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Abstract—We present an architectureSensornet Messaging Architecture
(SMA) for providing messaging services that self-adapt to application prop-
erties (e.g., QoS requirements and traffic patterns) in wireless sensor net-
works. In SMA, we decompose messaging into three sub-components: traffic-
adaptive link estimation and routing, application-adaptive structuring, and
application-adaptive scheduling. Taking packet packing (i.e., aggregating
shorter packets into longer ones) as an example of in-network processing,
we propose an algorithm that schedules packet transmissions to improve
the achievable in-network processing while satisfying application QoS re-
quirements at the same time. We evaluate our design by both simulation
and experimentation with Tmote Sky sensor nodes, and we find that our
approach significantly improves energy efficiency and messaging reliability.
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1 Introduction

Wireless sensor networks, which we refer to assensornets here-
after, consist of nodes that can sense, compute, communicate,
and potentially control [4]. With their unique capabilities in ob-
serving and controlling the physical world, sensornets have a
broad range of potential applications in science (e.g., ecology
and seismology), engineering (e.g., industrial control and pre-
cision agriculture), and our daily life (e.g., traffic control and
health care). The broad application domains diversify sensor-
net systems in many ways, such as their traffic patterns and re-
quirements on quality of service (QoS). For instance, in data-
collection systems such as those for ecological study, applica-
tion data are usually generated periodically, and the applications
can tolerate certain degree of loss and delay in data delivery; yet
in emergency-detection systems such as those for intruder de-
tection, data are generated only when rare and emergent events
occur, but the data need to be delivered reliably and in real time.
Along with opportunities, application diversity poses substantial
challenges to the design of efficient, dependable, and scalable
messaging services in sensornets.

The past years of experience in building sensornet systems
have shown that messaging services designed for one class of
applications may not apply to another. For instance, the default
TinyOS messaging stack, which was designed mainly for data-
collection sensornets, did not work well and led to severe packet
loss in event-detection sensornets such as those demonstrated in
the sensornet field projectsA Line in the Sand[5] and ExScal
[6]. Therefore, we need to design messaging services according
to the unique application properties, as also observed in [42].

In providing application-specific messaging services, thecur-
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rent practice of systems engineering in sensornets is to design a
messaging stack for each individual application. Consequently, a
variety of messaging stacks have been developed in the past few
years [8, 30, 43], but they rarely interoperate with one another.
Clearly, this monolithic approach is inefficient and unscalable
in the long run for several reasons. Firstly, the number of ap-
plications will increase (and potentially in a significant manner)
as sensornets evolve, but we cannot afford to develop individual
messaging stack for each new application. Secondly, we may
not know the exact requirements or properties of the applica-
tions in hand when we are designing messaging services, espe-
cially when application properties change temporally; this makes
it difficult if not impossible to customize messaging services be-
fore application deployment. Therefore, we need an approach of
designing messaging services that does not require building the
whole stack from scratch each time a new application emerges,
and that does not assume knowing application properties before
deployment.

To fulfill the above objective, we need a messaging architec-
ture that identifies the common components across diversified
applications, so that these components can be reused from one
application to another. Then, for messaging components to be
reusable across diversified applications, we need to designmes-
saging algorithms that automatically adapt to applicationproper-
ties on the fly. This demand for a unified architecture and auto-
matic application adaptation also arises when we want to shield
the complexity of messaging from application developers [37].
Having a unified architecture and application-adaptive messag-
ing services will facilitate designing a unified interface between
the messaging layers and applications, so that applicationdevel-
opers do not need to understand the details of the underlying
messaging services, and they only need to provide a few high
level application-specific parameters such as their QoS require-
ments for messaging.

Contributions of the paper. To accommodate diversity in sen-
sornet applications, we propose theSensornet Messaging Archi-
tecture(SMA) in which we adopt two levels of abstraction:

• At the lower level, we identify the componenttraffic-
adaptive link estimation and routing(TLR) that is respon-
sible for precisely estimating wireless link properties (e.g.,
reliability) according to application traffic patterns. TLR is
generic to all sensornet applications and can be performed
automatically without explicit input from applications.

• At the higher level, we identify the componentsapplication-
adaptive structuring (AST) and application-adaptive
scheduling (ASC) to support functionalities (e.g., in-
network processing and QoS) that are tightly coupled
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with applications. AST and ASC incorporate application-
specific properties (e.g., methods of in-network processing
and QoS requirements) in forming messaging structures and
in scheduling packet transmissions respectively.

Taking packet packing (i.e., aggregating shorter packets into
longer ones) as an example of in-network processing, we study
the ASC component in detail. We propose to schedule packet
transmissions so that theutility of a transmission (e.g., degree of
in-network aggregation) is maximized. To this end. we propose
a distributed algorithm in which a node dynamically estimates
the potential utility of transmitting a packet and decides when to
transmit so that the utility is maximized while satisfying certain
end-to-end timeliness guarantees on data delivery. This algo-
rithmic framework is generically applicable to other in-network
processing methods.

We evaluate our design via both simulation and experimenta-
tion with 18 Tmote Sky sensor nodes. We find that our approach
significantly improves energy efficiency and messaging reliabil-
ity. For instance, the energy efficiency is improved by a factor up
to 3.22, and the reliability is improved by 12.92%.

Considering the diversities in both applications and technolo-
gies, defining messaging architecture is usually a challenging
and long-running process. Thus we do not expect to be definitive
and exhaustive in this paper, instead we hope to draw more atten-
tion to the architectural and algorithmic aspects of application-
adaptive messaging by presenting the initial thoughts on the mes-
saging architecture and some benefits of application-adaptive
messaging.

Organization of the paper. We present the messaging ar-
chitecture SMA in Section 2, and we design the algorithm for
application-adaptive scheduling in Section 3. Then, we evaluate
our design in Section 4, and we discuss related work in Sec-
tion 5. We make concluding remarks and discuss open issues in
Section 6.

2 SMA: an architecture for application-
adaptive messaging

In this section, we first review the basic functions of sensornet
messaging, based upon which we identify the common messag-
ing components and design the architecture SMA.

As in the case for the Internet, the objective of messaging in
sensornets is to deliver data from their sources to their destina-
tions. To this end, the basic tasks of messaging are, given certain
QoS constraints (e.g., reliability and latency) on data delivery,
choose the route(s) from every source to the corresponding des-
tination(s) and schedule packet flow along the route(s). Unlike
wired networks, however, wireless communication, constrained
resources, and application diversity in sensornets introduce new
challenges to the design of messaging services.

Nodes communicate with one another via wireless links in
sensornets, yet wireless links are subject to the impact of avari-
ety of factors such as fading, multi-path, environmental noise,
and co-channel interference. Consequently, the properties of
wireless links (e.g., reliability) are dynamic and assume complex
spatial and temporal patterns [48, 46]. Therefore, one founda-
tional component of sensornet messaging is precisely estimating

wireless link properties and then finding routes of high quality
links to deliver data traffic. Given that data traffic patternaffects
wireless link properties due to interference among simultaneous
transmissions [46], link estimation and routing should be able
to take into account the impact of application data traffic, and we
call this basic messaging componenttraffic-adaptive link estima-
tion and routing (TLR).

