
Learning Approximate MRFs From Large Transaction
Data

Chao Wang and Srinivasan Parthasarathy

Department of Computer Science and Engineering, The Ohio State University
Contact: {srini}@cse.ohio-state.edu

Abstract. In this paper we consider the problem of learning approximate Markov
Random Fields (MRFs) from large transaction data. We rely on frequent item-
sets to learn MRFs on the data. Since learning exact large MRFs is generally
intractable, we resort to learning approximate MRFs. Our proposed modeling ap-
proach first employs graph partitioning to cluster variables into balanced disjoint
partitions, and then augments important interactions across partitions to capture
interdependencies across them. A novel treewidth based augmentation scheme is
proposed to boost performance. We learn an exact local MRF for each partition
and then combine all the local MRFs together to derive a global model of the
data. A greedy approximate inference scheme is developed on this global model.
We demonstrate the use of the learned MRFs on the selectivity estimation prob-
lem. Extensive empirical evaluation on real datasets demonstrates the advantage
of our approach over extant solutions.

1 Introduction

In this paper we address the problem of learning approximate Markov Random Fields
(MRF) from large transaction data. Examples of such data include market basket data,
web log data, and document or text analysis data. Such data can be represented by
a high-dimensional data matrix, with each row corresponding to a particular market
basket (web session), and each column corresponding to a particular item (web page).
Each entry takes a value of “1” if the corresponding item is in the corresponding basket,
otherwise it takes a value of “0”. The data matrix is binary, and very often in such
applications, highly sparse in that the number of non-zero entries is small.

To model such data effectively in order to answer queries about the data efficiently,
we consider the use of probabilistic models. Probabilistic models capture association
or causal correlations among attributes in data and have been successfully applied
in applications such as selectivity estimation in query optimization [1–3], link analy-
sis/recommender systems [4, 5] and bioinformatics [6].

Specifically to tackle the selectivity estimation problem, Pavlov et al. [3] propose
an Maximum Entropy (ME) model based on frequent itemsets. Particularly, the ME
model has been shown to be equivalent to an MRF and is effective in estimating query
selectivity. However, a key limitation of their approach is that it needs to learn a local
model over query variables on the fly for every query. Due to the fact that inferring
an ME model is an iterative process and is usually very expensive, such a just-in-time

2

model construction approach is not appropriate in settings where online estimation time
is crucial.

The alternative is to learn a global model offline and to use the global model to
answer queries on the fly. The advantages are a more accurate model (relies on complete
information from all the data) and online performance. The critical challenge is that
a global model may be prohibitive to compute for large datasets of high dimension
(offline learning cost) . To address this problem, in this paper, we consider the problem
of learning approximate global MRFs from large transaction data – the approximation
is used to make the offline learning cost tractable. To summarize, the main contributions
of this paper are highlighted below.
1. We introduce a novel divide-and-conquer style approach based on graph partitioning
to learning approximate MRFs from large transaction data.
2. We introduce a novel interaction importance and treewidth based augmentation scheme
to capture interdependencies across partitions.
3. We conduct an extensive empirical study on real datasets to show the efficiency and
effectiveness of the new approach.

2 Background

Let I be a set of items, i1, i2, . . ., id. A subset of I is called an itemset. The size of
an itemset is the number of items it contains. An itemset of size k is a k-itemset. A
transaction dataset is a collection of itemsets, D = {t1, t2, . . . , tn}, where ti ⊆ I . For
any itemset α, we write the transactions that contain α as Dα = {ti|α ⊆ ti and ti ∈
D}. In the probabilistic model context, each item corresponds to a distinct random
variable1.

Definition 1 (Frequent itemset). For a transaction dataset D, an itemset α is frequent
if |Dα| ≥ σ, where |Dα| is called the support of α in D, and σ is a user-specified
non-negative threshold.

