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Abstract

In the arena of cluster computing, MPI has emerged as
the de facto standard for writing parallel applications. At
the same time, introduction of high speed RDMA-enabled
interconnects like InfiniBand, Myrinet, Quadrics, RDMA-
enabled Ethernet has escalated the trends in cluster com-
puting. Network APIs like uDAPL (user Direct Access
Provider Library) are being proposed to provide a network-
independent interface to different RDMA-enabled inter-
connects. Clusters with combination(s) of these intercon-
nects are being deployed to leverage their unique features,
and network failover in wake of transmission errors. In
this paper, we design a network fault tolerant MPI using
uDAPL interface, making this design portable for existing
and upcoming interconnects. Our design provides failover
to available paths, asynchronous recovery of the previous
failed paths and recovery from network partitions without
application restart. In addition, the design is able to han-
dle network heterogeneity, making it suitable for the current
state of the art clusters. We implement our design and eval-
uate it with micro-benchmarks and applications. Our per-
formance evaluation shows that the proposed design pro-
vides significant performance benefits to both homogeneous
and heterogeneous clusters. Using a heterogeneous com-
binations of IBA and Ammasso-GigE, we are able to im-
prove the performance by 10-15% for different NAS Par-
allel Benchmarks on 8x1 configuration. For simple micro-
benchmarks on a homogeneous configuration, we are able
to achieve an improvement of 15-20% in throughput. In ad-
dition, experiments with simple MPI micro-benchmarks and
NAS Applications reveal that network fault tolerance mod-
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ules incur negligible overhead and provide optimal perfor-
mance in wake of network partitions.

1 Introduction

In the arena of cluster computing, MPI has emerged as
the de facto standard for writing parallel applications. At
the same time, introduction of high speed RDMA-enabled
interconnects like InfiniBand, Myrinet, Quadrics, RDMA-
enabled Ethernet has escalated the trends in cluster com-
puting. Network APIs like uDAPL (user Direct Access
Provider Library) are being proposed to provide a network-
independent interface to different RDMA-enabled intercon-
nects. Clusters with combination(s) of these interconnects
are being deployed to leverage their unique features, and
to provide network failover in wake of transmission errors.
However, wide variety of interconnects pose portability is-
sues. This limits their different combinations to be used in
network failures, in addition to providing optimal perfor-
mance. In this paper, we take these challenges. We design a
network fault tolerant MPI using uDAPL interface, making
this design portable for existing interconnects.

Our design provides failover to available paths, recovery
of the previous failed paths asynchronously and recovery
from network partitions without application restart. In ad-
dition, the design is able to handle network heterogeneity,
making it suitable for the current state of the art clusters. To
achieve these goals, we design low overhead completion fil-
ter and error-detection, message (re)-transmission and path
recovery and network partition handling modules which
perform completion filter and detection, (re)-transmission
and recovery from network partitions respectively. We im-
plement our design and evaluate it with micro-benchmarks
and applications. Our performance evaluation shows that
the proposed design provides significant performance ben-
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efits to both homogeneous and heterogeneous clusters. Ex-
periments reveal that network fault tolerance modules in-
cur very low overhead and provide optimal performance in
wake of network failures for simple MPI micro-benchmarks
and applications. In addition, in the absence of such fail-
ures, using a heterogeneous 8x1configuration of IBA and
Ammasso-GigE, we are able to improve the performance of
NAS Parallel Benchmarks by 10-15% for different bench-
marks. For simple micro-benchmarks, we are able to im-
prove the throughput by 15-20% for uni-directional and bi-
directional bandwidth tests. Even though, the evaluation in
the paper has been done using InfiniBand and Ammasso-
GigE, there are emerging interconnects, which plan to sup-
port uDAPL interface and are not available in market com-
mercially. The proposed design is generic and capable of
supporting any interconnect with uDAPL interface.

