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Abstract. High computational power of commodity PCs combined with the emergence
of low latency and high bandwidth interconnects has led to the trends in cluster com-
puting. InfiniBand architecture has been proposed as the next generation interconnect
for inter-process communication and I/O communication. Clusters with InfiniBand are
being deployed, as reflected in the TOP 500 Supercomputer rankings. However, increas-
ing scale of these clusters has reduced the MTBF (Mean Time Between Failures) of
components. Network component is one such component of clusters, where failures of
NICs, cables or switches breaks existing paths of communication. InfiniBand provides a
hardware mechanism, Automatic Path Migration (APM), which allows user transparent
detection and recovery from network faults, without application restart. In this paper, we
design modules alternate path specification module, path loading request module and
path migration module, which act as the workhorse for providing network fault tolerance
for user level applications. We interface these modules for simple micro-benchmarks at
the Verbs Layer, the user access layer for InfiniBand, and study the impact of different
state transitions associated with APM. In addition, we integrate these modules with MPI
layer, to provide network fault tolerance for MPI Applications. Our performance evalua-
tion at the MPI Layer shows that APM incurs negligible overhead in the absence of faults
in the system. In the presence of network faults, APM incurs negligble overhead for rea-
sonably long running applications. For Class B, FT and LU NAS Parallel Benchmarks
with 8 processes, the degradation is around 5-7% in the presence of network faults. To
the best of our knowledge, this is the first design of MPI with APM and its study at the
Application Level.

1 Introduction
Introduction of high speed RDMA-enabled interconnects like InfiniBand, Myrinet, Quadrics,
RDMA-enabled Ethernet has escalated the trends in cluster computing. InfiniBand in particu-
lar is being widely accepted as the next generation interconnect due to its open standard and
high performance. As a result, clusters based on InfiniBand are becoming popular, as shown
by the TOP 500 Supercomputer rankings. However, increasing scale of these clusters has re-
duced the MTBF (Mean Time Between Failures) of components. Network component is one
such component of clusters, where failures of NICs, cables or switches breaks the existing
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paths of communication. InfiniBand provides a hardware mechanism, Automatic Path Migra-
tion (APM), which allows user transparent recovery from network faults. However, the current
InfiniBand literature lack the understanding of APM mechanism intricacies, associated designs
and performance evaluation. In this paper, we take on these challenges. We design modules al-
ternate path specification module, path loading request module and path migration module,
which act as the workhorse for providing network fault tolerance for user level applications.
We interface these modules for simple micro-benchmarks at the Verbs Layer, the user access
layer for InfiniBand, and study the impact of different state transitions associated with APM.
We also integrate these modules at MPI layer to provide network fault tolerance for MPI ap-
plications. Our performance evaluation at the MPI Layer shows that APM incurs negligible
overhead in the absence of faults in the system. In the presence of network faults, APM incurs
negligible overhead for reasonably long running applications. For Class B, FT and LU NAS
Parallel Benchmarks with 8 processes, the degradation is around 5-7% in the presence of net-
work faults. To the best of our knowledge, this is the first design of MPI with APM and its
study at the application level.

The rest of the paper is organized as follows. In section 2, we provide background of our
work. In section 3, we present our APM modules; alternate path specification module, path
loading request module and path migration module, which constitute the core of the APM
based solution. We also present the integration of these modules for verbs level tests and MPI
Layer. In section 4, we present the performance evaluation at the verbs level tests followed
by performance evaluation for MPI applications. In section 5, we present the related work. In
section 6, we conclude and present our future directions.

2 Background

In this section, we provide background information for our work. First, we provide a brief
introduction of InfiniBand. This is followed by a detailed discussion of APM feature in Infini-
Band.

2.1 Overview of InfiniBand and QP Transition States

The InfiniBand Architecture (IBA) [2] defines a switched network fabric for interconnecting
processing nodes and I/O nodes. The InfiniBand communication stack consists of different
layers. The interface presented by Host Channel Adapter (HCA) (InfiniBand interconnect)
to consumers belongs to the transport layer. A Queue-Pair (QP) based model is used in this
interface. A Queue Pair in InfiniBand Architecture consists of two queues: a Send Queue and
a Receive Queue. Figure 1 shows the communication state transition sequence for a QP. At
the point of QP creation, its communication state is RESET. From this state it is brought to
the INIT state by modify qp call. During RESET-INIT transition, it is specified with the HCA
port to use in addition to the atomic flags. Once in the INIT state, the QP is specified with the
destination LID and the destination QP from which it will receive the messages. A modify qp
call brings it to READY-TO-RCV (RTR) state. Finally, QP is brought to READY-TO-SEND
(RTS) state by specifying associated parameters and making the modify qp call. At this point,
the QP is ready to send or receive data from its destination QP. Should any errors occur on the
QP, the QP goes to the ERROR state automatically. At this state, the QP is broken and cannot
communicate with its destination QP. In order to re-use this QP, it needs to be brought back to
the RESET state and the above-mentioned transition sequence needs to be followed.