Definition 2 (Markov Random Field). An Markov Random Field (MRF) is an undi-
rected graphical model in which vertices represent variables and edges represent cor-
relations between variables. The joint distribution associated with an undirected graph-
ical model can be factorized as follows:

p(X) =
1

Z(ψ)

∏

Ci∈C

ψCi
(XCi

)

where C is the set of maximal cliques associated with the undirected graph; ψCi is a
potential function over the variables of clique Ci and 1

Z(ψ) is a normalization term.

1 In this article we use these terms – item, (random) variable – interchangeably

3

2.1 Using Frequent Itemsets to Learn an MRF

The idea of using frequent itemsets to learn an MRF was first proposed by Pavlov et
al. [3]. A k-itemset and its support represents a k-way statistic and can be taken as a
constraint for the true underlying distribution which generates the data. Given a set of
itemset constraints, a maximum entropy distribution satisfying all these constraints is
picked up as the estimate for the true underlying distribution. It has been shown in [3]
that a maximum entropy distribution specifies an MRF.

A simple iterative scaling algorithm can be used to learn an MRF from a set of
itemsets. Figure 1 presents a high-level outline of a computationally efficient version
of the algorithm given by Jelinek et al. [7]. It has been shown that the iterative process
will converge if all the constraints are consistent, which naturally holds in our context.
If the iterative scaling algorithm runs k iterations to converge and there are m itemset
constraints, the time complexity of the algorithm will be O(k × m × t), where t is
the average inference time over an itemset constraint. Thus efficient inference is crucial
to the running time of the learning algorithm. We call models learned through exact
inference procedures exact.

Iterative-Scaling(C)
Input : C, collection of itemsets;
Output : MRF M;
1. Obtain all involved variables v and

initialize parameters of M;
//typically uniform over v;

2. while (Not all constraints are satisfied)
3. for (each constraint Ci)
4. UpdateM to force it to satisfy Ci;
5. returnM;

Fig. 1. Iterative scaling algorithm

2.2 Junction Tree Inference Algorithm

The junction tree algorithm is a commonly used exact inference engine for probabilis-
tic models. The time complexity of the junction tree algorithm is exponential in the
treewidth of the underlying model. For the real world models, it’s quite common that
the treewidth will be well above 20, making learning exact models intractable. Corre-
spondingly, we have to resort to learning approximate models. We note that there are
two approaches to derive approximate models. The first approach is to plug in some
approximate inference engine during the model learning process. The second approach
is to learn a simplified model which is feasible to learn exactly and is close to the true
exact model.

For the first approach, it is not clear whether or not the model learning process
will still converge when subjected to approximate inference engines. In our empirical
study, we found sometimes the model learning process will not converge when we plug

4

in some MCMC inference engines. Parameters such as sample size and burn-in data
size seem to affect the convergence behavior of the learning algorithm. As a result,
we conjecture that we have to guarantee certain accuracy of approximate inference
engines to ensure the convergence of the model learning process. Whether or not the
convergence property still holds when we apply approximate inference algorithms in its
own right is an interesting research problem and is beyond the scope of this paper. In
this paper we pursue a variant of the second approach.

It’s worth noting that Pavlov et al. [3] did not solve the problem of learning MRFs
on large transaction data. The MRFs they generate target specifically the query variables
and are therefore quite lightweight. Actually, they have noted the difficulty of learning
a global model on the whole data in [3].

3 Learning Approximate MRFs

Before discussing our proposed approach, let us consider an extreme case in which the
overall graph consists of a set of disjoint non-correlated components. Then the joint
distribution can be obtained in a straightforward fashion according to the following
lemma.

Lemma 1. Given an undirected graph G subdivided into disjoint componentsD1, D2,
. . ., Dn (not necessarily connected components), and there is no edge across any two
components, then the probability distribution associated with G is given by:

p(X) =

n∏

i=1

p(XDi)

This conclusion follows immediately from the global Markov property of the MRF.