With the basic communication structure provided by the TLR
component, another important task of messaging is to adapt the
structure and data transmission schedules according to applica-
tion properties such as in-network processing and QoS require-
ments. Given the resource constraints in sensornets, application
data may be processed in the network before it reaches the final
destination to improve resource utilization. For instance, data
arriving from different sources may be compressed at an inter-
mediate node before it is forwarded further. Given that messag-
ing determines the spatial and temporal flow of application data
and that data items from different sources can be processed to-
gether only if they meet somewhere in the network, messaging
significantly affects the degree of processing achievable in the
network. It is therefore desirable that messaging considerin-
network processing when deciding how to form the messaging
structure and how to schedule data transmissions. In addition,
messaging should also consider application QoS requirements
(e.g., reliability and latency in packet delivery), because messag-
ing structure and transmission schedule determine the QoS expe-
rienced by application traffic[21, 39, 18]. In-network processing
and QoS requirements tend to be tightly coupled with applica-
tions, thus we call the structuring and scheduling in messaging
application-adaptive structuring (AST)andapplication-adaptive
scheduling (ASC)respectively.

These messaging components are coupled with applications in
different ways and in different degrees, so we adopt two levels of
abstraction in designing the architecture for application-adaptive
messaging. The architecture, SMA (forSensornet Messaging
Architecture), is shown in Figure 1. At the lower level, traffic-
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Figure 1: SMA: an architecture for application-adaptive messag-
ing

adaptive link estimation and routing (TLR) interacts directly with
the link layer to estimate link properties and to form the basic
routing structure in a traffic-adaptive manner. TLR can be per-
formed without explicit input from applications, and TLR does
not directly interface with applications. At the higher level, both
application-adaptive structuring (AST) and application-adaptive
scheduling (ASC) need input from applications, thus AST and

2



ASC interface directly with applications. Besides interacting
with TLR, AST and ASC may need to directly interact with link
layer to perform tasks such as adjusting radio transmissionpower
level and fetching link-layer acknowledgment to a packet trans-
mission. In the architecture, the link and physical layers support
higher-layer messaging tasks (i.e., TLR, AST, and ASC) by pro-
viding the capability of communication within one-hop neigh-
borhoods.

In what follows, we elaborate on the individual components of
SMA.

Traffic-adaptive link estimation and routing (TLR). To es-
timate wireless link properties, one approach is to use bea-
con packets as the basis of link estimation. That is, neighbors
exchange broadcast beacons, and they estimate broadcast link
properties based on the quality of receiving one another’s bea-
cons (e.g., the ratio of beacons successfully received, or the
RSSI/LQI of packet reception); then, neighbors estimate unicast
link properties based on those of broadcast, since data are usu-
ally transmitted via unicast. This approach of beacon-based link
estimation has been used in several routing protocols including
ETX [43, 10]. Nevertheless, we find that there are two major
drawbacks of beacon-based link estimation. Firstly, it is hard to
build high-fidelity models for temporal correlations in link prop-
erties [41, 40, 22], thus most existing routing protocols donot
consider temporal link properties and assume independent bit er-
ror or packet loss. Consequently, significant estimation error can
be incurred as we showed in [46]. Secondly, even if we could
precisely estimate unicast link properties, the estimatedvalues
may only reflect unicast properties in the absence rather than in
the presence of data traffic, since network traffic pattern affects
link properties due to interference. This is especially thecase in
event-detection applications, where events are usually rare (e.g.,
one event per day) and tend to last for only a short time at each
network location (e.g., less than 20 seconds). Therefore, beacon-
based link estimation cannot precisely estimate link properties in
a traffic-adaptive manner.

To address the limitations of beacon-based link estimation,
Zhang et al. [46] proposed the routing protocolLearn on the Fly
(LOF) that estimates unicast link properties via MAC feedback 1

for data transmissions themselves without using beacons. Since
MAC feedback reflects in-situ network condition in the presence
of application traffic, link estimation in LOF is traffic-adaptive.
LOF also addresses the challenges of data-driven link estimation
to routing protocol design, such as uneven link sampling (i.e., the
quality of a link is not sampled unless the link is used in datafor-
warding). It has been shown that, compared with beacon-based
link estimation and routing, LOF improves both the reliability
and energy efficiency in data delivery. More importantly, LOF
quickly adapts to changing traffic patterns, and this is achieved
without any explicit input from applications. Thus LOF can
serve as an instantiation of the TLR component.

The TLR component provides the basic service of automat-
ically adapting link estimation and routing structure according
to application traffic patterns. TLR also exposes its knowledge
of link and route properties (such as end-to-end packet delivery
latency) to higher level components AST and ASC, so that AST

1The MAC feedback for a unicast transmission includes whether the transmission has
succeeded and how many times the packet has been retransmitted at the MAC layer.

and ASC can optimize the degree of in-network processing while
providing the required QoS in delivering individual piecesof ap-
plication data.

Application-adaptive structuring (AST). One example of
application-adaptive structuring is to adjust messaging structure
according to application QoS requirements. For instance, radio
transmission power level determines the communication range of
each node and the connectivity of a network. Accordingly, trans-
mission power level affects the number of routing hops between
any pairs of source and destination and thus packet deliveryla-
tency. Transmission power level also determines the interference
range of packet transmissions, and thus it affects packet delivery
reliability. Therefore, radio transmission power level (and thus
messaging structure) can be adapted to satisfy specific applica-
tion QoS requirements, and Kawadia and Kumar have studied
this in [21].

Besides QoS-oriented structuring, another example of
application-adaptive structuring is to adjust messaging structure
according to the opportunities of in-network processing. Mes-
saging structure determines how data flows spatially, and thus
affects the degree of in-network processing achievable. For in-
stance, as shown in Figure 2(a), nodes 3 and 4 detect the same

0


4


2
1


3
 5


(a) Before adaptation

0


4


2
1


3
 5


(b) After adaptation

Figure 2: Example of application-adaptive structuring

event simultaneously. But the detection packets generatedby
nodes 3 and 4 cannot be aggregated in the network, since they
follow different routes to the destination node 0. On the other
hand, if node 4 can detect the correlation between its own packet
and that generated by node 3, node 4 can change its next-hop
forwarder to node 1, as shown in Figure 2(b). Then the packets
generated by nodes 3 and 4 can meet at node 1, and be aggregated
before being forwarded to the destination node 0.

In general, to improve the degree of in-network processing,a
node should consider the achievable in-network processingwhen
choosing the next-hop forwarder. One way to realize this objec-
tive is to adapt existing routing metrics. For each neighbork,
a nodej estimates the utilityuj,k of forwarding packets tok,
where the utility is defined as the reduction in messaging cost
(e.g., number of transmissions) ifj’s packets are aggregated with
k’s packets. Then, if the cost of messaging viak without aggre-
gation iscj,k, the associated messaging costc′j,k can be adjusted
as follows (to reflect the utility of in-network processing):

c′j,k = cj,k − uj,k

Accordingly, a neighbor with the lowest adjusted messagingcost
is selected as the next-hop forwarder.