The rest of the paper is organized as follows. In sec-
tion 2, we provide background of our work. In section 3,
we present the related work. In section 4.1, we present ba-
sic infrastructure multi-network abstraction layer and com-
munication methodology for multiple interconnects associ-
ated with our work. In section 4.2, we discuss the network
fault tolerance modules completion filter and error detec-
tion module, message (re)-transmission module, and path
recovery and network partition handling module. In section
5, we present the performance evaluation for homogeneous
and heterogeneous clusters, both in the absence and pres-
ence of faults. In section 6, we conclude and present our
future directions.

2 Background

In this section, we provide the background information
for our work. We begin with a brief introduction of inter-
connects, followed by an overview of the uDAPL interface.
We also discuss major internal communication protocols
used by Message Passing Interface (MPI).

2.1 Overview of Interconnects

InfiniBand has emerged as a major player in the arena of
high performance computing. The InfiniBand Architecture
(IBA) [11] defines a System Area Network with a switched,
channel-based interconnection fabric. IBA 4X can provide
bandwidth up to 10 Gbps. Switches and Adapters with ca-
pabilities of 12X bandwidth have also become available in
the market, providing performance upto 30Gb/s. Infini-
Band defines Verbs for user-level applications to leverage
its capabilities. VAPI (Verbs API) by Mellanox has been
widely used for powering large scale clusters. In addition,
an open source effort, OpenIB [16] has also become avail-
able. In this paper, we have used DAPL libraries designed
over VAPI for performance evaluation.

The Ammasso interconnect is a RDMA-enabled Giga-
bit Ethernet adapter [4]. It is a full duplex 1Gbps Ethernet
Adapter also provides the interface for vanilla sockets based
applications. Ammasso defines a CCIL interface, for appli-
cations to leverage its RDMA capabilities. In this paper,
we have used Ammasso 1100 and DAPL libraries designed
over CCIL interface for performance evaluation.

2.2 uDAPL

As mentioned in the section 2.1, multiple interconnects
have emerged that provide RDMA capabilities. However,
these interconnects do not provide a common set of Ap-
plication Programming Interfaces (APIs). In addition, up-
coming interconnects face a similar challenge and the turn-
around time for developing MPI on these adapters can be
prohibitive. To alleviate this situation, DAT (Direct Access
Transport) Collaborative [8] has defined a DAPL interface,
providing a common interface for different interconnects.
User Direct Access Programming Library (uDAPL) is a
lightweight, transport-independent, platform-independent
user-level library, potentially capable of providing high pro-
ductivity for upcoming and existing interconnects.

uDAPL allows processes to communicate by defining
End Points (EPs). EPs need to be connected to each other,
before communication can take place. Work Requests or
descriptors can be posted on the end points for sending
or receiving data from other processes. uDAPL supports
memory semantics by leveraging RDMA and channel se-
mantics by providing send/receive mechanism. The com-
pletion status of the previously posted descriptors can be as-
certained by using completion queue mechanism. Comple-
tion queue returns status of the posted descriptor, in terms
of success/failure and the error code.

2.3 Overview of MPI Protocols

MPI defines four different communication modes: Stan-
dard, Synchronous, Buffered, and Ready. Two internal pro-
tocols, Eager and Rendezvous, are usually used to imple-
ment these four communication modes. These protocols are
handled by a component in the MPI implementation called
progress engine. In Eager protocol, the message is pushed
to the receiver side regardless of its state. In Rendezvous
protocol, a handshake takes place between the sender and
the receiver via control messages before the data is sent to
the receiver side. Usually, Eager protocol is used for small
messages and Rendezvous protocol is used for large mes-
sages. Figure 1 shows examples of typical Eager and Ren-
dezvous protocols.

For the transfer of large data buffers, it is beneficial to
avoid extra data copies. A zero-copy Rendezvous protocol
implementation can be achieved by using RDMA write. In
this implementation, the buffers are pinned down in mem-
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Figure 1. MPI Eager and Rendezvous Protocols

ory and the buffer addresses are exchanged via the control
messages. After that, the data can be written directly from
the source buffer to the destination buffer by doing RDMA
write. Similar approaches have been widely used for imple-
menting MPI over different interconnects [15, 12, 6].