3.1 Clustering Variables Based on Graph Partitioning

The basic idea of our proposed divide-and-conquer style approach comes directly from
the above observation. Specifically, the variables are clustered into groups according
to their correlation strengths. We call the group variable-cluster. Then a local MRF is
defined on each variable-cluster. In the end we aggregate the local models to obtain a
global model. From Lemma 1, we see that if we have a perfect partitioning of an MRF
in which there is no correlations across different partitions, the divide-and-conquer style
approach gives the exact estimate of the full model. Even for a non-perfect partitioning,
if the correlations across partitions are not strong, we still expect a reasonable approx-
imation of the full model. Correspondingly, the first problem we face is how to cluster
the variables such that the correlations across partitions is minimized?

k-MinCut The k-MinCut problem is defined as follows [8]: Given a graphG = (V,E)
with |V | = n, partition V into k subsets, V1, V2, . . . , Vk such that Vi∩Vj = ∅ for i 6= j,
|Vi| = n

k
, and ∪iVi = V , and the number of edges of E whose incident vertices belong

5

to different subsets is minimized. Given a partitioning P , the number of edges whose
incident vertices belong to different partitions is called the edge-cut of the partitioning.
In the case of weighted graphs, we minimize the sum of weights of all edges across
different partitions. Correspondingly, the edge-cut is the sum of weights of all edges
across different partitions.

Therefore the k-MinCut can serve our purpose of clustering variables. Each graph
partition corresponds to a variable-cluster. Intuitively, we want to maximize corre-
lations among variables within variable-clusters, and minimize correlations among
variables across variable-clusters. So we should make the weight of edges reflect the
strength of correlations between variables. We have the collection of all frequent item-
sets. In particular, itemsets of size 2 specify the connectedness structure of the graph,
and their associated supports indicate the strength of pairwise correlations between vari-
ables. We can use their supports as the edge weights directly. However, we also have
higher-order statistics available, i.e., the larger itemsets. We expect that taking into con-
sideration the information of all itemsets will yield a better weighting scheme. To this
end, we propose an accumulative weighting scheme as follows: for each itemset, we
add its support to all related edges, whose two vertices are contained by the itemset. In-
tuitively, we strengthen the graph regions which involve closely related itemsets in the
hope that the edges within these regions will not be broken in the partitioning. Figure 2
illustrates the weighting scheme using a simple example. The collection of frequent
itemsets and their supports are given in the figure.

X1

X2

X4

X3

X5

5 6
4

2

6

� ���������	�
�����	��� �

�

�

�

�

�

�

X1X2
X1X3
X2X3
X3X4
X4X5

X1X2X3

Fig. 2. Accumulative graph weighting scheme

An advantage of the k-MinCut partitioning scheme is that the resulting clustering
is forced to be balanced. This is desirable for the sake of efficient model learning, since
we will not encounter very large variable-clusters which might result in very complex
local models. We need to specify k a priori. By choosing k one can examine trade offs
involving model complexity, accuracy and online estimation time.

The k-MinCut partitioning scheme yields disjoint partitions. However, there exist
edges across different partitions. In other words, different partitions are correlated to
each other. So how do we account for the correlations across different partitions?

6

3.2 Interaction Importance and Treewidth Based Variable-Cluster
Augmentation

The balanced variable-clusters produced by the k-MinCut partitioning scheme are dis-
joint. Intuitively, there is significant correlation information that is lost during the parti-
tioning. The loss could be more severe considering that we force the balanced clusters,
thus somehow we have to eliminate some edges with relative high weights. To com-
pensate for this loss, we propose an interaction importance based variable-cluster aug-
menting scheme to recover the damaged correlation information. The idea is that for
each variable-cluster, we let it grow outward. More specifically, it attracts and absorbs
most significant (important) interactions (edges) incident to its vertices from outside to
itself. As a result, some extra variables are pulled into the variable-cluster. We control
the augmentation through the number of extra vertices pulled into the cluster (called
growth factor). One can use the same growth factor for all variable-clusters to preserve
their balance.

