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Abstract. InfiniBand is becoming increasingly popular in the area of cluster
computing due to its open standard and high performance. I/O interfaces like
PCI-Express and GX+ are being introduced as next generation technologies to
drive InfiniBand with very high throughput. InfiniBand HCAs which support
these I/O interfaces are being introduced. HCAs with throughput of 8x on PCI-
Express have become available. Recently, support for HCAs with 12x throughput
on GX+ has been announced. In this paper, we design an MPI (Message Passing
Interface) on IBM 12x Dual-Port HCAs consisting of multiple send/recv engines
per port. We propose and study the impact of various communication scheduling
policies (binding, striping, round robin). Based on this study, we present a policy,
EPC (Enhanced point-to-point and collective), which takes into account the kind
of communication pattern; point-to-point blocking, non-blocking, and collective
communication for data transfer. We implement our design and evaluate it with
micro-benchmarks, collective communication and NAS parallel benchmarks. Our
performance results show that 12x HCAs can significantly improve MPI commu-
nication performance. Using EPC on a 12x InfiniBand cluster with one HCA
and one port, we can improve the performance by 41% for blocking communi-
cation with latency test and 63-65% for non-blocking communication, with the
unidirectional and bi-directional tests, when compared with the default single-rail
MPI implementation. We can achieve a peak unidirectional bandwidth of 2745
MB/s and bidirectional bandwidth of 5362 MB/s. Our evaluation on NAS Paral-
lel Benchmarks shows an improvement of 7-13% in execution time along with a
signification improvement in collective communication using Pallas benchmark
suite. To the best of our knowledge, this is the first such design and evaluation of
high performance MPI for IBM 12x InfiniBand HCA.

1 Introduction
InfiniBand Architecture [3] is an industry standard which offers low latency and high
bandwidth, as well as many advanced features such as Remote Direct Memory Access
(RDMA), multicast and QoS (Quality of Service). I/O interfaces like PCI-Express and
GX+ are being introduced as next generation technologies to drive InfiniBand with very
high throughput. InfiniBand HCAs which support these I/O interfaces are being intro-
duced. InfiniBand HCAs with throughput of 8x on PCI-Express have become available.
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Recently, support for HCAs with 12x link speed on GX+ has been announced. In this
paper, we focus on IBM 12x HCAs with GX+ interface. Each IBM 12x HCA port con-
sists of multiple send and receive DMA engines providing a aggregate link bandwidth
of 12x in each direction. This leads to the following challenges:

1. How to design efficient support at the MPI level for taking advantage of multiple
send and receive engines at the HCA?

2. What are the trade offs in such designs?
3. How much performance benefits can be achieved at the MPI level for point-to-

point, collective communication and applications with the proposed design?

In this paper, we take on these challenges. We propose a unified MPI design for taking
advantage of multiple send and receive engines on a port, multiple ports and HCAs.
We study the impact of various communication scheduling policies (binding, striping
and round robin) and discuss the limitations of these individual policies for different
communication patterns, in context of IBM 12x InfiniBand HCA. To overcome this
limitation, we present a policy, EPC (Enhanced point-to-point and collective), which
takes into account point-to-point blocking, non-blocking, collective communication for
data transfer. To enable this differentiation, we design a communication marker and
discuss the need to integrate it with the ADI layer to obtain optimal performance.

We implement our design and evaluate it with micro-benchmarks, collective com-
munication and NAS parallel benchmarks. Using EPC on a 12x InfiniBand cluster with
one HCA and one port, we can improve the performance by 41% for blocking commu-
nication with ping-pong latency test and 63-65% for non-blocking communication, with
the unidirectional and bi-directional throughput tests, when compared with the default
single-rail MPI implementation [5]. We can achieve a peak unidirectional bandwidth
of 2745 MB/s and bidirectional bandwidth of 5362 MB/s. We conclude that none of
the previously proposed policies alone provide optimal performance in these commu-
nication patterns. Using NAS Parallel Benchmarks, we see an improvement of 7-13%
in execution time along with a signification improvement in collective communication
using pallas benchmark suite. To the best of our knowledge, this is the first such design
and evaluation of high performance MPI for IBM 12x InfiniBand HCA.

The remaining part of the paper is organized as follows: In Section 2, we provide a
brief overview of InfiniBand, MPI and IBM 12x InfiniBand HCA Architecture. In Sec-
tion 3, we present the MPI design for IBM 12x architecture. Performance evaluations
and discussion are presented in Section 4. In section 5, we present the related work. We
present conclusions and discuss future directions in Section 6.

