Critical Path inG′

12: Tcomp ← Total computation cost alongCP
13: Tcomm ← Total communication cost alongCP
14: if Tcomp > Tcomm then
15: tbest ← BestCandidate task in CP with np(t) < min(P, Pbest(t)) and t is not marked if

iter cnt = 0 . Pbest(t) is the least number of processors on which the execution time oft
is minimum

16: if iter cnt = 0 then
17: entry node← tbest . entry node signifies the start point of this look-ahead search
18: np(tbest)← np(tbest) + 1
19: else
20: ebest(ts, td) ← heaviest edge alongCP that is not marked ifiter cnt = 0 and np(ts) or

np(td) < P
21: if np(ts) > np(td) then
22: np(td)← np(td) + 1
23: else if np(ts) < np(td) then
24: np(ts)← np(ts) + 1
25: else
26: np(td)← np(td) + 1
27: np(ts)← np(ts) + 1
28: if iter cnt = 0 then
29: entry node← ebest(ts, td) . entry node signifies the point of start of this look-ahead

search
30: A′ ← {np(t)|t ∈ V }
31: < G′, cur sl >← LoCBS(G, A′)
32: if cur sl < best sl then
33: best Alloc← {np(t)|t ∈ V }
34: < G′, best sl >← LoCBS(G, best Alloc)
35: iter cnt← iter cnt + 1
36: if best sl ≥ old sl then
37: Mark entry node as a bad starting point for future searches
38: else
39: Commit this allocation and unmark all marked tasks and edges
40: until all task and edges in CP are marked or for all taskst ∈ CP , np(t) = P

8

Number of Processors
Tasks 1 2 3 4

T1 40.0 20.0 13.3 10.0
T2 80.0 40.0 26.7 20.0

Fig. 3. (a) Task GraphG, (b) Execution time profile assuming linear speedup.

D. Minimizing Communication Cost

Communication costs are minimized by: 1) reducing the cost of an edge by enhancing the

aggregate communication bandwidth between the source and the destination processor groups

and 2) exploiting data locality through the use of a locality conscious backfill scheduling scheme.

The aggregate communication bandwidth is enhanced by improving the degree of parallel data

transfer by increasing the processor allocation to the incident tasks. To minimize the cost of edge

ei,j, the processor allocation ofti or tj, whichever has lesser number of processors, is incremented

by 1. If both ti and tj are allocated equal number of processors, both the processor counts are

incremented by 1. As data is now distributed among more nodes, communication costs can

be reduced by exploiting parallel transfer mechanisms. In each iteration where communication

costs dominate computation costs, LoC-MPS minimizes the cost of the heaviest edge along

the critical path. Data redistribution costs are further reduced by intelligent allocation of tasks

to processors using the locality conscious backfill scheduling scheme which is described in a

subsequent sub-section.

E. Bounded Look-ahead

Once the best candidate is selected and the processor allocation is refined, a new schedule is

computed using our locality conscious backfill scheduler. The heuristics employed in LoC-MPS

may generate a schedule with a worse makespan than in the previous iteration. However, the

only schedule modifications that decrease the makespan are used, it is possible to be trapped in

local minima. Consider the DAG shown in Figure 3 and the execution profile, which corresponds

to linear speedup. Assume that this DAG is to be scheduled on 4 processors. SinceT2 is on the

9

critical path, its processor allocation is increased until it is no longer on the critical path. After

T2 is allocated 3 processors,T1 becomes the task on the critical path. However, increasing the

processor allocation ofT1 to 2 causes an increase in the makespan. If the algorithm does not

allow temporary increases in makespan, the schedule is stuck in a local minima: allocating 3

processors toT2 and 1 processor toT1. However, the data parallel schedule, i.e., running both

T1 andT2 on all 4 processors in a sequence, leads to the smallest makespan.

To alleviate this problem, LoC-MPS uses a bounded look-ahead mechanism. The look-ahead

mechanism allows allocations that cause an increase in makespan for a bounded number of

iterations. After these iterations, the allocation with the minimum makespan is chosen and

committed. A bound of 20 iterations was found to yield good results in our experiments.