As an optimization, we account for the model complexity during the augmentation.
We keep augmenting a partition until its complexity reaches a user-specified threshold.
More specifically, we keep track of the growth of the treewidth during the augmenting
process for this purpose. Additionally, 1-hop neighboring vertices are first considered
by the augmentation, followed by 2-hop neighboring vertices and so on. Meanwhile, we
still stick to the interaction importance criteria. As a result, the augmented partitions are
likely to become unbalanced in terms of their size. The partitions with a small treewidth
will grow more significantly than those with a large treewidth. However, these parti-
tions are balanced in terms of their complexity. A benefit of this scheme is that usually
more interactions across different partitions will be accounted for in a computationally
controllable manner, leading to a more accurate global model. After the augmentation,
we obtain overlapped variable-clusters. Figure 3 presents a sketch of the augmented
variable-clusters.

C3
C1

... ...C1'
C2

C2'

C3'

Fig. 3. Augmented variable-clusters

7

3.3 Approximate Global MRFs and A Greedy Inference Algorithm

For each augmented variable-cluster, we collect all of its related itemsets and use the it-
erative scaling algorithm to learn an exact local model. This is computationally feasible
since the local model corresponding to each variable-cluster is much simpler than the
original model. Two local models are correlated to each other if they share variables.
The collection of all local models forms a global model of the original transaction data.
We note that this global model is an approximation of the exact global MRF, since we
lose dependency information by breaking edges in the exact graphical model. How-
ever, most of the lost strong correlations are compensated during the variable-cluster
augmentation. As such, we believe that the proposed global model reasonably approxi-
mates the exact model. Figure 4 provides the formal algorithm for learning an approxi-
mate global MRF.

LearnMRF(F, k, g)
Input : F, collection of frequent itemsets;

k, number of partitions for MinCut partitioning;
g, growth factor;

Output :M, global MRF ;
1. Construct a weighted graph G from F ;

//G specifies graphical structure of the exact MRF ;
2. k −MinCut G;
3. for each graph partition Gi

4. G′

i ← augment(Gi, g);
5. P ick itemsets Fi related to G′

i

6. Mi ← LearnLocalMRF (Fi);
7. add Mi toM;
8. returnM;

Fig. 4. Learning approximate global MRF algorithm

Given the global model consisting of a set of local MRFs, how do we make infer-
ences on this model efficiently? In the first case where all query variables are subsumed
by a single local MRF, we just need to calculate the marginal probability within the
local model. In the second case where query variables span multiple local models, we
use a greedy decomposition scheme to compute. First, we pick the local model which
intersects most with the current query (covers most query variables). Then we pick the
next local model which covers most uncovered variables in the query. This covering
process will be repeated until we cover all variables in the query. Simultaneously, all
intersections between the above local models and the query are recorded. In the end, we
derive an overlapped decomposition of the query. We notice that locally the dependency
among small pieces in the decomposition often exhibits a tree-like structure, and we use
Lemma 2 to compute the marginal probabilities.

Lemma 2. Given an undirected graph G subdivided into n overlapped components, if
there exists an enumeration of these n components, i.e., C1, C2, . . ., Cn, s.t., for any

8

2 ≤ i ≤ n, the separating set, s(Ci,∪
i−1
j=1Cj) ⊆ (Ci ∩ (∪i−1

j=1Cj)), then the probability
distribution associated with G is given by:

p(X) =

∏n

i=1 p(XCi
)

∏n

i=2 p(XCi
∩ (∪i−1

j=1XCj
))

Proof: We follow the order C1, C2, . . ., Cn to deduce the full joint distribution as
follows (repeatedly apply Lemma 3):

p(XC1
∪XC2

) =
p(XC2

) · p(XC1
)

p(XC2
∩XC1

)

p(XC1
∪XC2

∪XC3
) = p(XC1

∪XC2
) ·

p(XC3
)

p(XC3
∩ (XC1

∪XC2
))

...

p(XC1
∪ . . . ∪XCn) =

Qn

i=1
p(XCi

)
Qn

i=2
p(XCi

∩ (∪i−1

j=1
XCj

))