For small data transfer in Eager protocol and control
messages, the overhead of data copies is small. Therefore,
we need to push messages eagerly toward the other side to
achieve better latency. This requirement matches well with
the properties of InfiniBand send/receive operations. How-
ever, send/receive operations have their disadvantages such
as lower performance and higher overhead. In [14], we pro-
posed a scheme that uses RDMA operations for small data
and control messages. This scheme improves both latency
and bandwidth of small message transfers in MPI. The solu-
tion is available in an open source manner with MVAPICH
1

3 Related Work

A couple of researchers have focused on designing MPI
for multiple interconnects and providing network fault tol-
erance. MPI-2 using uDAPL interface has been proposed
in [3]. However, in this work a combination of interconnects
was not used simultaneously. In our previous work [13, 18],
we have focused on combining multiple IBA HCAs. How-
ever, the design is applicable only to IBA. LA-MPI [9, 10, 2]
is an MPI implementation developed at Los Alamos Na-
tional Labs. LA-MPI was designed with the ability to stripe
message across several network paths. LA-MPI is able to
handle striping across different interconnect types. Open-
MPI [1], also provides striping across multiple intercon-
nects. It is capable of striping messages across a combi-
nation of interconnects, IBA, Myrinet and Ethernet. It also
supports network failover. Pakin et. al. has also proposed

1MVAPICH/MVAPICH2 [15] are high performance MPI-1 and MPI-2
implementations from The Ohio State University, currently being used by
more than 330 organizations across 33 countries.

VMI [17], which provides support for multiple intercon-
nects and failover. Also, the design uses TCP for RDMA-
enabled Ethernet Adapters, however uDAPL is capable of
leveraging RDMA for RDMA-enabled Ethernet Adapters.
Buntinas et. al. has also proposed Nemesis [7], which is ca-
pable of supporting multiple interconnects. At the time of
writing this paper, nemesis channel over InfiniBand is not
available. However, none of the above works have focused
on providing network fault tolerance with support for net-
work partitions and asynchronous recovery of failed paths
in addition to providing portability with the uDAPL inter-
face.

4 Overall Design for uDAPL Based Network
Fault Tolerant MPI

In this section, we present the overall design for our
uDAPL based network fault tolerant MPI. This is further
illustrated in Figure 2. The figure represents the overall de-
sign and an example node configuration consisting of both
IBA and GigE devices. In section 4.1, we present multi-
network abstraction layer, which provides a uniform inter-
face to our design for clusters with network heterogeneity.
We also discuss the implementation issues associated with
using multiple interconnects.

In section 4.2, we present the workhorse of our design,
communications and network fault tolerance layer. Fig-
ure 5 presents the interaction of different components in
communications and network fault tolerance layer. This
layer comprises of modules, which work together for
scheduling the communication in an efficient manner to
providing network fault tolerance. The message (re)-
transmission module in this layer is responsible for schedul-
ing the communication on available paths according to
scheduling policy. The completion filter and error detec-
tion module detects error and provides information to mes-
sage (re)-transmission about the failed work request. The
path repository maintains the available paths for every pair
of communication nodes. This layer also consists of path
recovery and network partition handling module, which is
responsible for recovery of failed paths and dealing with
network partitions. To the best of our knowledge, this is the
first implementation of network fault tolerant MPI which
supports dealing with network partitions and recovery of the
failed paths, without application restart.

4.1 Basic Infrastructure For Network Fault Tol-
erance Design

In this section, we discuss the basic design, which acts as
an infrastructure to providing network fault tolerance. Our
design is capable of providing network fault tolerance for
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clusters using single interconnect, in addition to a combina-
tion of interconnects supporting uDAPL interface. We be-
gin with the introduction of multi-network abstraction layer.