2 Background
In this section, we provide background information for our work. We provide a brief
introduction of InfiniBand and IBM 12x InfiniBand HCAs.

2.1 InfiniBand
The InfiniBand Architecture (IBA) [3] defines a switched network fabric for intercon-
necting processing nodes and I/O nodes. It provides a communication and management
infrastructure for inter-processor communication and I/O. In an InfiniBand network,
processing nodes and I/O nodes are connected to the fabric by Channel Adapters (CA).
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HCA sits on processing node. Communication operations are described in Work Queue
Requests (WQR), or descriptors, and submitted to the work queue. The completion
of WQRs is reported through Completion Queues (CQs). InfiniBand supports differ-
ent classes of transport services. In this paper, we focus on the Reliable Connection
(RC) service. InfiniBand Architecture supports both channel and memory semantics. In
channel semantics, send/receive operations are used for communication.

2.2 Overview of IBM 12x Dual-Port InfiniBand HCA

Each IBM 12x HCA comprises of two ports. The local I/O interconnect used is GX+,
which can run over different clock rates of 633 MHz-950 MHz. Each 12x HCA port
has multiple send and receive DMA engines. The aggregate link bandwidth of the
send DMA engines and receive DMA engines is 12x in each direction, respectively. To
schedule data on a DMA engine, the hardware send scheduler looks at the send queues
of queue pairs, which are not being serviced currently. Given equal priority, the queue
pairs are serviced in a round robin fashion. Hence, multiple queue pairs are needed to
extract maximum parallelism from the 12x InfiniBand HCA. In this paper, we focus on
the design to exploit maximum parallelism in this architecture, by using multiple queue
pairs and proposing optimal scheduling policies for different communication patterns.

3 MPI Design for IBM 12x InfiniBand Architecture

MPI Application

InfiniBand Layer

Input from other system components Notification

Communication

Scheduler

Scheduling

Policies

Completion

Filter

MPI Completion

Eager Rendezvous

MPI Completion
Notification
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Fig. 1. Overall MPI Design for IBM 12x
InfiniBand Architecture

In this section, we focus on designing
an MPI substrate for IBM 12x Infini-
Band Architecture. We begin with the
introduction of overall design, which is
followed by discussion on scheduling
policies. We also present communication
marker module, which resides in the ADI
layer and differentiates between commu-
nication patterns.

3.1 Overall Design

The overall design is shown in Figure 1.
Our previous design presented in [4, 8]
supports using multiple ports and multi-
ple HCAs. In our new design presented
here, we enhance it by adding support for
multiple QPs per port. In addition, in our
enhanced design, we present a communi-
cation marker schedule, which differenti-

ates between communication patterns, to obtain optimal performance for point-to-point
and collective communication. These enhancements are shown with dotted boxes in
Figure 1. In future, we plan to extend this design for other communication patterns like
stencil communication.
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3.2 Discussion of Scheduling Policies for different Communication Patterns
Point to Point Communication Point to point communication can be classified as
blocking and non-blocking type of communication. In blocking communication, only
one outstanding message is present. Round Robin policy uses the available QPs one-
by-one in a round robin fashion. Using round robin policy may lead to under-utilization
of the available send and receive DMA engines. Striping divides the messages amongst
available queue pairs providing a much better utilization of available DMA engines.
Similarly, for non-blocking communication, striping can provide benefits by exploit-
ing parallelism in send and receive DMA engines. However, a large percentage of MPI
applications perform mainly employ medium size messages for data transfer. In our
previous work [4, 8], our performance evaluation comprised of mostly for two queue
pairs, hence the impact of assembly-disassembly on the performance of medium size
messages is not clearly reflected. However, as the number of queue pairs increase, the
cost of assembly and disassembly due to striping may become significant. This cost is
mainly due to posting descriptors for each stripe, and acknowledgment overhead of the
reliable connection transport service of InfiniBand. It seems that reverse multiplexing or
round robin is the only solution to solve this problem. However, blocking communica-
tion allows only one outstanding message during the communication. Hence, we need
to employ different scheduling policies for blocking and non-blocking kind of commu-
nication.
Collective Communication Collective communication primitives based on point-to-
point typically employ MPI Sendrecv primitive for various steps in the algorithm. Each
of the MPI Sendrecv calls can further be dissected in one function call of MPI Isend
and MPI Irecv each. As described in the previous section, this is a non-blocking form
of communication, and round robin policy would be used. However, only one outstand-
ing non-blocking call is available for each send/receive engine , which may lead to
insufficient usage of available send DMA engines. Thus, we clearly need to differen-
tiate amongst the non-blocking calls received from point-to-point communication and
collective communication.