X1 X3 X2

Fig. 5. Conditional independence

Lemma 3. Let X1, X2, X3 be three disjoint sets of variables in an undirected graph
G, such that X = X1 ∪X2 ∪X3. Additionally, there is no edge across X1 andX2 (we
only allow edges across X1 and X3, X2 and X3 (see Figure 5), i.e., the separating set
for X1 and X2, s(X1, X2) ⊆ X3, then the probability distribution associated with G
is given by:

p(X) =
p(X1, X3) · p(X2, X3)

p(X3)

Proof:

p(X1, X2, X3) = p(X3) · p(X1|X3) · p(X2|X1, X3)

(X1 and X2 are independent given X3)

= p(X3) · p(X1|X3) · p(X2|X3)

=
(p(X3) · p(X1|X3)) · (p(X2|X3) · p(X3))

p(X3)

=
p(X1, X3) · p(X2, X3)

p(X3)

9

�

To use the above formula, we require that there is no cyclic dependency among
components, The overall dependency among components has a tree-like structure. Es-
sentially Lemma 2 specifies a junction tree-like structure. Given any model and one of
its such decomposition, we can use the above formula to make exact inferences.
Discussion: We note that the greedy inference scheme is a heuristic since it is possi-
ble to have a cyclic dependency among the decomposed pieces. Also, we note that our
global model is not globally consistent in that there exists inconsistency across the local
models. However, we expect that the global model is nearly consistent since two corre-
lated local models contain exactly the same evidence information (itemsets) regarding
their shared variables. A belief propagation style approach is currently under investiga-
tion to force the local consistency across the local models, thereby offering a globally
consistent model.

4 Experimental Results

In this section, we examine the performance of our proposed approach on real datasets.
Particularly, we focus on the application of the proposed model on the selectivity es-
timation problem. We compare the new model against the previous approach in [3]
where a local MRF over query variables is learned for every query in an online fash-
ion. We call this approach online local MRF approach (abbreviated as OLM in figures
presenting experimental results). The MRF learning algorithm is implemented in C++.
The junction tree inference algorithm is implemented based on Intel’s Open-Source
Probabilistic Networks Library2. We use apriori (a well-known efficient frequent item-
set pattern mining algorithm) to collect frequent itemsets and Metis [8, 10] to obtain a
k-MinCut of the exact graphical model.

4.1 Experimental Setup

All the experiments were conducted on a Pentium 4 2.66GHz machine with 1GB RAM
running Linux 2.6.8. Below we detail the datasets, query workloads and performance
metrics considered in our evaluation.
Datasets: We used two publicly available datasets in our experiments: the Microsoft
Anonymous Web dataset (publicly available at the UCI KDD archive, kdd.ics.uci.edu)
with 32711 transactions (Web site visitors) and 294 distinct attributes (Web pages); the
BMS-Webview1 dataset (publicly available from the FIMI repository, fimi.cs.helsinki.fi),
which is a web click-stream dataset from a web retailer company, Gazelle.com. The
dataset contains 59602 transactions (Web sessions) and 497 distinct attributes (product
detailed pages).
Query Workloads: In our experiments we considered the workloads consisting of con-
junctive queries of different sizes. Following the same practice in [3], we first specified
the number of query variables n (varied from 4, 6, 8, 10 to 12), then we picked n vari-
ables according to the probability of the variable taking a value of ”1” and generated a
value for each selected variable by its univariate probability distribution.

2 https://sourceforge.net/projects/openpnl/

10

Performance Metrics:
Time. We considered the online time cost, the time taken to answer the queries using
the model. We also considered the offline time cost, the time taken to learn the model.
Our objective is to have a fast and accurate online answer at the expense of potentially
much higher offline time cost.
Error. We quantified the accuracy of estimations using the average absolute relative
error over all queries in the workload. The absolute relative error is defined as |σ − σ̂|
/ σ, where σ is the true selectivity and σ̂ is the estimated selectivity.