3



Since QoS requirements and in-network processing vary from
one application to another, AST needs input (e.g., QoS specifica-
tion and utility of in-network processing) from applications, and
it needs to interface with applications directly.

Application-adaptive scheduling (ASC). One example of
application-adaptive scheduling is to schedule packet transmis-
sions to satisfy certain application QoS requirements. To im-
prove packet delivery reliability, for instance, lost packets can
be retransmitted. But packet retransmission consumes energy,
and not every sensornet application needs 100% packet delivery
rate. Therefore, the number of retransmissions can be adapted
to provide different end-to-end packet delivery rates while mini-
mizing the total number of packet transmissions [5]. To provide
differentiated timeliness guarantee on packet delivery latency,
we can also introduce priority in transmission scheduling such
that urgent packets have high priority of being transmitted[45].
Similarly, data streams from different applications can beranked
so that transmission scheduling ensures differentiated end-to-end
throughput to different applications [13].

Besides QoS-oriented scheduling, another example of
application-adaptive scheduling is to schedule packet transmis-
sions according to the opportunities of in-network processing.
Given a formed messaging structure, transmission scheduling
determines how data flows along the structure temporally and
thus the degree of in-network processing achievable. To give an
example, let us look at Figure 3(a). Suppose node 4 detects an
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Figure 3: Example of application-adaptive scheduling

event earlier than node 3 does. Then the detection packet from
node 4 can reach node 1 earlier than the packet from node 3.
If node 1 immediately forwards the packet from node 4 after re-
ceiving it, then the packet from node 4 cannot be aggregated with
that from node 3, since the packet from node 4 has already left
node 1 when the packet from node 3 reaches node 1. On the
other hand, if node 1 is aware of the correlation between packets
from nodes 3 and 4, then node 1 can hold the packet from 4 after
receiving it (as shown in Figure 3(b)). Accordingly, the packet
from node 3 can meet with that from node 4, and these packets
can be aggregated before being forwarded.

In general, a node should consider both application QoS
requirements and the potential in-network processing when
scheduling data transmissions, so that application QoS require-
ments are better satisfied and the degree of in-network processing
is improved. Given that in-network processing and QoS require-
ments are application specific, ASC needs to directly interface
with applications to fetch input on parameters such as QoS spec-

ification and the utility of in-network processing.

In the remainder of this paper, we discuss ASC in detail us-
ing packet-packing (i.e., aggregating shorter packets into longer
ones) as an example of in-network processing. Detailed study of
AST is a part of our future work.

Remark. It is desirable that the components TLR, AST, and
ASC be deployed all together to achieve the maximal network
performance. That said, the three components can also be de-
ployed in an incremental manner while maintaining the benefits
of each individual component, as we will show in Section 4.

3 Application-adaptive scheduling

In this section, we study application-adaptive schedulingin the
context of packet packing. We first discuss the concept and ben-
efits of packet packing (i.e., aggregating shorter packets into
longer ones), then we design a scheduling algorithm that im-
proves the degree of in-network packet packing while satisfying
application-specific QoS requirements. We also discuss related
implementation issues.

3.1 Packet packing

In sensornets, an information unit (e.g., a report after an event
detection) from each sensor is usually short (e.g., less than 10
bytes [5]), and the header overhead of each packet is relatively
high (e.g., up to 31 bytes at the MAC layer of IEEE 802.15.4).
Fortunately, the maximum size of MAC payload is usually much
longer than that of each information unit (e.g., 102 bytes per
MAC frame in 802.15.4). Therefore, the MAC frame format al-
lows for aggregating several short information units into asingle
MAC frame, which we refer to aspacket packinghereafter. Hav-
ing several information units share the overhead2 of a packet (or
frame) transmission, packet packing reduces the amortizedover-
head of transmitting each information unit. Packet packingalso
reduces the number of packets contending for channel access,
hence it reduces the probability of packet collision and improves
information delivery reliability, as we will show in Section 4.

While aggregating short information units reduces the over-
head of transmitting each information unit, it increases the length
of packets being transmitted. Given that packet delivery rate of a
wireless link decreases as packet length increases, a long packet
with aggregated information units may be retransmitted more of-
ten, for reliable data delivery, than the short packets without ag-
gregation. To understand whether packet packing is still benefi-
cial in the presence of lossy wireless links, therefore, we need to
understand whether the increased packet loss rate overshadows
the benefits of packet packing. To this end, we mathematically
analyze the issue as follows.

Feasibility analysis. For the sake of simplicity, we assume in
this section that packet transmissions are independent, and we
validate the benefit of packet packing in Section 4.2 where tem-
poral correlations in packet transmissions are considered. We

2The overhead includes not only the number of header bytes transmitted but also the
energy taken to wake up radios, since radios may well be in low-power sleeping state in
sensornets.
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also define the following notations:

l1 : payload length of an unpacked packet,
i.e., the length of a single information unit;

p1 : delivery rate of an unpacked packet;
k : packing ratio, i.e., the ratio of the payload

length of a packed packet to that of an
unpacked packet;

h : the ratio of header length to payload length
in an unpacked packet;

C0 : overhead of transmitting a packet.

Then, for a packed packet with packing ratiok, the ratio of the
overall length of the packed packet to that of an unpacked packet
is kl1+hl1

l1+hl1
. Thus, the delivery ratepk of the packed packet can

be calculated as follows:

pk = p
kl1+hl1
l1+hl1

1 = p
k+h
1+h

1

To reflect the overhead of transmitting a packetpkt over a
wireless link, we define theamortized cost(AC) of transmitting
pkt as follows:

ACpkt =
C0

lenpkt

× ETXpkt (1)

wherelenpkt is the payload length ofpkt, andETXpkt is the
expected number of transmissions taken to successfully deliver
pkt over the wireless link. Given that the expected number of
transmissions to successfully deliver a packet with packing ratio
k is 1

pk
, the amortized cost of transmitting a packet with packing

ratiok, denoted byACk, can be calculated as follows:

ACk =
C0

kl1
×

1

pk

=
C0

kl1pk

Since an unpacked packet has a packing ratio of 1, the amortized
cost of transmitting an unpacked packet isAC1, that is, C0

l1p1
.

For a given packing ratiok, the ratioRk of AC1 to ACk re-
flects whether packet packing is beneficial, that is, packet pack-
ing is beneficial ifRk > 1. Precisely,R.k is calculated as fol-
lows:

Rk =
AC1

ACk

= kp
k−1

1+h

1

In a typical sensornet system [5, 6], the ratioh of header length
to that of a single information unit is around 3, and the packing
ratio can be up to12. Forh = 3, Figure 4 showsRk as a func-
tion of p1 andk, whenh = 3. From the figure, we can see that
packet packing reduces the amortized cost of packet transmis-
sion as long as the link reliability is no less than 40%, whichis
usually the case in practice (e.g., link reliability was7̃5% even in
heavily loaded sensornet systems [5, 6]). We also see that, if link
reliability is greater than 67%, the amortized cost of packet trans-
mission always decreases as the packing ratio increases. Since
link reliability is usually greater than 67% in practice, wecan
always try to maximize the packing ratio so that the amortized
cost of packet transmission is reduced.