From the above discussion, we can conclude that a single scheduling policy is not
sufficient for data transfer with different patterns. Hence, we present a policy, EPC (En-
hanced point-to-point and collective), which falls back to optimal policies for respective
communication patterns. In essence, for non-blocking communication, it uses round
robin, for blocking communication, it uses striping. For collective communication, even
though we have non-blocking calls, it falls back to striping. The efficiency of this policy
is dependent upon the ADI layer to be able to differentiate between such communica-
tion patterns. Next, we present such a module, called communication marker module,
which resides in the ADI layer and takes advantage of ADI layer data structures and
parameters for differentiating amongst communication patterns.

3.3 Communication Marker
The communication marker module resides in the ADI layer of our design. The main
purpose of this module is to be able to differentiate amongst different communication
patterns invoked by the MPI Application. In essence, it differentiates between:

– Point-to-point
• Blocking
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• Non-blocking
– Collective

Since our design is based on MPICH, this differentiation at ADI layer is possible. In
particular for collective communication, a separate tag is used, which can be used to
differentiate an ADI function call from point-to-point communication. In addition, the
ADI layer decides the communication protocol eager/rendezvous depending upon the
message size. We have used a rendezvous threshold of 16KBytes in performance eval-
uation.
4 Performance Evaluation
In this section, we present performance evaluation of IBM 12x HCAs using MPI Bench-
marks. We have used MVAPICH [5], a high performance MPI implementation as the
framework for implementation of our new design. We compare the performance of our
enhanced design with MVAPICH-0.9.7 release version. The 1QP/port case refers to
single-rail version of MVAPICH. Since MVAPICH-0.9.7 multi-rail version also sup-
ports only 1 QP/port, the results obtained on our experimental testbed are similar for
MVAPICH-0.9.7, single-rail and multi-rail devices. The solution will be available in
an integrated manner in MVAPICH-0.9.8 We show the performance results for simple
micro-benchmarks, latency, bandwidth and bi-directional bandwidth followed by col-
lective communication. This is followed by performance evaluation on NAS Parallel
Benchmarks.
4.1 Experimental Testbed
Our experimental testbed consists of IBM Power5 InfiniBand cluster. The cluster is
connected using IBM 12x Dual-Port HCAs. Each node in the cluster comprises 16
processors, shared L2 and L3 caches along-with 32 GB DDR2 533MHz main memory.
Each node has multiple GX+ slots, which run at a speed of 950 MHz and CPU speed of
2.4 GHz. We have used 2.6.16 linux kernel and InfiniBand drivers from OpenIB-Gen2,
revision 6713.

4.2 Performance Evaluation with Micro-Benchmarks and Collective
Communication

In Figure 2, we present the results of pingpong latency, a form of blocking communica-
tion, for different configurations of our design. We can conclude that our design exhibits
insignificant overhead with increasing number of queue pairs. Figure 3 shows the re-
sults for large message latency and compares the performance of EPC with existing
policies. We notice that EPC performs equally well as even striping policy, proposed
in our previous work [4, 8]. Binding and round robin policy do not improve the latency
compared to 1 QP/port case, since only one outstanding message is possible in the la-
tency test. Figure 4 and 5 compare the performance of EPC with the round robin policy
with 1QP/port and 2QPs/port. Using round robin and EPC, we are able to almost dou-
ble the throughput for uni-directional bandwidth test. An improvement of 40% is also
noticed for bi-directional test. We notice that increasing number of queue pairs from
2-4 does not help bi-directional bandwidth test, since the bandwidth has been saturated.
Figures 6 and 7, show the performance of uni-directional and bi-directional bandwidth
tests for large messages. We compare the performance of EPC with the originally pro-
posed even striping [4, 8]. Using both policies we are able to achieve, 2745 MB/s and
5263 MB/s results respectively for the above tests in comparison to 1661 MB/s and