4.1.1 Multi-Network Abstraction Layer

As shown in Figures 2, 3 and 4, our design is capable
of combining clusters with a combination of interconnects,
supporting uDAPL interface to the user applications. Ho-
mogeneous clusters are a special case of this configura-
tion. Each interconnect specifies its own DAPL library, built
over the interconnect’s access layer. Hence, presence of an
equivalent abstraction is imperative to hiding network het-
erogeneity. This layer provides an equivalent interface of
multiple uDAPL interfaces to the communications and fault
tolerance layer. To provide such an abstraction, this layer
maintains unified data structures for end point(s), public ser-
vice point(s), completion queue(s) and available paths be-
tween processes. Our design is currently limited by the fact
that it requires atleast one common network interface be-
tween all communicating nodes. In the performance evalu-
ation section, we have used Ammasso-GigE as the common
interface. However, the design is generic and any intercon-
nect providing DAPL interface can be used. In future, we
plan to extend our design to handle more complicated cases
of network heterogeneity.

4.1.2 Implementing Abstraction Layer over DAPL

In our previous work with uDAPL [3], we have presented
asynchronous and polling based connection management
schemes to connect EPs associated with different processes.
In the design, the EP(s) information is exchanged, followed

by mandatory ep connect function call to connect them as
specified by the uDAPL specification. However, the de-
sign assumed the presence of only one network interface.
To support network heterogeneity, each node exchanges its
node configuration at the MPI initialization phase. Node
configuration comprises of DAPL provider information, and
associated parameters with different interconnects. This in-
formation is communicated to peers at the time of EP ex-
change phase, to avoid multiple messages being sent for
node configuration exchange. Thread-based EP connection
scheme is used for connecting various EPs. At the end of
this step, each node updates its path repository for commu-
nication to every other node in the cluster.

4.1.3 Communication Methodology for Multiple Inter-
connects

As mentioned in section 2, uDAPL allows user to use
RDMA for data transfer. One of the key requirements is that
the user buffer be registered with the corresponding inter-
connect. Since our design supports multiple interconnects,
for simplicity, we register the complete buffer with all in-
terconnects. In addition, for the rendezvous protocol, com-
pletion notifications need to sent on all interconnects partic-
ipating in data transfer to the communicating process. Pres-
ence of multiple paths also leads to out-of-order messages.
MPI requires messages to be processed in order. Hence,
we maintain out-of-order queues, and periodically poll on
them.

As discussed in [13, 18], scheduling policies have a
great deal of impact on performance, when a combination
of paths are available. Simple policies like even striping,
round robin, process binding and weighted striping provide
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comparable performance for a combination of interconnects
with similar peak bandwidth. However, these policies pro-
vide a sub-optimal performance when different paths have
different bandwidths. In [13], we have also shown that
adaptive striping stands out the best candidate in such sce-
narios. Hence, without much further a do, we use this pol-
icy, so that our design leverages multiple networks in an
optimal fashion, in addition to using them for failover. A
striping threshold value is used, below which the primary
network for communication is used. In the performance
evaluation section, we have used adaptive striping policy
by default, unless mentioned otherwise. In the performance
evaluation section, we have used InfiniBand as the primary
path, wherever possible.

4.2 Design of Communications and Network
Fault Tolerance Layer

In this section, we discuss the design of communications
and network fault tolerance layer. We discuss various mod-
ules associated with this layer and their interactions. This
is shown in more detail in the Figure 5. We begin with the
error detection module.

4.2.1 Completion Filter and Error Detection Module

As mentioned in section 2, uDAPL library allows a user
application to make work requests by posting send work re-
quests or descriptors. The status of these requests can be
determined by using the completion queue mechanism. As
shown in Figure 5, completion notifications generated from
the network are stored in the completion queue. uDAPL
also provides completion notification interrupt to be gener-
ated for solicited work requests, however this mechanism
leads to increased latency, particularly for small messages.
In our design, we use polling on the completion queue to de-
termine the status of the work request. This is to be noted,
that a completion queue entry (CQE) is generated, inde-
pendent of success/failure in completing the work request.
Upon receipt of a successful CQE, this module updates the
weight(s) of different path(s) of communication to the com-
municating process, as shown in Figure 5. However, on
receiving a failed CQE, associated error code in the CQE
is used determine the cause of the failure. We leverage this
uDAPL capability to ascertain the failure in completion of
a send or a receive work request. The remote access er-
ror failure opcode shows the un-reachability of the remote
destination. This failure implies that even after multiple re-
tries by the Network Interface Card (NIC), the path could
not be reached. This is to be noted, such a failure can also
occur, when the rkey value for RDMA operation is wrong.
However, in both cases, occurrence of even a single failure
on an End point breaks the connection and all posted work

requests (send or receive) result into error. The recovery
mechanism of the broken EP is handled in the Path Recov-
ery and Network Partitioning Module. Once the error is de-
tected, the control is transferred to message re-transmission
module.