Remarks. The above analysis focuses on a single link, but
the observations easily carry over to multi-hop networks since
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link reliability p1 reflects the impact of channel fading and col-
lision even in the case of multi-hop networks.3 The analysis has
not considered the benefits (e.g., fewer number of packet colli-
sions) of reduced channel contention as a result of packet pack-
ing (which reduces the number of packets contending for channel
access). We will study the impact of these factors by experimen-
tation with real-world sensor nodes in Section 4.2.

3.2 Packing-oriented scheduling

In this section, we design a scheduling algorithm to facilitate
in-network packet packing. According to the analysis in Sec-
tion 3.1, the amortized cost of packet transmission decreases as
the packing ratio increases. Therefore, the objective of packing-
oriented scheduling is to schedule packet transmissions such that
as many short packets as possible are packed into long packets,
by which the amortized overhead of packet transmission is re-
duced. To reflect the overhead of a packet transmissiontx, we
define theamortized cost(AC) of the transmission asC0

Ltx
, where

Ltx is the payload length of the packet being transmitted. Then,
we can define theutility of a scheduling action (i.e., transmit or
hold a packet) as the expected reduction in the amortized cost
of packet transmissions in the network. Accordingly, whether
a short packet should be held at or be immediately transmitted
from a node to its parent depends on the utility of locally holding
the packet and the utility of transmitting the packet.

Since locally holding a packet increases the delay in deliver-
ing the packet, the scheduling algorithm should not hold a packet
too long to violate the timeliness requirement of information de-
livery specified by the application. Therefore, both the timeli-
ness requirement of information delivery and application traffic
pattern (e.g., spatial and temporal distributions of data packets)
affect packet transmission scheduling in a network. Since the
timeliness requirement and the traffic pattern vary from oneap-
plication to another and are usually unknown beforehand, the
scheduling algorithm should adapt to the timeliness requirement
and traffic pattern on the fly.

In what follows, we first discuss how to calculate the utilities
of holding and transmitting a packet in an application-adaptive

3Note that the increased per-packet transmission time as a result of increased packet
length will not cause more collision, since the time taken totransmit a packet (e.g.,4̃ mil-
liseconds) is usually much less than the inter-packet interval (e.g., usually at least a few
seconds).
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manner, then we present a scheduling rule that improves the over-
all utility.

3.2.1 Utility calculation

For convenience, we define the following notations:

L : maximum payload length per packet;
ETX.j : expected number of transmissions taken to

transport a packet from nodej to its
destination;

p.j : the parent or next-hop of a nodej in the
routing tree;

ETX0.j : expected number of transmissions taken to
transport a packet from nodej to p.j.

(For simplicity of presentation, we only consider the case where
every packet needs to delivered to be the base station of a sensor-
net [5]. The algorithm discussed in this paper is readily applica-
ble to the case where there are multiple base stations.)

The utilities of holding and transmitting a packetpkt at a node
j depend on the following parameters related to traffic patterns:
• With respect toj itself and its children:

tl : expected time to receive another packetpkt′

from a child or locally from an upper layer;
sl : expected payload size ofpkt′.

• With respect to the parent ofj:

tp : expected time till the parent transmits another
packetpkt′′ that does not contain information
units generated or forwarded byj itself;

sp : expected payload size ofpkt′′.

The utilities of holding and transmitting a packetpkt also de-
pend on the following constraints posed by application QoS re-
quirement and wireless communication:
• Grace periodtf for deliveringpkt: the maximum allowable

latency in deliveringpkt minus the expected time taken to
transportpkt from j to its destination without being held at
any intermediate node along the route.

If tf ≤ 0, pk should be transmitted immediately to mini-
mize the extra delivery latency.

• Spare packet spacesf of pkt: the maximum allowable pay-
load length per packet minus the current payload length of
pkt.

Parametersf and the size of the packets coming next
from an upper layer atj or fromj’s children determine how
muchpkt will be packed and thus the potential utility of
locally holdingpkt.

Then, the utilities of holding and transmitting a packet arecal-
culated as follows.

Utility of holding a packet. When a nodej holds a packetpkt,
pkt can be packed with packets fromj’s children or from an
upper layer atj. Therefore, the utility of holdingpkt at j is the
expected reduction in the amortized cost of transmittingpkt after
packingpkt. The utility depends on (a) the expected number of
packets thatj will receive withintf time (either from a child or
locally from an upper layer), and (b) the expected payload size

sl of these packets. Given that the expected inter-packet interval
is tl, the expected number of packets to be received atj within
tf time is tf

tl
. Thus, the expected overall sizeS′

l of the payload
to be received withintf time is calculated as follows:

S′
l =

tf
tl

sl

Given the spare spacesf in the packetpkt, the expected size
Sl of the payload that can be packed intopkt is calculated as
follows:

Sl = min{S′
l , sf} = min{

tf
tl

sl, sf}

Therefore, the expected amortized costACl of transporting
the packet to the destination after anticipated packing is calcu-
lated as follows:

ACl =
C0

(L − sf ) + Sl

ETX.j

where(L − sf ) is the payload length ofpkt before packing.
Since the amortized costAC′

l of transportingpkt without the
anticipated packing is calculated as

AC′
l =

C0

L − sf

ETX.j

the utility Ul of holdingpkt is calculated as follows:

Ul = AC′
l − ACl

= C0Sl

(L−sf )(L−sf+Sl)
ETX.j

=
C0ṁin{

tf
tl

sl,sf}

(L−sf )(L−sf+min{
tf
tl

sl,sf})
ETX.j

(2)

Utility of immediately transmitting a packet. If nodej trans-
mits the packetpkt immediately to its parentp.j whenpkt is
not yet fully packed,j pays the cost of transmitting a non-fully-
packed packet. Yet the payload carried bypkt can be used to
pack the packets thatp.j has received from its children other
thanj. Therefore, the utility ofj transmitting a non-fully-packed
packetpkt comes from the expected reduction in the amortized
cost of packet transmissions atp.j as a result of receiving the
payload thatpkt carries.

Whenj transmitspkt to p.j, the grace period ofpkt at p.j
is still tf , the expected number of packets that do not contain
information units fromj and can be packed withpkt atp.j is tf

tp
.