Algorithm 2 LoCBS: Locality Conscious Backfill Scheduling
1: function LOCBS(G, {np(t)|t ∈ V })
2: G′ ← G
3: while not all tasks scheduleddo
4: Let tp be the ready task with highest value ofbottomL(tp) + maxti∈parent(tp) wt(ei,p)
5: pbest(tp)← ∅ . Best processor set
6: ftmin(tp)←∞ . Minimum finish time
7: free resource list ← {(p, eat(p), dur(p))|eat(p) ≥ est(tp) ∧ |p| ≥ np(tp) ∧ dur(p) ≥

et(tp, np(tp))} . List of idle-slots or holes in the schedule that can hold tasktp; p: processor
set, eat(p): earliest available time of p, dur(p): duration for which the processor set p is available

8: while free resource list not emptydo . Traverse through this list
9: p′ ← subset of processors inp that have maximum locality fortp

10: rct(tp, p′)← data redistribution completion time fortp on p′

11: st(tp)← max(eat(p), rct(tp, p′))
12: ft(tp)← st(tp) + et(tp, np(tp))
13: if ft(tp) ≤ eat(p) + dur(p) then . Task can complete in this backfill window
14: if ft(tp) < ftmin(tp) then
15: pbest(tp)← p′ andftmin(tp)← ft(tp) . Save the processor set that yields the

minimum finish time
16: Scheduletp on the processor setpbest(tp)
17: if st(t) > est(t) then
18: Add apseudo edgein G′ between each taskti andtp whereft(ti) = st(tp) andp(ti)∩p(tp) 6= ∅

19: return < G′,Schedule length,>

F. Locality Conscious Backfill Scheduling (LoCBS)

Typically task graphs composed of sequential tasks with dependences are scheduled using a

priority based list scheduling approach [11]. List scheduling keeps track of the latest free time

for each processor, and forces all tasks to be executed in strict priority order. The strict priority

10

order of list scheduling tends to needlessly waste compute cycles. Parallel job schedulers use

backfilling [12] to allow lower priority jobs to use unused processor cycles without delaying

higher priority jobs, thereby increasing processor utilization and decreasing makespan. Parallel

job scheduling can be viewed as a 2D chart with time along one axis and the processors along

the other axis, where the objective is to efficiently pack the 2D chart (schedule) with jobs/tasks.

Each job can be modeled as a rectangle whose height is the estimated run time and the width

is the number of processors allocated. Backfilling works by identifying “holes” in the 2D chart

and moving forward smaller jobs that fit these holes. In order to exploit data locality, rather

than choosing the earliest available idle slot where a task fits, our locality conscious backfilling

algorithm schedules a task on the idle slot that minimizes the tasks’ completion time, taking

into consideration data reuse.

Algorithm 1 outlines LoC-MPS. The algorithm starts from a pure task-parallel allocation

(steps 1-2). In the mainrepeat-until loop (steps 5-40), the algorithm performs a look-ahead,

starting from the current best solution (steps 10-35) and keeps track of the best solution found

so far (step 32-34). If the look-ahead process does not yield a better solution, the task or edge

that was the best candidate is marked as a bad starting point for future searches. However, if a

better makespan was found, all marked tasks and edges are unmarked, the current allocation is

committed and the search continues from this state. The look-ahead, marking, unmarking, and

committing steps are repeated until either all tasks and edges in the critical path are marked or

are allocated the maximum possible number of processors.

Algorithm 2 presents the pseudo code for the locality conscious backfill scheduling algorithm

(LoCBS). The algorithm picks the ready tasktp with the highest priority (step 4) and schedules

it on the set of processors that minimizes its finish time (steps 5-16). Iftp is not scheduled to

start as soon as it becomes ready to execute the set of tasks that “touch”tp in the schedule

are computed and pseudo edges are added between tasks in this set andtp (steps 17-18). These

pseudo edges signify induced dependences due to resource limitations.

LoCBS takesO(|V | + |E|) steps for computing the bottom level of tasks andO(|V |) steps

to pick the ready task with the highest priority. Scheduling the highest priority task on the set

11

of processors that minimizes its finish time (steps 5-16) takesO(|V |2PlogP + |V |3|E|P) in

the worst case and adding psuedo edges takesO(|V |PlogP) Thus, the worst case complexity

of loCBS is O(|V |3PlogP + |V |4|E|P). LoC-MPS requiresO(|V | + |E ′|) steps to compute

CP (G′) and choose the best candidate task or edge. As there are at most|V | tasks inCP and

each can be allocated at mostP processors, the repeat-until loop in steps 10-35 has at most|V |P

iterations. Thus overall worst case complexity of LoC-MPS isO(|V |P (|V |3PlogP +|V |4|E|P)).