4.2.2 Message (Re)Transmission Module

This module is activated upon receiving an input from the
completion filter and error detection module or receiving
an input from the ADI layer for message transmission. If
the request is received from the ADI layer, the appropriate
scheduling policy is used for message transmission. The
interaction is further illustrated in Figure 5. Upon receipt
of a failed CQE from completion filer and error detection
module, the first step is to update the path repository, mark-
ing the associated communication path to the destination
process unavailable. Upon receipt of a failed CQE with re-
ceive opcode, the corresponding buffer is simply released,
however another receive descriptor is not posted, since the
connection is already broken. As mentioned before, post-
ing another work request on a broken connection results
in error. However, when a CQE failed send opcode is re-
ceived, path repository is queried for the available paths to
the destination rank. The return from the path repository
can be success with a list of the available path(s) or a fail-
ure in case of network partition (it is not be noted that the
sender may still have communication paths to other pro-
cesses). The failed send descriptor consists of information
about the length of the work request. To post this descriptor
to available paths, length of each work request is adjusted in
conjunction with scheduling policy and associated lkey for
interconnect is used. In addition, if an RDMA operation is
requested, the associated rkey is updated for data transfer.

4.2.3 Path Recovery and Network Partition Handling
Module

The design mentioned upto now provides failover, when
network paths fail and message re-transmission in such
cases. However, network errors can be transient and this
should not limit the application to be able to use the corre-
sponding paths when they recover. In addition, an applica-
tion should not abort in case of network failures, since the
process state is intact. Long running applications should
also be able to use the recovered paths, and be able to ex-
tract the best performance out of the SAN. This layer meets
delivers the above requirements by using an asynchronous
thread based recovery mechanism.

In order to facilitate this capability, the broken End Point
associated with the failed network path needs to be brought
back to the connected state. This is further illustrated in
the Figure 7. The DAT specification mentions that an End
Point in an error state should not be moved to disconnected
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state at the discovery of first failure, else would result in
loss of the previously posted work requests. Hence, in our
design, we post a send work request called marker. Since
Work requests always finish in order on the requested side,
after receiving a CQE associated with the marker, the End
Point can be moved to the disconnected, followed by the
unconnected state as shown in Figure 7.

The communication protocol for recovery from network
partition is further illustrated in Figure 6. When a process
receives the first communication failure, it initiates an asyn-
chronous thread which initiates request(s) for bringing back
the End Points to the connected state. As mentioned in our
previous work [3], each process acts as a server for pro-
cesse(s) with higher MPI rank and sends connect requests
only to processe(s) with lower rank. Since connection re-
quests can possibly arrive at any point of time, the asyn-
chronous server thread remains in sleep state during the
program execution and wakes up only during connection
request(s) from the client(s). Similarly, the client thread
initiates request(s), goes to sleep and only activates, when
the connection event(s) are generated. Once a client and
server have received the connection events, each of their
End Points are in connected state. At this point, each of the
processes post receive descriptors, and exchange the credit
information by sending a connect message. Once the pro-
cesses receive the message, they are ready for communica-
tion. This is to be noted, Since these threads are in sleep
state for most of the time during program execution, they
incur little contention to the main thread.

5 Performance Evaluation

In this section, we evaluate the performance of our de-
sign. We call our design MN-uDAPL and compare its per-
formance with MVAPICH-0.9.7 for OSU Tests [15] and
NAS Parallel Benchmarks [5]. Our Performance Evalua-
tion is further divided into multiple cases:

• No network fault(s) occur during the application exe-
cution in the SAN. This evaluation helps us understand
the performance improvement which can be achieved
when there are multiple interconnects in the SAN, in
homogeneous/heterogeneous environment.