Given the limited payload thatpkt carries, it may happen that not
all the packets to be transmitted atp.j get packed (to full) via the
payload frompkt. Accordingly, the utilityUp of immediately
transmittingpkt is calculated as follows:

• If all the parent packets get packed to fullvia payload from
pkt, i.e., tf

tp
(L − sp) ≤ L − sf :

For each of such parent packet, the utilityU ′ (or reduc-
tion in amortized cost) is calculated as follows:

U ′ = C0

sp
ETX.(p.j) − C0

L
ETX.(p.j)

=
C0(L−sp)

spL
ETX.(p.j)

Then, the overall utilityU ′
p is calculated as follows:

U ′
p =

tf
tp

U ′ =
tf
tp

C0(L − sp)

spL
ETX.(p.j) (3)
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wheretf

tp
is the expected number of packets that do not con-

tain information units fromj and can be packed withpkt.
• If not all the parent packets get packed to fullvia payload

from pkt, i.e., tf

tp
(L − sp) > L − sf :

In this case, ⌊
L−sf

L−sp
⌋ number of packets are

packed to full, and the corresponding utility is
⌊

L−sf

L−sp
⌋

C0(L−sp)
spL

ETX.(p.j) (by Equation 3). In ad-
dition, there is a packet that gets partially packed via
mod(L− sf , sp) length of payload frompkt, and the corre-

sponding utility is C0mod(L−sf ,sp)
(L−sp)(L−sp+mod(L−sf ,sp))ETX.(p.j)

(by Equation 2). Therefore, the overall utilityU ′′
p is the

summation of the above two terms as follows:

U ′′

p = (⌊
L−sf

L−sp
⌋

C0(L−sp)

spL
+

C0mod(L−sf ,sp)

(L−sp)(L−sp+mod(L−sf ,sp))
)×

ETX.(p.j)
(4)

While immediately transmittingpkt to p.j brings with it the
utility discussed above, immediate transmission pays the costCp

of transmitting a packet that is not full yet. According to the con-
cept of amortized cost of packet transmission,Cp is calculated as
follows:

Cp = C0

L−sf
ETX0.j −

C0

L
ETX0.j

=
C0sf

(L−sf )LETX0.j
(5)

Therefore, the utilityUp of immediately transmittingpkt to
p.j is calculated as follows:

Up =

{

U ′
p − Cp if tf

tp
(L − sp) ≤ (L − sf )

U ′′
p − Cp otherwise

(6)

whereU ′
p, U ′′

p , andCp are defined in Equations 3, 4, and 5 re-
spectively.

3.2.2 Scheduling rule

To reduce the amortized cost of packet transmission, the objec-
tive of packing-oriented scheduling is to maximize the utility of
transmission scheduling (including the utilities of transmitting
and holding packets). Since we mainly focus on demonstrating
the feasibility and benefits of application-adaptivity in messag-
ing in this paper, we only study a greedy algorithm where each
node tries to maximize the local utility of scheduling each packet
transmission, and we relegate the design of globally optimal al-
gorithm as a part of our future work.

Given a packet to be scheduled for transmission, if the proba-
bility that the packet is immediately transmitted isPt (0 ≤ Pt ≤
1), then the expected utilityUt(Pt) is calculated as follows:

Ut(Pt) = Pt × Up + (1 − Pt)Ul

= Ul + Pt(Up − Ul)
(7)

whereUp and Ul are the utilities of immediately transmitting
and locally holding the packet respectively. To maximizeUt, Pt

should be set according to the following rule:

Pt =

{

1 if Up > Ul

0 otherwise

That is,the packet should be immediately transmitted if the utility
of immediate transmission is greater than that of locally holding
the packet.

Remarks. The framework designed for packing-oriented
scheduling is readily applicable to other in-network process-
ing methods such as data compression, since the impact of in-
network processing (no matter how it is achieved) can be mod-
eled by the concept ofutility. Detailed discussion of this, how-
ever, is beyond the scope of this paper.

3.2.3 Implementation

From the discussion in Section 3.2.1, a nodej needs to obtain
the following parameters when calculating the utilities ofholding
and transmitting a packet:

• On messaging structure:ETX.j, p.j, andETX0.j;
• On traffic pattern:tl, sl, tp, sp, andL.

Parameters related to messaging structure can be provided by
component TLR or AST depending on the software architecture
in a given system platform. On parameters related to traffic pat-
tern, j can estimate by itself the parameterstl andsl, andL is
readily available and fixed for each specific platform. To en-
able each nodej to obtain parameterstp andsp, every nodek
in the network estimates the expected intervalt.k in transmitting
two consecutive packets atk itself and the expected sizes.k of
these packets. Then, every nodek shares with its neighbors the
parameterst.k ands.k by piggybacking these information onto
data packets or other control packets in the network. When a
nodej overhears parametert.(p.j) ands.(p.j) from its parent
p.j, j can approximatetp andsp with t.(p.j)×t.j×s.(p.j)

t.j×s.(p.j)−t.(p.j)×s.k
and

s.(p.j) respectively. The derivation is as follows.

Approximation oftp andsp: Since information units generated
or forwarded by the children of nodep.j are treated in the same
manner (without considering where they are from), the expected
size of the packet being transmitted byp.j does not depend on
whether the packet contains information units generated orfor-
warded byj. Thus,j can simply regards.(p.j) assp, the ex-
pected size of the packet transmitted byp.j that does not contain
information units coming fromj.

Now we derivetp as follows. Since the amount of payload
transmitted byp.j per unit time is 1

t.(p.j)s.(p.j) and the amount

of payload transmitted byj is 1
t.j

s.j per unit time, the amount of
payloadlp that are transmitted byp.j but are not fromj per unit

time is calculated as:lp = s.(p.j)
t.(p.j) − s.j

t.j
. Thus, the expected rate

rp thatp.j transmits packets that do not contain information units
from j is calculated as:rp = lp/s.(p.j) = 1

t.(p.j) −
s.j

t.j×s.(p.j) .
Therefore, the expected intervaltp betweenp.j transmitting two
consecutive packets that do not contain information units fromj

is as follows:tp = 1
rp

= t.(p.j)×t.j×s.(p.j)
t.j×s.(p.j)−t.(p.j)×s.j

.
2

4 Performance evaluation

We have implemented packing-oriented scheduling in TinyOS
[1]. The implementation takes 40 bytes of RAM (plus the mem-
ory required for regular packet buffers) and 4,814 bytes of ROM.
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To evaluate the performance of packing-oriented scheduling, we
use the routing component MintRoute [43] that is readily avail-
able in TinyOS to form the routing structure. We are currently
implementing the routing protocolLearn on the Fly(LOF) [46]
in TinyOS, to provide the service for traffic-adaptive link esti-
mation and routing (TLR). Packing-oriented scheduling is read-
ily interoperable with LOF, but the detailed study is beyondthe
scope of this paper.

To understand the benefits of application-adaptive packet
packing, we implement and compare the performance of the fol-
lowing messaging methods:
• noPacking: packets are delivered without being packed in

the network.
• simplePacking: packets are packed if they are in the same

queue, but there is not packing-oriented scheduling.
• intelliPacking: schedule packet transmissions so that pack-

ets are packed as much as possible while satisfying appli-
cation requirement on the timeliness of information deliv-
ery, i.e., employ packing-oriented scheduling as discussed
in Section 3.2).