On the other hand, complexity of CPR isO(|E||V |2P + |V |3P (log|V |+PlogP)). CPA is a low

cost algorithm with complexityO(|V |P (|V |+ |E|)). Though LoC-MPS is more expensive than

the other approaches, as the number of vertices is few in most mixed-parallel applications, the

scheduling times are reasonable as seen in the experimental results.

IV. PERFORMANCEANALYSIS

This section evaluates the quality (makespan) of the schedules generated by the locality

conscious mixed parallel scheduling algorithm (LoC-MPS) against those generated by iCASLB,

CPR, CPA, pure task-parallel and pure data-parallel schemes. CPR is a single-step approach,

while CPA is a two-phase scheme; both have been shown in [5], [6] to perform better than other

allocation and scheduling approaches such as TSAS [3]. iCASLB [4] assumes that inter-task data

communication and redistribution costs are negligible in comparison to intra-task communication

costs. A pure task-parallel schedule (TASK) allocates one processor to each task and the locality

conscious backfill scheduling algorithm to schedule them to processors. A pure data-parallel

schedule (DATA) executes tasks in a sequence, with each task using all processors.

We evaluate the schemes using a block cyclic distribution of data and estimate the volume of

data to be redistributed between the producer and consumer tasks using the fast runtime block

cyclic data redistribution algorithm presented in [13]. In DATA, as all tasks are executed on all

processors, no redistribution cost is incurred.

The performance of the scheduling algorithms are evaluated via simulation, using both syn-

thetic task graphs as well as task graphs from two applications.

12

A. Synthetic Task Graphs

To study the impact of scalability characteristics of tasks and communication to computation

ratios on the performance of the scheduling algorithms, a set of 30 synthetic graphs was generated

using a DAG generation tool [14]. The number of tasks was varied from 10 to 50 and the average

out-degree and in-degree per task was 4. The uniprocessor computation time of each task in a

task graph was generated as a uniform random variable with mean equal to 30. As our task

model comprises of parallel tasks whose execution times vary as a function of the number of

processors allocated, the communication to computation ratio (CCR) is defined for the instance

of the task graph where each task is allocated one processor. Therefore, the communication

cost of an edge was randomly selected from a uniform distribution with mean equal to 30 (the

average uniprocessor computation time) times the specified value of CCR. The data volume

associated with an edge was determined as the product of the communication cost of the edge

and the bandwidth of the underlying network, which was assumed to be a 100 Mbps fast ethernet

network. In this paper, CCR values of 0, 0.1 and 1 were considered to model applications that

are compute-intensive as well as those that have comparable communication costs.

Parallel task speedup was generated using Downey’s model [15]. Downey’s speedup model is

a non-linear function of two parameters:A, the average parallelism of a task, andσ, a measure

of the variations of parallelism. According to this model, the speedupS of a task as a function

of the number of processorsn is given by:

S(n) =


An

A+σ(n−1)/2 (σ ≤ 1) ∧ (1 ≤ n ≤ A)

An
σ(A−1/2)+n(1−σ/2) (σ ≤ 1) ∧ (A ≤ n ≤ 2A− 1)

A (σ ≤ 1) ∧ (n ≥ 2A− 1)

nA(σ+1)
σ(n+A−1)+A

(σ ≥ 1) ∧ (1 ≤ n ≤ A + Aσ − σ)

A (σ ≥ 1) ∧ (n ≥ A + Aσ − σ)

A σ value of 0 indicates perfect scalability while higher values denote poor scalability. Workloads

with varying scalability were created by generatingA as a uniform random value in[1, Amax].

We evaluated the various schemes with(Amax, σ) as (64, 1) and (48, 2).