6

 0

 5

 10

 15

 20

 4  8  16  32  64  128  256  512 1024 2048

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

1 Port, 1 QP/port
1 Port, 2 QPs/port
1 Port, 4 QPs/port

Fig. 2. MPI Latency For Small Messages

 0

 200

 400

 600

 800

 1000

 1200

 1400

1M256K16K

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

1 Port, 1 QP/port
1 Port, 2 QPs/port, EPC
1 Port, 4 QPs/port, EPC

1 Port, 4 QPs/port, Binding
1 Port, 4 QPs/port, Even Striping
1 Port, 4 QPs/port, Round Robin
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3079 MB/s using single-rail implementation. However, even striping performs much
worse than EPC for medium size messages. This can be attributed to the fact that di-
viding the data into multiple chunks leads to inefficient use of send engines, as they
do not have enough data to pipeline, posting of descriptors for each send engine and
receipt of multiple acknowledgments. For very large messages, the data transfer time is
reasonably high, and as a result, the performance graphs converge.
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Figures 9 and 8 show the performance of MPI Bcast and MPI Alltoall using our en-
hanced design. We use 2x4 configuration for performance evaluation, where two nodes
and four processes per node are used for communication. For MPI Bcast, the perfor-
mance does not improve up to very large messages. However, for MPI Alltoall, even
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for medium range of messages, we can see an improvement, due to efficient utilization
of available send and receive DMA engines in comparison to single-rail implementa-
tion. Hence, differentiation at the ADI layer between non-blocking communication and
collective communication significantly helps the performance of collective operations.
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Fig. 10. Integer Sort, NAS Parallel Bench-
marks, Class A
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Fig. 11. Integer Sort, NAS Parallel Bench-
marks, Class B

4.3 Performance Evaluation with NAS Parallel Benchmarks

Figures 10 and 11 show the results for Integer Sort, Class A and Class B respectively.
We compare the performance for 2 (2x1), 4 (2x2) and 8 (2x4) processes respectively.
Using two processes on Class A and B, the execution time improves by 13% and 9%
respectively with 4 QPs/port. We use only EPC policy for comparison, since it per-
forms equal or better than previously proposed policies, as shown by results from
micro-benchmarks. For 4 processes, the execution time improves by 8% and 7% re-
spectively. Since we use shared-memory communication for processes on same node,
the percentage of network communication decreases with increasing number of pro-
cesses and the performance benefits follow a similar trend. Figures 12 and 13 show the
results for Fourier Transform, Class A and Class B, respectively. We see around 5%-7%
improvement with increasing number of processes.
5 Related Work
Studies on the performance of high performance interconnects including InfiniBand,
Myrinet, Quadrics, and 10 gigabit ethernet have been carried out in the literature [1, ?].
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We have also conducted performance evaluation of multirail configurations at the MPI
level for InfiniBand [4, 8]. In this paper, we focus on the interaction between InfiniBand
Architecture ,local I/O bus technologies and the number of send and receive engines
in an HCA. OpenMPI [2] is a high performance MPI implementation capable of sup-
porting InfiniBand, myrinet and TCP based devices. It allows striping across different
interconnects. VMI2 [7] is a messaging layer developed by researchers at NCSA. An
MPI implementation over VMI2, which runs over multiple interconnects like Infini-
Band, Myrinet and Ethernet. LA-MPI [6] is an MPI implementation developed at Los
Alamos National Labs. LA-MPI was designed with the ability to stripe message across
several network paths. However, none of the above works have focussed on designing
high performance MPI substrate over IBM 12x InfiniBand HCAs and exploiting the
capability of multiple send/recv engine architecture.
6 Conclusions and Future Work
In this paper we have designed an MPI for IBM 12x InfiniBand architecture compris-
ing of multiple send/recv DMA engines. We have studied the impact of various com-
munication scheduling policies (binding, striping, and round robin), and presented a
policy, EPC (Enhanced point-to-point and collective), which takes into account point-
to-point blocking, non-blocking, and collective communication for data transfer. We
have discussed the need to strongly integrate our design with the ADI layer to obtain
optimal performance. We have implemented our design and evaluated it with micro-
benchmarks, collective communication and NAS parallel benchmarks. Our performance
results show that 12x HCAs can significantly improve MPI communication perfor-
mance. Using EPC on a 12x InfiniBand cluster with one HCA and one port, we can
improve the performance by 41% for blocking communication with latency test and
63-65% for non-blocking communication, with the unidirectional and bi-directional
throughput tests, when compared with the default single-rail MPI implementation. We
can achieve a peak unidirectional bandwidth of 2745 MB/s and bidirectional band-
width of 5362 MB/s. We have concluded that none of the previously proposed policies
alone provide optimal performance in these communication patterns. Using NAS Par-
allel Benchmarks, we see an improvement of 7-13% in execution time along with a
signification improvement in collective communication using Pallas benchmark suite.
To the best of our knowledge, this is the first such design and evaluation of high per-
formance MPI for IBM 12x InfiniBand HCA. In future, we plan to study the impact
of these policies on other communication types like stencil communication, along with
scalability issues for large scale clusters for different MPI Applications.
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