In evaluating messaging performance, we consider the case of
convergecast where every information unit is transported to a
singe destination — the base station which acts as the interface
between a sensornet and the rest of the world. For each method,
its performance is evaluated according to the following metrics:
• Packing ratio: the average number of information units

within each transmitted packet.
• Energy efficiency: the number of packet transmissions and

receptions required to deliver a single information unit to
the base station.

• Information delivery reliability: the ratio of the number of
unique information units received at the base station to the
number of unique information units generated in the net-
work.

(Note: we do not compare the information delivery latency
among the aforementioned messaging methods since they all sat-
isfy the timeliness requirement specified by the application layer
in our study.)

In what follows, we first evaluate the performance of different
messaging methods via simulation. Then we evaluate their per-
formance via experimentation with Tmote Sky sensor nodes [2],
to corroborate our observations in simulation.

4.1 Simulation study

We use the simulator TOSSIM [24] that comes with TinyOS. In
the simulation, 100 nodes are deployed in a 10×10 grid where
each node can reliably communicate with nodes 3 grid-hops
away. The traffic pattern is such that the base station is at one
corner of the grid, and nodes in the farthest 4×4 subgrid from the
base station periodically generate information units, with the in-
terval between two consecutive information units uniformly dis-
tributed between 5 seconds and 15 seconds. The length of each
information unit is 16 bytes, including information such asthe
node ID and timestamp at the source.

In the simulation, we first study a typical scenario where the
maximum payload length is 102 bytes, and the application QoS
requirement is specified such that the maximum allowable la-

tency in delivering information units is 10 seconds [5, 6]. Then
we study the impact that the maximum allowable information
delivery latency and payload length have on the performanceof
intelliPacking. (We have also studied the impact of traffic load,
and we found that increased traffic load has similar effect asthat
of increased allowable information delivery latency.)

A typical scenario. For the scenario where the maximum pay-
load length is 102 bytes and the maximum allowable informa-
tion delivery latency is 10 seconds, Figure 5 shows the packing
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Figure 5: Packing ratio

ratio in the three messaging methods. The packing ratio is 1,
1.02, and 1.63 for noPacking, simplePacking, and intelliPack-
ing respectively. We can see that, compared with simplePacking,
intelliPacking significantly improves the packing ratio. This is
because intelliPacking dynamically estimates traffic pattern and
schedules packet transmissions so that the degree of in-network
packet packing is improved.

As a result of the improved in-network packet packing, intel-
liPacking also improves energy efficiency in delivering informa-
tion, as shown in Figure 6 Compared with noPacking, intelli-
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Figure 6: Average number of transmissions and receptions per
information unit received

Packing reduces the average number of transmissions and recep-
tions required for delivering an information unit by a factor of
2.33 and 2.35 respectively; compared with simplePacking, intel-
liPacking also reduces the average number of transmissionsand
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receptions required for delivering an information unit by afactor
of 1.59 and 1.56 respectively.

Since intelliPacking reduces the number of packet transmis-
sions, it reduces the degree of channel contention in the network
and thus improves reliability in delivering information, as shown
in Figure 7 which presents the network-wide average informa-
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Figure 7: Information delivery reliability

tion delivery reliability, as well as the average reliability based on
the distance (measured in grid-hops) from the source to the base
station. Compared with noPacking and simplePacking, intelli-
Packing improves reliability by 8.98% and 1.87% respectively.
(We will see a little bit later that the improvement in information
delivery reliability is even much higher in real-world hardware
based experiments.)

Impact of maximum allowable latency. To study the impact of
application properties on intelliPacking, we vary the maximum
allowable latency in information delivery from 3 seconds to25
seconds and measure the corresponding performance of intelli-
Packing.

Figure 8 shows how the packing ratio increases as the max-
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Figure 8: Packing ratio

imum allowable information delivery latency increases. Asthe
allowable latency increases from 5 seconds to 25 seconds, the
packing ratio increases from 1.09 to 3.17 and by a factor of 2.9.

As the packing ratio increases, the energy efficiency increases
by a factor up to 3.27, as shown in Figure 9. In the mean time, the
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Figure 9: Average number of transmissions and receptions per
information unit received

messaging reliability increases by a factor up to 3% as the chan-
nel contention decreases due to increased packing ratio. This is
shown in Figure 10.
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Figure 10: Information delivery reliability

Impact of maximum payload length. Since the maximum
packet payload length determines the maximum number of in-
formation units that can be packed into a single packet, it affects
the degree of in-network packet packing. Setting the maximum
information delivery latency to the typical value of 10 seconds,
we vary the maximum payload length from 40 bytes to 104 bytes
and measure the corresponding performance of intelliPacking.
Figures 11, 12, and 13 present the data on packing ratio, energy
efficiency, and reliability respectively. From these figures, we
see that increased maximum payload length improves the over-
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Figure 12: Average number of transmissions and receptions per
information unit received
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Figure 13: Information delivery reliability

all network performance, even though the improvement is not
prominent given the tight information delivery latency (which in
turns bounds from above the packing ratio). Note that, when
the maximum payload length is 40 bytes, each packet can carry
at most 2 information units, and a packet is immediately trans-
mitted or forwarded after each packing. As a result, compared
with scenarios of longer payload length, packet transmissions
are more bursty (and less spread temporally) when the maximum
payload length is 40 bytes, and thus the messaging reliability is
relatively lower.

Having studied the benefits and the influence factors of
application-adaptive in-network packet packing in simulation,
we corroborate our findings via experimentation in the next sub-
section.

4.2 Experimental study

To understand the performance of the different messaging meth-
ods in real-world environment, we evaluate their performance
via experimentation with Tmote Sky sensor nodes. These sen-
sor nodes use CC2420 radios which are compatible with IEEE
802.15.4 standard. We deploy 18 Tmote Sky sensor nodes in a
3×6 grid, with every two closest nodes separated by 1.5 feet.
The sensor grid is placed in an office environment as shown in
Figure 14. By experimenting with real-world radios and envi-

Figure 14: Tmote Sky sensor node grid

ronment, we can capture the impact of channel fading and chan-
nel contention, as well as the impact of temporal link properties
(which did not discuss in Section 3.1).

We set the transmission power level of the sensor nodes to be
2 (out of a range from 1 to 31) such that every node can reliably
communicates with its immediate grid-neighbors. Similar to the
typical scenario studied in simulation, the base station isat one
corner of the grid, and nodes in the farthest 3×3 subgrid from
the base station periodically generate information units,with the
inter-unit interval uniformly distributed between 5 seconds and
15 seconds. The length of each information unit is 16 bytes,
the maximum payload length is 102 bytes, and the maximum
allowable information delivery latency is 10 seconds.

Figure 18 shows the packing ratio in different messaging
methods. Compared with noPacking and simplePacking, intel-
liPacking improves the packing ratio by a factor of 5.25 and 3.5
respectively.