Figure 4 shows the relative performance of the scheduling algorithms as the number of

processors in the system is increased, when the communication costs are insignificant, i.e.,

13

(a) (b)
Fig. 4. Performance of the scheduling schemes on synthetic graphs with CCR=0 (a)Amax = 64, σ = 1 (b) Amax = 48, σ = 2

(a) (b)
Fig. 5. Performance of the scheduling schemes on synthetic graphs withAmax = 64, σ = 1 and (a) CCR = 0.1 (b) CCR = 1

CCR=0. The relative performance of an algorithm is computed as the ratio of the makespan

produced by LoC-MPS to that of the given algorithm, when both are applied on the same number

of processors. Therefore, a ratio less than one implies lower performance than that achieved by

LoC-MPS. LoC-MPS and iCASLB show similar performance, as CCR is 0. Performance of

DATA decreases as we increaseσ and decreaseAmax as tasks become less scalable. LoC-MPS

shows better performance benefits with increasing number of processors and achieves upto 30%,

37%, 86%, and 51% improvement over CPR, CPA, TASK, and DATA respectively.

Figure 5 presents the performance of the scheduling schemes as data communication costs

become significant. As CCR is increased, performance of iCASLB deteriorates as it does not

model inter-task communication costs. We see that CPR and CPA also perform poorly for CCR =

1. Though CPR and CPA model inter-task communication costs, they do not use a locality aware

scheduling algorithm and hence performance deteriorates as CCR increases. On the other hand,

14

(a) (b)
Fig. 6. Comparison of performance and scheduling times of LoC-MPS on synthetic graphs with CCR=0.1,Amax = 48 and
σ = 2, (a) with backfilling and (b) without backfilling

relative performance of DATA improves as CCR is increased. This is because DATA incurs no

communication and re-distribution costs - we assume a block-cyclic distribution of data across

the processors. Hence, as communication costs become significant, the relative performance of

DATA improves, since it has no communication costs but the other schemes do. However, as the

number of processors in the system is increased, performance of DATA suffers due to imperfect

scalability of the tasks.

Due to the complexity of the locality conscious backfill scheduling algorithm, it was noticed

that the scheduling overheads associated with LoC-MPS with backfill was upto 30 seconds on

128 processors. Therefore, to study the tradeoff between performance and scheduling time, our

algorithm coupled with backfilling was compared against our algorithm without backfilling. The

latter scheme schedules a task on the subset of processors that gives its minimum completion

time while taking into account the data locality, but keeps track of only the latest free time

of each processor rather than the idle slots in the schedule. Figure 6 shows the comparison of

performance and scheduling times of the two schemes. We see that the no-backfill approach has

lower scheduling overheads but is upto 8% worse in performance as compared to scheduling

with backfill. However, in evaluations with real applications (presented in the next sub-section),

the scheduling overheads of LoC-MPS with backfilling was found to be atleast two orders of

magnitude smaller than the makespans.

15

(a) (b)
Fig. 7. Task graphs for applications (a) CCSD T1 computation and (b) Strassen Matrix Multiplication.

(a) (b)
Fig. 8. Performance of the scheduling schemes for CCSD T1 computation (a) System with overlap of computation and
communication (b) Systems with no overlap of computation and communication

B. Task Graphs for Applications

The first task graph in this group comes from an application called Tensor Contraction

Engine (TCE). The Tensor Contraction Engine [8], [9] is a domain-specific compiler to facilitate

implementation of ab initio quantum chemistry models. The TCE takes a high-level specification

of a computation expressed as a set of tensor contraction expressions as its input, and transforms

it into efficient parallel code. The tensor contractions are generalized matrix multiplications in

a computation that form a directed acyclic graph, and are processed over multiple iterations

until convergence is achieved. Equations from the coupled-cluster theory with single and double

excitations (CCSD) were used to evaluate the scheduling schemes. Figure 7(a) displays the DAG

for the CCSD-T1 computation, where each vertex represents a tensor contraction of two input

tensors to generate a result tensor. The edges in the figure denote inter-task dependences and

hence many of the vertices have a single incident edge. Some of the results are accumulated to

form a partial product. Contractions that take a partial product and another tensor as input have

16

(a) (b)
Fig. 9. Performance of the scheduling schemes for Strassen Matrix Multiplication for matrix sizes (a) 1024X1024 (b) 4096X4096

(a) (b)
Fig. 10. Scheduling times (a) CCSD T1 computation (b) Strassen Matrix Multiplication

multiple incident edges.