In the experiments, we varied k, the number of clusters; g, the number of vertices
used to augment variable-clusters (the larger g is, the more overlapped the variable-
clusters are, in the special case where g = 0, the variable-clusters are disjoint); the
treewidth threshold tw when the treewidth based augmentation optimization is used
and query size (4, 6, 8, 10, 12).

4.2 Results on the Microsoft Web Data

In this section, we report the experimental results on the Microsoft Web Data. We use
the support threshold of 20 to collect the frequent itemsets, which results in 9901 fre-
quent itemsets. According to the Maximum Cardinality Search (MCS)-ordering heuris-
tic [11], the treewidth of the resulting MRF is 28 for which learning the exact model is
intractable.

Figure 6a presents the estimation accuracy when k is varied (g is fixed as 5) for
queries of different sizes. As can be seen, the new approach works very well compared
with the online local MRF model. The global model based approach gives very close
or even better estimations compared with the online local model based approach. These
results are not surprising since for the online model, we only use the information of
the itemsets whose variables are subsets of the online query to estimate the selectivity
for the sake of a more efficient model construction. However, for the offline global
model, we rely on more complete information to make the estimation. Even though
the graph partitioning phase gives rise to information loss, since the model is global in
nature, in many cases it is still able to yield better estimations. Furthermore, an obvious
trend that stands out is that as the query size increases, the quality of the estimations
degrades. This is as expected since for larger sized queries, estimation errors grow for
both approaches. Another observation is that the estimations are more accurate when we
use less variable-clusters. This is because with less variable-clusters, the information
loss due to the graph partitioning is less, thus we capture better the correlations between
partitions.

Figure 6b illustrates how the online times depend on the number of variable-clusters
for queries of different sizes. It can be clearly seen the significant growth of the online
times taken by the online model (note the Y-axis scale). The extreme online timing
efficiency of the offline model can be clearly seen from the results. In most cases, it
outperformed the online model by two to three orders of magnitude. Further, we see
that the smaller number of variable-clusters results in higher online estimation time.
This is as expected since the smaller k is, the larger each local model will be, which
explains the slower estimation. In the extreme case where k is 1, we revert to learning
the exact global MRF, which has been shown to be computationally infeasible.

11

Figure 6c presents the offline learning times of the offline model when varying k.
An obvious trend is that as we increase k, overall the learning cost of the offline model
decreases significantly. This is as expected since the larger k results in less complex
local models.

Figure 7a presents the estimation accuracy when varying g (k is fixed as 20). As
can be seen from the results, the error decreases steadily with increasing g. When g
is 0 (disjoint variable-clusters), the estimations are most inaccurate. In contrast, the
estimations are much more accurate when g is 5. The results clearly show the effects
of the interaction importance based variable-cluster augmenting scheme. The offline
model approximates the exact global model better when more correlations across the
local models are compensated.

Figure 7b presents the online times when varying g. We see from the results that
the model with the larger g takes more online time to answer the query. This is also as
expected since the larger g results in more complex models (similar to the case of the
smaller number of variable-clusters).

Figure 7c presents the offline learning times of the offline model when varying g.
An obvious trend is that as we increase g, the time cost increases significantly. This is
again as expected.

Figure 8a-c present the estimation accuracy, the online times and the offline learning
times of the offline global model when the treewidth based augmentation optimization is
used (k is fixed as 25). As can be seen, the optimization can further boost the estimation
performance. For example, the average relative estimation errors are 0.29%, 0.97%,
2.01%, 3.66% and 4.81% on the workloads consisting of queries of size 4, 6, 8, 10 and
12, respectively. In contrast, the corresponding errors of the online local MRF approach
are 0.99%, 2.76%, 4.45%, 7.82% and 10.9%, respectively. Furthermore, the offline
model is faster by about two orders of magnitude in terms of online estimating time.
Another obvious trend is that as we raise the treewidth threshold, the estimations will
become more accurate, at a higher cost of online estimating and offline learning times.