Accordingly, intelliPacking significantly improves the energy
efficiency, as shown in Figure 19. Compared with noPacking and
simplePacking, intelliPacking reduces the number of transmis-
sions required for delivering an information unit by a factor of
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Figure 15: Packing ratio
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Figure 16: Average number of transmissions and receptions per
information unit received
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Figure 17: Information delivery reliability
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Figure 18: Packing ratio
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Figure 19: Average number of transmissions and receptions per
information unit received

3.07 and 1.71 respectively, and intelliPacking reduces thenum-
ber of receptions per information unit received by a factor of 3.22
and 1.85 respectively.

Because intelliPacking reduces the number of packet transmis-
sions in the network, it reduces the degree of channel contention.
Accordingly, it improves messaging reliability as shown inFig-
ure 17. Compared with noPacking and simplePacking, intelli-
Packing improves the average messaging reliability by 12.92%
and 12.77% respectively.

From the above study, we see that the experiments corroborate
our observations in simulation, even strengthening the observa-
tions by showing higher degree of improvement in packing ratio,
energy efficiency, and information delivery reliability.

5 Related work

In the Internet, the concepts of Application Oriented Network-
ing (AON) [3] and Application-driven Networking [19, 15] have
been being explored to enable coordination among disparateap-
plications, to enforce application-specific policies, to improve
visibility of information flow, and to enhance application opti-
mization and QoS. While these concepts are generic enough to
be applied to wireless sensor networks, the techniques employed
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in and the problems faced by the Internet are quite differentfrom
those in sensor networks, due to the differences in both technolo-
gies and application domains. For instance, the extreme resource
(e.g., computation, communication, and energy) constraints are
unique to sensor networks and are not the major issues in the
Internet.

For customized resource provisioning to different applica-
tions, Darwin [7] has been proposed for run-time resource man-
agement in the Internet. To match application requirementsto
communication protocols, DANCE [36] has been proposed to
provide a service-oriented view to communication services, thus
to avoid the inflexibility that results from a fixed binding between
an application and a specific protocol stack. Active networks
[38] have also been proposed to enable functionalities suchas
application-specific multicast, information fusion, and other ser-
vices leveraging network-based computing and storage. Sen-
sornet protocol SP [35] provides a unifying link layer abstrac-
tion for sensornets. Focusing on the interface between linkand
higher layers, SP is complementary to our focus on application-
adaptivity and higher layer architecture issues. While [35] fo-
cuses on designing the single narrow waist to support all kinds of
higher layer protocols, it is not our purpose to argue that there ex-
ists a single higher layer messaging architecture. Yet we believe
it is still desirable to identify the common architecture for typical
communication patterns (e.g., convergecast and broadcast), and
our work in this paper focuses on the architecture for application-
adaptive messaging from the perspective of convergecast.

Woo et al. [42] discussed networking support for query pro-
cessing in sensor networks. Issues such as query-oriented rout-
ing, efficient rendezvous for storage and correlation, and uni-
fied in-network system have been discussed. While focusing on
query processing, [42] does not concentrate on the architectural
and algorithmic issues to support a broader range of applications
such as distributed signal processing and computing.

To adapt communication protocols to changing network con-
ditions and application requirements, Impala [27] used Adapta-
tion Finite State Machine (AFSM) to control the adaptation of
communication protocols. To provide application-specificQoS
in ubiquitous environments, Nahrstedt et al. [31] proposed a
framework for QoS specification and compilation, QoS setup,
and QoS adaptation. Our work complements those in [27] and
[31] by focusing on issues such as application-adaptive link esti-
mation, structuring, and scheduling which are autonomous with-
out human in the loop.

Mechanisms have been proposed in [9] and [26] for direct-
ing data queries to where information is via information-directed
routing. [46] has proposed using data traffic itself to estimate
wireless link qualities so that routes can be chosen according to
the changing network conditions when applications change.Our
work complements [26] and [46] by considering the architectural
issues in application-adaptive messaging as well as the algorith-
mic issues in application-adaptive structuring and scheduling.

Query processing in sensornets has drawn a lot of attention re-
cently [28, 44, 29, 32, 12, 11, 25, 17]. TinyDB [28] and Cougar
[44] are two exemplary sensornet database systems which re-
gard data collection as a database query process and then design
mechanisms (such as semantic query forwarding and in-network
aggregation) to execute the query efficiently. Mechanisms for

efficient and robust in-network aggregation for query processing
have also been proposed in [29] and [32]. Nonetheless, existing
work in sensornet query processing has not focused on the QoS
requirement of different applications, nor did they focus on the
generic application-adaptive messaging in sensornets.

Unlike query-oriented data modeling and data processing, an-
other aspect in modeling data in sensor networks is to investigate
the correlation among them and then take advantage of the corre-
lation in reducing the cost of data collection [23, 34, 33]. To this
end, [23], [34], and [33] studied the problem of finding the best
aggregation tree given the data sources and the correlationstruc-
ture between the data sources. Our work complements [23], [34],
and [33] by not assuming the knowledge of data sources and their
correlations, such that the algorithms are more generically appli-
cable. Also, we study the general architecture for application-
adaptive messaging, which is not the focus of the above work.
[14] studied scheduling issues in structure-free data aggregation,
which is complementary to our focus on structure based messag-
ing.

As a simple form of data aggregation, packet packing has also
been studied in [20] and [47], where several short packets are
packed into a long data packet if they meet at some node. As
they focus on the impact ofsimplePacking, however, [20] and
[47] did not study the problem of adapting packing policies to
application QoS requirements. Nagle’s algorithm [16] is also
used in TCP to pack short data segments into longer ones, but it
was not designed to be application-adaptive either.

6 Concluding remarks

We have identified the common components of application-
adaptive messaging in sensornets, and accordingly proposed an
architecture SMA that adopts two levels of abstraction: traffic-
adaptive link estimation and routing at the lower level, and
application-adaptive structuring and scheduling at the higher
level. Taking packet packing as an example of in-network
processing, we studied application-adaptive scheduling in de-
tail. Based on the concept ofscheduling utility, the algorithmic
framework for packing-oriented scheduling is genericallyappli-
cable to other in-network processing methods. Through simula-
tion and experimentation, we have shown that our design im-
proves both the energy efficiency and the reliability in sensornet
messaging.

While we have validated SMA and application-adaptive
scheduling from the perspective of packet packing, we believe
our effort is only the first step toward the unified architecture
for application-adaptive messaging in sensornets. As applica-
tions evolve, we hope to enrich our design by taking into account
other in-network processing methods (e.g., information fusion)
and application requirements (e.g., packet delivery reliability),
and by studying the effectiveness of SMA for typical communi-
cation patterns and application scenarios in sensornets. Another
important issue in sensornets is power management, and it has
significant implications to the design of sensornet architecture
and algorithms. Detailed study of this aspect is a part of thefu-
ture work too.

12



Acknowledgment

We thank Oleg Andric, Bogdan Carbunar, Judy Fu, Steve
Gilbert, Chen Jia, Jason LeBrun, Nitya Narasimhan, Daniel
Stewart, Bryan Thale, Venu Vasudevan, and Yang Yu for their
comments on this paper.