The second application is Strassen’ Matrix Multiplication [10], shown in Figure 7(b). The

vertices represent matrix operations and the edges represent inter-task dependences. Matrix sizes

of 1024× 1024 and4096× 4096 were used in the experiments. The speedup curves of the tasks

in these applications were obtained by profiling them on a cluster of Itanium-2 machines with

4GB memory per node and connected by a 2Gbps Myrinet interconnect.

Figure 8 presents the performance of the various scheduling algorithms for the CCSD T1

equation. As overlap of computation and communication may not always be feasible, evaluations

under two system models: 1) assuming complete overlap of computation and communication

and 2) assuming no overlap of computation and communication, are included. Currently, the

TCE task graphs are executed assuming a pure data-parallel schedule. As the CCSD T1 DAG

is characterized by a few large tasks and many small tasks which are not scalable, DATA

17

Fig. 11. Performance of actual execution of CCSD T1 computation

performs poorly. On systems with complete overlap of computation and communication, LoC-

MPS with backfill scheduling shows upto 8%, 13%, and 17% improvement over iCASLB, CPR,

and CPA respectively and upto 82% and 35% improvement over TASK and DATA respectively.

On systems with no overlap of computation and communication, the benefits of LoC-MPS over

iCASLB, CPR and CPA is enhanced, as these schemes do not minimize communication costs by

exploiting data locality and communication proves more expensive when it cannot be overlapped

with computation. On the other hand it is seen that the relative performance of DATA improves.

This is because in the case of no overlap between communication and computation, LoC-MPS

generates larger makespans than while communication can be overlapped with computation,

while performance of DATA remains the same as it does not involve any communication costs.

Figure 9 shows the performance for Strassen for1024× 1024 and4096× 4096 matrix sizes.

For smaller problem size (1024× 1024), DATA performs poorly as the tasks do not scale very

well. LoC-MPS shows good improvement over CPR and CPA upto 43% and 59% respectively

and upto 70% and 64% improvement over TASK and DATA respectively. As the problem size

is increased by a factor of 16, relative performance of DATA improves as the scalability of tasks

increases.

The scheduling times are presented in Figure 10. Though LoC-MPS is more expensive than

the other approaches, the scheduling times is at least two orders of magnitude smaller than the

makespan of these applications, suggesting that scheduling is not a time critical operation for

these applications.

Figure 11 shows the performance of the various schemes for the actual execution of the CCSD

18

T1 computation on an Itanium 2 cluster of 900 MHz dual processor nodes with 4 GB memory

per node and interconnected through a 2Gbps Myrinet switch. We see trends similar to the

simulation runs, with LoC-MPS showing significant performance improvement over the other

schemes especially for larger number of processors.

V. RELATED WORK

Optimal scheduling has been shown to be a hard problem to solve even in the context of

sequential task graphs. Papadimitriou and Yannakakis [16] have proved that the problem of

scheduling sequential tasks with precedence constraints is NP-complete. Du and Leung [17]

showed that scheduling independent malleable tasks is strongly NP-hard for 5 processors, and

scheduling malleable tasks with arbitrary precedence constraints is strongly NP-hard for 2

processors. Hence, several researchers have proposed heuristic solutions and approximation

algorithms [18], [19], [20], [21], [22], [23].

Ramaswamy et al. [3] proposed a two-step allocation and scheduling scheme, TSAS, to

schedule mixed parallel applications on aP processor system. In the first step, a convex

programming formulation is used to decide the processor allocation. In the second step, the

tasks are scheduled using a prioritized list scheduling algorithm. A low-cost two-step approach

was also proposed by Radulescu et al. [6], where a greedy heuristic is employed to iteratively

compute the processor allocation, followed by scheduling of the tasks. Both these approaches

attempt to minimize the maximum of average processor area and critical path length. However,

they are limited in the quality of schedules they can produce due to the decoupling of the

processor allocation and scheduling phases. Another approach proposed by Radulescu et al. [5]

uses a single-step heuristic called CPR (Critical Path Reduction), for scheduling data parallel

task graphs. Starting from a one-processor allocation for each task, CPR iteratively increases

the processor allocation of tasks until there is no improvement in makespan. However, all of the

above approaches do not consider data locality while scheduling tasks onto processors.