4.3 Results on the BMS-Webview1 Data

In this section, we report the experimental results on the BMS-Webview1 data. We
use the support threshold of 50 to collect the frequent itemsets, which results in 8191
frequent itemsets. The treewidth of the resulting exact MRF is 44 according to the
MCS heuristic, which also makes learning the exact model intractable. The results on
varying k and g are similar to that on the Microsoft Web data and are thus omitted in the
interest of space. We only report the results when the treewidth based variable-cluster
augmentation scheme is used.

Figure 9a-c present the estimation accuracy, the online times and the offline learning
times of the offline global model when the treewidth based augmentation optimization is
used (k is fixed as 70). As can be seen, the offline model is able to achieve estimations
close to the online model, when the treewidth threshold is 10. When we increase the
threshold to 12, the offline model generates more accurate estimations. Furthermore,
the offline model provides better online timing performance than the online model,
though the difference is not as significant as that on the Microsoft Web data. The reason
is that the BMS-Webview1 data contains much more items than the Microsoft Web data.

12

As a result, the random queries generated are more likely to contain more uncorrelated
items. As such, we have to use more local MRFs to cover one query when we estimate
its selectivity, slowing down the estimation. In contrast, learning an online local MRF
becomes easier in this case. However, if we consider correlations between items when
we generate random workloads, in other words, more correlated items are more likely
to occur in the same query, we expect that the offline global model will be significantly
faster.

5 Related Work

Pavlov et al. [12, 3] have done significant work on exploiting probabilistic models for
selectivity estimation on transaction data. They examined several models for this pur-
pose. Besides the online local MRF learning based approach, they also examined the
Chow-Liu tree model, the Bernoulli mixture model, the ADTree model and Bayesian
networks. They showed that the online local MRF approach yields best performance on
sparse data.

Goldenberg et al. [5] proposed an approach (SNBS) of using frequent itemsets to
learn large Bayesian networks from sparse data. Further, they augmented the learned
Bayesian networks with edges of high mutual information for variables that have not co-
occurred in the data, since such dependencies are not captured by the frequent itemsets.
The same technique can be adopted to enhance our proposed model.

Also, there has been significant work on approximate inference. Besides the MCMC
techniques mentioned in this paper, variational methods [13–18] for approximate infer-
ence is a very active research field. Specifically, variational methods yield approxima-
tions to marginal probabilities via the solution to an optimization problem derived from
the corresponding inference problem that generally exploits some of the graphical struc-
ture. Mean field methods [13, 14, 17] and Pearl’s belief propagation (BP) algorithm [15]
(when applied to loopy graphs) are both belonging to this category.

6 Conclusion

In this paper, we have described a new approach to learning an approximate MRF on
large sparse data. The new approach is shown to be very effective and efficient in solv-
ing the selectivity estimation problem. In the future, we would like to exploit a belief
propagation style approach to force consistency of the model. Further, we would like
to exploit approximate inference techniques, such as generalized belief propagation and
generalized mean field algorithms in our model learning process. Finally, we would like
to exploit the use of the models on link analysis tasks.

References
1. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. In:

SIGMOD Conference 2001. (2001) 461–472
2. Deshpande, A., Garofalakis, M.N., Rastogi, R.: Independence is good: Dependency-based

histogram synopses for high-dimensional data. In: SIGMOD Conference 2001. (2001) 199–
210

13

3. Pavlov, D., Mannila, H., Smyth, P.: Beyond independence: probabilistic models for query
approximation on binary transaction data. IEEE Transactions on Knowledge and Data Engi-
neering 15 (2003) 1409–1421

4. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for
collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Arti-
ficial Intelligence. (1998) 43–52

5. Goldenberg, A., Moore, A.: Tractable learning of large bayes net structures from sparse data.
In: Proceedings of the twenty-first international conference on Machine learning. (2004)

6. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303
(2004) 799–805

7. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge, MA (1998)
8. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel

Distrib. Comput. 48 (1998) 96–129
9. Wang, C., Parthasarathy, S.: Learning approximate mrfs from large transaction data. In: The

Ohio State University, Technical Report. (2006)
10. Karypis, G., Kumar, V.: Metis: A software package for partitioning unstructured graphs,

partitioning meshes, and computing fill-reducing orderings of sparse matrices. http://www-
users.cs.umn.edu/∼karypis/metis/metis/files/manual.ps (1998)

11. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of
Computing 13 (1984)

12. Pavlov, D., Smyth, P.: Probabilistic query models for transaction data. In: Proceedings of the
seventh ACM SIGKDD international conference on Knowledge discovery and data mining.
(2001) 164–173

13. Jordan, M.I., Kearns, M.J., Solla, S.A.: An introduction to variational methods for graphical
models. Machine Learning 37 (1999) 183–233

14. Wiegerinck, W.: Variational approximations between mean field theory and the junction tree
algorithm. In: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence.
(2000) 626–633

15. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its general-
izations. In: IJCAI. (2001)

16. Bishop, C.M., Spiegelhalter, D.J., Winn, J.M.: Vibes: A variational inference engine for
bayesian networks. In: NIPS 2002. (2002) 777–784

17. Xing, E., Jordan, M., Russell, S.: A generalized mean field algorithm for variational inference
in exponential families. In: Uncertainty in Artificial Intelligence. (2003) 583–591

18. Geiger, D., Meek, C.: Structured variational inference procedures and their realizations. In:
AI and Statistics 2005. (2005)

14

0

2

4

6

8

10

12

4 6 8 10 12

Query Size

A
v
g

.
R

e
l

E
rr

o
r

(%
)

OLM k=15 k=20 k=25 k=30

0.1

1

10

100

1000

10000

4 6 8 10 12

Query Size

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

OLM k=15 k=20 k=25 k=30

1

10

100

1000

10000

100000

15 20 25 30

k

O
ff

li
n

e
 T

im
e
 (

s
)

Fig. 6. Varying k (g = 5): (a) estimation accuracy (b) online time (c) offline time

0

5

10

15

20

25

30

35

40

4 6 8 10 12

Query Size

A
v
g

.
R

e
l

E
rr

o
r

(%
)

OLM g=0 g=1 g=2 g=3 g=4 g=5

0.1

1

10

100

1000

10000

4 6 8 10 12

Query Size

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

OLM g=0 g=1 g=2 g=3 g=4 g=5

1

10

100

1000

10000

0 1 2 3 4 5

g

O
ff

li
n

e
 T

im
e
 (

s
)

Fig. 7. Varying g (k = 20): (a) estimation accuracy (b) online time (c) offline time

0

5

10

15

20

25

30

4 6 8 10 12

Query Size

A
v
g

.
R

e
l

E
rr

o
r

(%
)

OLM tw4 tw6 tw8 tw10 tw12

0.1

1

10

100

1000

10000

4 6 8 10 12

Query Size

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

OLM tw=4 tw=6 tw=8 tw=10 tw=12

1

10

100

1000

10000

100000

4 6 8 10 12

tw

O
ff

li
n

e
 T

im
e
 (

s
)

Fig. 8. Varying tw (k = 25): (a) estimation accuracy (b) online time (c) offline time

0

0.5

1

1.5

2

2.5

3

3.5

4 6 8 10 12

Query Size

A
v
g

.
R

e
l

E
rr

o
r

(%
)

OLM tw=4 tw=6 tw=8 tw=10 tw=12

0.1

1

10

100

1000

4 6 8 10 12

Query Size

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

OLM tw=4 tw=6 tw=8 tw=10 tw=12

1

10

100

1000

10000

100000

4 6 8 10 12

tw

O
ff

li
n

e
 T

im
e
 (

s
)

Fig. 9. Varying tw (k = 70): (a) estimation accuracy (b) online time (c) offline time