• One or more Network faults occur during the applica-
tion execution in the SAN. We evaluate the cases when
a previously failed path recovers during the application
execution, to the cases of network partitioning. This
helps us understand the overhead incurred by network
fault tolerance modules, when such faults occur.

We begin with a brief description of our experimental
testbed.

5.1 Experimental Testbed

Figure 8 is a block diagram for our experimental testbed.
This cluster consists of eight SuperMicro SUPER X5DL8-
GG nodes with ServerWorks GC LE chipsets. Each node
has dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache,
and PCI-X 64-bit 133 MHz bus. We have used InfiniHost
MT23108 Dual-Port 4x HCAs from Mellanox. The Server-
Works GC LE chipsets have two separate I/O bridges and
three PCI-X 64-bit 133 MHz bus slots. The kernel version
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Figure 7. End Point State Transition Diagram
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we used is Linux 2.6.9smp. The IBGD version is 1.8.2 and
HCA firmware version is 3.3.2. The Front Side Bus (FSB)
of each node runs at 533MHz. The physical memory is 2
GB of PC2100 DDR-SDRAM.

Four nodes in the cluster comprises of one Infini-
Band(InfiniHost MT23108 Dual-Port 4x HCAs from Mel-
lanox) and eight nodes comprise of Ammasso (Am-
masso 1100 RDMA-enabled Gigabit-Ethernet Adapter)
each. uDAPL libraries provided by Mellanox and Ammasso
are used for performance evaluation.

5.2 Performance Evaluation on Configuration A

As shown in Figure 8, this configuration comprises of
two nodes which have both IBA and GigE network inter-
face cards. Figure 9 shows the latency of small messages for
different devices of MVAPICH, 0.9.7. Since the messages
are small, only IBA device is used for communication.
Messages above the striping threshold (256K) use adaptive
striping for communication. In comparison to MVAPICH-
0.9.7, uDAPL device, our MPI incurs negligible overhead.
The overhead in latency, when compared to VAPI device is
due to the absence of inline functionality in uDAPL library.
This functionality allows data to be posted alongwith the
descriptor, hence reducing the number of I/O bus transac-
tions. Figure 10 shows the performance of latency for large
messages. Messages above the striping threshold are able
to be benefited by using the adaptive striping policy. For
512Kbyte message, the latency improves by almost 10%.

Figure 11 and 12 show the performance for OSU uni-
directional and bi-directional bandwidth test. As explained
above, MN-uDAPL uses only InfiniBand device for mes-
sages of size lesser than the striping threshold. Adap-

tive striping provides a peak uni-directional bandwidth of
963 MB/s compared to 880 MB/s for MVAPICH-0.9.7,
uDAPL device(IBA) only. The GigE device can only pro-
vide around 100 MB/s. Similarly, a performance improve-
ment of 18% is seen for peak bandiwth in the bi-directional
bandwidth test, which improves from 931 MB/s to 1095
MB/s.

5.3 Performance Evaluation on Configuration B

In this section, we evaluate the unified performance of
the cluster, also the configuration B as shown in the Fig-
ure 8. We use MVAPICH 0.9.7, uDAPL device for evalua-
tion and compare its performance with MN-uDAPL. Since
MVAPICH-0.9.7 is capable of utilizing only one interface at
a time, we evaluate it under two configurations for our clus-
ter. In one configuration, it is able to utilize nodes with IBA
cards only, and the other configuration can utilize nodes
with GigE cards only. Figures 13 and 14 compare the per-
formance of these configurations with MN-uDAPL, which
is capable of handling this network heterogeneity in a uni-
fied manner. In Figure 13, we use CLASS A, IS and CG
benchmarks. For IS, IBA only with 4 nodes takes 2.09 sec-
onds, only GigE takes 1.90 seconds. MN-uDAPL is able
to reduce the time taken to 1.75 seconds, which is an im-
provement of 8% from GigE only and 17% from IBA case
only. A respective improvements of 20% and 9% are seen
for the CG application kernel. Figure 14, shows the perfor-
mance comparisons for FT and MG benchmarks. We no-
tice that the application time does not improve much with
respect to the network. However, a slight improvement in
performance is shown by using MN-uDAPL than GigE de-
vice only.
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Figure 13. Performance Evaluation of IS and CG NAS