In recent work [4], we addressed the problem of processor allocation and scheduling for

mixed-parallel applications, under the assumption that the inter-task communication costs are

insignificant. In this work, we relax this assumption, and present an algorithm that minimizes the

19

computation and communication costs along the critical path and exploits data locality through

a locality aware backfill scheduling scheme. To the best of our knowledge, this is the first work

to consider data locality in such a context.

Boudet et al. [24] propose a single step approach for scheduling task graphs, where the

execution platform is a set of pre-determined processor grids. Each parallel task is only executed

on one of these pre-determined processor grids. In this paper, we assume a more general system

model, where a parallel task may execute on any subset of processors. Li [25] has proposed a

scheme for scheduling constrained rigid parallel tasks on multiprocessors, where the processor

requirement of each task is fixed and known.

Some researchers have proposed approaches for optimal scheduling for specific task graph

topologies. These include Subhlok and Vandron’s approach for scheduling pipelined linear chains

of parallel tasks [26], and Prasanna’s scheme [27] for optimal scheduling of tree DAGS and series

parallel graphs, where a specific form is assumed of the task speedup functions.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents LoC-MPS, a locality conscious scheduling strategy for mixed parallel

applications. LoC-MPS minimizes the makespan of the application task graph by minimizing

the computation and communication costs along the critical path and exploiting data locality

through a locality conscious backfill scheduling approach. Processor allocation and scheduling

decisions are made by considering the global structure of the application task graph, scalability

curves of its constituent tasks, and data redistribution costs. A bounded look-ahead mechanism is

employed to escape local minima and a locality conscious backfill scheduling algorithm enables

effective processor utilization and reduces data transfer times. Evaluation using both synthetic

task graphs and those derived from applications show that LoC-MPS achieves significant per-

formance improvement over other schemes such as iCASLB, CPR, CPA, TASK and DATA.

Future work is planned on: 1) developing strategies to parallelize the scheduling algorithm,

in order to reduce scheduling overhead, and 2) incorporation of the scheduling strategy into a

run-time framework for the on-line scheduling of mixed parallel applications.

20

REFERENCES

[1] S. B. Hassen, H. E. Bal, and C. J. H. Jacobs, “A task and data-parallel programming language based on shared objects,”

ACM Trans. Program. Lang. Syst., vol. 20, no. 6, pp. 1131–1170, 1998.

[2] I. T. Foster and K. M. Chandy, “Fortran m: a language for modular parallel programming,”J. Parallel Distrib. Comput.,

vol. 26, no. 1, pp. 24–35, 1995.

[3] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A framework for exploiting task and data parallelism on distributed

memory multicomputers,”IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 11, pp. 1098–1116, 1997.

[4] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U. Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz, “An integrated approach

for processor allocation and scheduling of mixed-parallel applications,” inICPP ’06: Proceedings of the 35th International

Conference on Parallel Processing, 2006, accepted for publication.

[5] A. Radulescu, C. Nicolescu, A. J. C. van Gemund, and P. Jonker, “Cpr: Mixed task and data parallel scheduling for

distributed systems,” inIPDPS ’01: Proceedings of the 15th International Parallel & Distributed Processing Symposium.

Washington, DC, USA: IEEE Computer Society, 2001, p. 39.

[6] A. Radulescu and A. van Gemund, “A low-cost approach towards mixed task and data parallel scheduling,” inProc. of

Intl. Conf. on Parallel Processing, September 2001, pp. 69 –76.

[7] T. Rauber and G. R̈unger, “Compiler support for task scheduling in hierarchical execution models,”J. Syst. Archit., vol. 45,

no. 6-7, pp. 483–503, 1999.

[8] G. Baumgartner, D. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam, and

P. Sadayappan, “A High-Level Approach to Synthesis of High-Performance Codes for Quantum Chemistry,” inProc. of

Supercomputing 2002, November 2002.

[9] D. Cociorva, J. Wilkins, G. Baumgartner, P. S. and J. Ramanujam, M. Nooijen, D. Bernholdt, and R. Harrison, “Towards

Automatic Synthesis of High-Performance Codes for Electronic Structure Calculations: Data Locality Optimization,” in

Proc. Intl. Conf. on High Performance Computing, vol. 2228. Springer-Verlag, 2001, pp. 237–248.