References
[1] TinyOS. http://www.tinyos.net/.
[2] Tmote sky sensor node. http://www.moteiv.com/.
[3] Application-oriented networking. http://www.cisco.com/, 2005.
[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: A survey.Computer Networks (Elsevier), 38(4):393–422,
2002.

[5] A. Arora and et al. A Line in the Sand: A wireless sensor network for tar-
get detection, classification, and tracking.Computer Networks (Elsevier),
46(5), 2004.

[6] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathu-
mani, H. Zhang, H. Cao, M. Sridhara, S. Kumar, N. Seddon, C. Anderson,
T. Herman, N. Trivedi, C. Zhang, M. Gouda, Y. R. Choi, M. Nesterenko,
R. Shah, S. Kulkarni, M. Aramugam, L. Wang, D. Culler, P. Dutta,
C. Sharp, G. Tolle, M. Grimmer, B. Ferriera, and K. Parker. Exscal: Ele-
ments of an extrem scale wireless sensor network. InIEEE RTCSA, 2005.

[7] P. Chandra, Y. hua Chu, A. Fisher, J. Gao, C. Kosak, T. E. Ng, P. Steenkiste,
E. Takahashi, and H. Zhang. Darwin: Customizable resource management
for value-added network services. InICNP, 1998.

[8] Y.-R. Choi, M. Gouda, H. Zhang, and A. Arora. Stabilization of grid rout-
ing in sensor networks.AIAA Journal of Aerospace Computing, Informa-
tion, and Communication, to appear.

[9] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor networks. Technical
Report P2001-10113, PARC, 2001.

[10] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. InACM MobiCom, pages 134–
146, 2003.

[11] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting corre-
lated attributes in acquisitional query processing. Technical report, Intel
Research - Berkeley, 2004.

[12] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. InVLDB, 2004.

[13] C. T. Ee and R. Bajcsy. Congestion control and fairness for many-to-one
routing in sensor networks. InACM SenSys, pages 148–161, 2004.

[14] K.-W. Fan, S. Liu, and P. Sinha. On the potential of structure-free data
aggregation in sensor networks. InIEEE INFOCOM, 2006.

[15] J. Follows and D. Straeten.Application-Driven Networking: Concepts and
Architecture for Policy-based Systems. IBM, December 1999.

[16] M. G. Gouda.Elements of Network Protocol Design. John Wiley and Sons,
1998.

[17] J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: To-
ward sophisticated sensing with queries. InIPSN, 2003.

[18] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in wire-
less sensor networks. InACM SenSys, pages 134–147, 2004.

[19] IBM. Application Driven Networking: Class of Service in IP, Ethernet and
ATM Networks. IBM, August 1999.

[20] A. Jain, M. Gruteser, M. Neufeld, and D. Grunwald. Benefits of packet
aggregation in ad-hoc wireless network. Technical Report CU-CS-960-03,
University of Colorado at Boulder, August 2003.

[21] V. Kawadia and P. R. Kumar. Principles and protocols forpower control
in ad hoc networks.IEEE Journal on Selected Areas in Communications,
23(5):76–88, 2005.

[22] A. Konrad, B. Zhao, and A. Joseph. A markov-based channel model algo-
rithm for wireless networks.Wireless Networks, 9:189–199, 2003.

[23] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and
U. Ramachandran. DFuse: A framework for distributed data fusion. In
ACM SenSys, 2003.

[24] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scalable
simulation of entire tinyos applications. InACM SenSys, pages 126–137,
2003.

[25] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range
queries in sensor networks. InACM SenSys, 2003.

[26] J. Liu, F. Zhao, and D. Petrovic. Information-directedrouting in ad hoc
sensor networks. InACM WSNA, 2003.

[27] T. Liu and M. Martonosi. Impala: A middleware system formanaging
autonomic, parallel sensor systems. InACM PPoPP, 2003.

[28] S. Madden, M. Franklin, and J. Hellerstein. TinyDB: An acquisitional
query processing system for sensor systems. InACM Transactions on
Database Systems, 2004.

[29] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a tiny aggre-
gation service for ad-hoc sensor networks. InOSDI, 2002.

[30] M. Maroti. The directed flood routing framework. InTechnical report,
Vanderbilt University, ISIS-04-502, 2004.

[31] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. Qos-awaremiddleware
for ubiquitous and heterogeneous environments.IEEE Communications
Magazine, 2001.

[32] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson. Synopsis diffusion for
robust aggregation in sensor networks. InACM SenSys, 2004.

[33] D. Petrove, R. Shah, K. Ramchandran, and J. Rabaey. Datafunneling:
Routing with aggregation and compression for wireless sensor networks.
In ICC Worshops, 2003.

[34] P. Pietzuch. Path optimization in stream-based overlay networks. Technical
Report TR-26-04, Harvard University, 2004.

[35] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica.
A unifying link abstraction for wireless sensor networks. In ACM SenSys,
pages 76–89, 2005.

[36] B. Reuther, D. Henrici, and M. Hillenbrand. DANCE: Dynamic applica-
tion oriented network services. InEUROMICRO, 2004.

[37] L. Rittle, V. Vasudevan, N. Narasimhan, and C. Jia. MUSE: Middleware
for using sensors effectively. InINSS, 2005.

[38] D. L. Tennenhouse and D. J. Wetherall. Towards an ative network architec-
ture. Computer Communication Review, 26(2), 1996.

[39] C. Wan, S. Eisenman, and A. Campbell. CODA: Congestion detection and
avoidance in sensor networks. InACM SenSys, pages 266–279, 2003.

[40] H. S. Wang and N. Moayeri. Finite-state markov channel -a useful model
for radio communication channels.IEEE Transactions on Vehicular Tech-
nology, 44(1):163–171, 1995.

[41] A. Willig. A new class of packet- and bit-level models for wireless chan-
nels. InIEEE PIMRC, 2002.

[42] A. Woo, S. Madden, and R. Govindan. Networking support for query pro-
cessing in sensor networks.Communications of the ACM, 47(6):47–52,
2004.

[43] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of re-
liable multihop routing in sensor networks. InACM SenSys, pages 14–27,
2003.

[44] Y. Yao and J. Gehrke. The cougar approach to in-network query processing
in sensor networks. InACM SIGMOD, 2002.

[45] H. Zhang, A. Arora, Y. R. Choi, and M. Gouda. Reliable bursty converge-
cast in wireless sensor networks. InACM MobiHoc, 2005.

[46] H. Zhang, A. Arora, and P. Sinha. Learn on the fly: Data-driven link es-
timation and routing in sensor network backbones. InIEEE INFOCOM,
2006.

[47] Y. Zhang and Q. Huang. Coordinated convergecast in wireless sensor net-
works. InIEEE Milcom, 2005.

[48] J. Zhao and R. Govindan. Understanding packet deliveryperformance in
dense wireless sensor networks. InACM SenSys, pages 1–13, 2003.

13