Parallel Benchmarks, Class A

Figure 14. Performance Evaluation of FT and MG NAS

Parallel Benchmarks, Class A
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Figure 16. Bidirectional Bandwidth Comparison for Fault

Tolerant Schemes, IBA Path Fails

5.4 Performance Evaluation with Network Faults

Figure 15, 16, 17, 18 show the results for the cases when
network fault occur in the system. The comparisons are be-
ing shown for the message re-transmission scheme with the
ideal case, when the same test is ran with no network faults.
In order to show these results, we let the OSU Latency test
report bandwidth at each iteration for a large number of it-
erations for a message size of 1 MB. The point of failure is
reported as the middle point on the x-axis.

Figure 15 and 16 show the uni-directional and bi-
directional bandwidth achievable, when IBA path fails
during the communication. The message-retransmission
scheme achieves the peak bandwidth as shown in the pre-
vious sections. However, at the point of failure, the re-
transmission scheme almost achieves no-bandwidth due to
multiple re-transmissions which occur at this point, before
the DMA engine concludes the un-reachability of the desti-
nation process, and puts a failed CQE into the correspond-
ing interconnect’s completion queue. At this point, only
GigE path is available. As can be noted from the graphs,
our scheme incurs no overhead in providing the peak band-
width. Figure 17 and 18 show a similar trend, the difference
being the failure of the GigE path.

Figure 21 and 22 present the results for uni-directional
bandwidth when running experiments in the configuration
A. At the point 8 in the graph, both GigE and the IBA path
fail and hence a network partition occurs in the system. At
this point, the application hangs and waits for one of the
connection paths to come up. The path recovery and net-
work partition handling module generates an asynchronous
thread and waits for the connection events from other pro-
cess. After re-connection, the processes are able to achieve
the peak uni-directional bandwidth which is achievable with
GigE. At a later point, when the IBA path is available, we
are able to achieve the peak bandwidth achievable in the
presence of no-faults. Figure 22 shows a similar trend,

however in this case the IBA path comes back earlier than
the GigE path. However, in this case also we are able
to achieve the peak uni-directional bandwidth achievable,
when no network faults occur in the system.

Figure 19 and 20 present the results, when network paths
fail at the beginning of the application itself. We notice
from the figures that the performance degradation is negli-
gible in comparison to the case 8x1 case, where only GigE
is used for communication. This shows that the overhead of
the message re-transmission module, generating an asyn-
chronous thread for communication etc. incurs very low
overhead on the communication performance.

6 Conclusions and Future Work

In this paper, we have designed a network fault tolerant
MPI using uDAPL interface, making this design portable
for existing and upcoming interconnects. Our design has
provided failover to available paths, asynchronous recovery
of the previous failed paths and recovery from network par-
titions without application restart. In addition, the design is
able to handle network heterogeneity, making it suitable for
the current state of the art clusters. To achieve these goals,
we have designed low overhead completion filter and error-
detection, message (re)-transmission and path recovery and
network partition handling modules which perform com-
pletion filter and detection, (re)-transmission and recov-
ery from network partitions respectively. We have imple-
mented our design and evaluated it with micro-benchmarks
and applications. Our performance evaluation have shown
that the proposed design provides significant performance
benefits to both homogeneous and heterogeneous clusters.
Experiments also reveal that network fault tolerance mod-
ules incur very low overhead and provide optimal perfor-
mance in wake of network failures for simple MPI micro-
benchmarks and applications. In addition, in the absence
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Figure 19. Performance Comparison on NAS Bench-

marks, When the IBA Path Fails on First Message Trans-

mission

Figure 20. Performance Comparison on NAS Bench-

marks, When the IBA Path Fails on First Message Trans-

mission
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Figure 22. Bi-directional Bandwidth Comparison for Fault