[10] G. H. Golub and C. F. V. Loan,Matrix computations (3rd ed.). Johns Hopkins University Press, 1996.

[11] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to multiprocessors,”ACM

Comput. Surv., vol. 31, no. 4, pp. 406–471, 1999.

[12] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Characterization of backfilling strategies for parallel job

scheduling,” inICPPW ’02: Proceedings of the International Conference on Parallel Processing Workshops, 2002, pp.

514–519.

[13] L. Prylli and B. Tourancheau, “Fast runtime block cyclic data redistribution on multiprocessors,”J. Parallel Distrib.

Comput., vol. 45, no. 1, pp. 63–72, 1997.

[14] “Task graphs for free,” http://ziyang.ece.northwestern.edu/tgff/index.html.

[15] A. B. Downey, “A model for speedup of parallel programs,” http://allendowney.com/research/model/, Tech. Rep. Technical

Report CSD-97-933, 1997.

[16] C. Papadimitriou and M. Yannakakis, “Towards an architecture-independent analysis of parallel algorithms,” inSTOC ’88:

21

Proceedings of the twentieth annual ACM symposium on Theory of computing. New York, NY, USA: ACM Press, 1988,

pp. 510–513.

[17] J. Du and J. Y.-T. Leung, “Complexity of scheduling parallel task systems,”SIAM J. Discret. Math., vol. 2, no. 4, pp.

473–487, 1989.

[18] J. Turek, J. L. Wolf, and P. S. Yu, “Approximate algorithms scheduling parallelizable tasks,” inSPAA ’92: Proceedings of

the fourth annual ACM symposium on Parallel algorithms and architectures. New York, NY, USA: ACM Press, 1992,

pp. 323–332.

[19] K. Jansen and L. Porkolab, “Linear-time approximation schemes for scheduling malleable parallel tasks,” inSODA ’99:

Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 1999, pp. 490–498.

[20] R. Lepere, D. Trystram, and G. J. Woeginger, “Approximation algorithms for scheduling malleable tasks under precedence

constraints,” inESA ’01: Proceedings of the 9th Annual European Symposium on Algorithms. London, UK: Springer-

Verlag, 2001, pp. 146–157.

[21] D. Trystram, “Scheduling parallel applications using malleable tasks on clusters,” inIPDPS ’01: Proceedings of the 15th

International Parallel & Distributed Processing Symposium. Washington, DC, USA: IEEE Computer Society, 2001, p.

199.

[22] J. Blazewicz, M. Machowiak, J. Weglarz, M. Kovalyov, and D. Trystram, “Scheduling malleable tasks on parallel processors

to minimize the makespan,”Annals of Operations Research, vol. 129, no. 1-4, pp. 65–80, 2004.

[23] K. Jansen and H. Zhang, “Scheduling malleable tasks with precedence constraints,” inSPAA’05: Proceedings of the 17th

annual ACM symposium on Parallelism in algorithms and architectures. New York, NY, USA: ACM Press, 2005, pp.

86–95.

[24] V. Boudet, F. Desprez, and F. Suter, “One-Step Algorithm for Mixed Data and Task Parallel Scheduling Without Data

Replication,” inProceedings of the 17th International Parallel and Distributed Processing Symposium (IPDPS’03). Nice

- France: IEEE Computer Society, Apr. 2003.

[25] K. Li, “Scheduling precedence constrained parallel tasks on multiprocessors using the harmonic system partitioning

scheme,”J. of Information Sciences and Engineering, vol. 21, no. 2, pp. 309–326, 2005.

[26] J. Subhlok and G. Vondran, “Optimal latency-throughput tradeoffs for data parallel pipelines,” inSPAA ’96: Proceedings

of the eighth annual ACM symposium on Parallel algorithms and architectures. New York, NY, USA: ACM Press, 1996,

pp. 62–71.

[27] G. N. S. Prasanna and B. R. Musicus, “Generalised multiprocessor scheduling using optimal control,” inSPAA ’91:

Proceedings of the third annual ACM symposium on Parallel algorithms and architectures. New York, NY, USA: ACM

Press, 1991, pp. 216–228.

22