Tolerant Schemes with Network Partition

of such failures, using a heterogenous 8x1configuration of
IBA and Ammasso-GigE, we have been able to improve
the performance of NAS Parallel Benchmarks by 10-15%
for different benchmarks. For simple micro-benchmarks,
we have been able to improve the throughput by 15-20%
for uni-directional and bi-directional bandwidth tests. Even
though, the evaluation in the paper has been done using
InfiniBand and Ammasso-GigE, there are emerging inter-
connects, which plan to support uDAPL interface and are
not available in market commercially. The proposed design
is generic and capable of supporting any interconnect with
uDAPL interface.

In future, we plan to study hardware level mechanisms
provided by RDMA-enabled interconnects for fault toler-
ance. In addition, we plan to handle more difficult cases of
network heterogeneity, in which the presence of a common
network interface card for all nodes is not mandatory. We
also plan to study the impact of these designs on large scale
clusters at application level.

References

[1] . Open MPI Project. http://www.open-mpi.org .
[2] 18th International Parallel and Distributed Processing Sym-

posium (IPDPS 2004), CD-ROM / Abstracts Proceedings,
26-30 April 2004, Santa Fe, New Mexico, USA. IEEE Com-
puter Society, 2004.

[3] L. Chai and R. Noronha and P. Gupta and G. Brown and D.
K. Panda. Designing a Portable MPI-2 over Modern Inter-
connects Using uDAPL Interface., August 2005.

[4] Ammasso, Inc. The Ammasso 1100 High
Performance Ethernet Adapter User Guide.
http://www.ammasso.com/amso1100 usersguide.pdf,
February 2005.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrish-
nan, and S. K. Weeratunga. The nas parallel benchmarks.

The International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[6] M. Banikazemi, R. K. Govindaraju, R. Blackmore, and
D. K. Panda. MPI-LAPI: An Efficeint Implementation of
MPI for IBM RS/6000 SP Systems. IEEE Transactions on
Parallel and Distributed Systems, pages 1081–1093, Octo-
ber 2001.

[7] D. Buntinas, G. Mercier, and W. Gropp. The design and
evaluation of Nemesis, a scalable low-latency message-
passing communication subsystem. Technical Report
ANL/MCS-TM-292, Argonne National Laboratory, 2005.

[8] DAT Collaborative. uDAPL and kDAPL API Specification
V1.0, June 2002.

[9] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalski. A network-failure-tolerant message-passing sys-
tem for terascale clusters. Int. J. Parallel Program.,
31(4):285–303, 2003.

[10] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalski. A network-failure-tolerant message-passing sys-
tem for terascale clusters. Int. J. Parallel Program.,
31(4):285–303, 2003.

[11] Infiniband Trade Association. http://www.infinibandta.org/.
[12] Lawrence Livermore National Laboratory. MVICH: MPI

for Virtual Interface Architecture, August 2001.
[13] J. Liu, A. Vishnu, and D. K. Panda. Building multirail infini-

band clusters: Mpi-level design and performance evaluation.
In SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, page 33, Washington, DC, USA, 2004.
IEEE Computer Society.

[14] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
Performance RDMA-Based MPI Implementation over In-
finiBand. In 17th Annual ACM International Conference on
Supercomputing (ICS ’03), June 2003.

[15] Network-Based Computing Laboratory. MVA-
PICH/MVAPICH2: MPI-1/MPI-2 for InfiniBand
on VAPI/Gen2 Layer. http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/index.html, April 2006.

[16] OpenIB.org. http://www.openib.org/.

11



[17] S. Pakin and A. Pant. VMI 2.0: A dynamically reconfig-
urable messaging layer for availability, usability, and man-
agement.

[18] A. Vishnu, G. Santhanaraman, W. Huang, H. W.Jin, and
D. K. Panda. Supporting mpi-2 one sided communication on
multirail infiniband clusters: Design challenges and perfor-
mance evaluation. In IEEE/ACM International Conference
High Performance Computing, 2005.

12