Requests for sending and receiving data are done by posting the send and receive descriptor
respectively. Completion of the work requests is done by polling on the completion queue. The
receive CQE and send CQE correspond to the opcode for completion entries received from the
CQ for receive and send descriptors.
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2.2 Overview of Automatic Path Migration
APM is a feature provided by InfiniBand which enables recovery from network faults by us-
ing the alternate path specified by the user. Automatic path migration is available for Reliable
Connected (RC) and Unreliable Connected (UC) QP Service Type. In this paper, we have used
RC QP service type. For this feature, InfiniBand specifies Path Migration States associated
with a QP. It is to be noted that path migration state is different from the communication state
of a QP. A valid combination of communication and path migration states are possible. This is
shown further in Figure 2. During the creation of QP, the initial path migration state for a QP
is set to MIGRATED. At this point, the QP can be in RESET, INIT or RTS communication
state. Please note that once the transition sequence is complete, the QP’s path migration state
goes back to migration state. Hence, this state is valid for QPs, which have their communica-
tion state as RTS. APM defines a concept of alternate path, which is used as an escape route
should an error occurs on the primary path of communication. The alternate path is specified
by the user. This specification of the alternate path can be done at any point in communication
beginning INIT-RTR communication state of the QP. Once this has been specified, the HCA
can be requested to begin loading this path. This is done by specifying the QP’s path migration
state to be REARM. At this point, the request is initiated, however this request is non-blocking,
and the notification for loading the alternate path is done with asynchronous events. Once the
loading of the path is done, the path migration state of a QP is ARMED. During this state, the
alternate path can be switched over to function as a primary path. This can be done by HCA
automatically, should an error occur on the primary path of communication. This is shown with
dotted line in Figure 2. In addition, a user can manually request the alternate path to be used
as the primary path of communication. This is shown with solid line in Figure 2. This request
is also non-blocking and asynchronous event(s) are generated to notify the completion of the
request(s).
3 Network Fault Tolerance Modules
In this section, we present the modules which form the core in providing network fault toler-
ance for our design. There are three modules which work in conjunction namely Alternate Path
Specification, Path Loading Request Module and Path Migration Module. The alternate path
specification module is responsible for deciding the alternate path to be used in presence of
network fault. The path loading request module is responsible for requesting the alternate path
to be loaded in the path migration state machine. The path migration module is responsible for
transition of alternate path to the primary path of communication. We decoupled these modules
with each other, since each of the modules can be requested separately by MPI Library. We
begin with the design of alternate path specification module.
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3.1 Alternate Path Specification Module
This module is responsible for specifying an alternate path to a queue pair. There are various
parameters associated with specification of an alternate path. alt dlid specifies the destination
LID of the alternate path. alt port is used for specifying the alternate port. The destination
queue pair number remains the same for the alternate path specification, as per the IBA speci-
fication. In this paper, we have used dual-port InfiniBand HCAs for evaluation. The first port is
used for primary path of communication and the second port is specified in the alternate path
of the communication.

3.2 Path Loading Request Module
This module is responsible for initiating the loading of alternate path in a QP. It takes the list
of processe(s) for which the initiating needs to be done. This module can be invoked during
anytime of the program execution after the INIT communication state of the corresponding
QP. The completion of the request(s) is notified by asynchronous event(s), which we refer to as
the ARMED event(s) in this paper. In the performance evaluation section, the invoking of this
module simultaneously with alternate oath specification module is referred by migrated-armed
legend.

3.3 Path Migration Module
This module is invoked when a user wants to manually move the alternate path to be used
as a primary path of communication. This functionality is useful in the presence of conges-
tion/performance drop on the available bandwidth on the primary path. Alternatively, if an
error occurs during transmission, the HCA requests the alternate path to be loaded as the pri-
mary path of communication, without intervention from the user application. This module
assumes that the path loading request module has successfully loaded the alternate path, and
the alternate path is in a healthy state. The completion of this sequence is done with the help
of asynchronous events, which are referred as MIGRATED events in this paper. In the perfor-
mance evaluation section, the invoking of this module is referred by armed-migrated legend.

3.4 Interfacing with the Verbs and the MPI Layer

Alternate Path
Specification Module

Main Execution Thread (MPI/Verbs)

Path Loading
Request Module

Path Migration
Module

Asynchronous Thread

ARMED Event

MIGRATED Event

Update QP’s Path migration state data structure

Update QP’s Path migration state data structure

Fig. 3. Interaction of Network Fault Tolerance
Modules with Main Execution Thread and Asyn-
chronous Thread

In this section, we discuss the interfac-
ing of our network modules with the
Verbs and the MPI Layer. In order to han-
dle the MIGRATED and ARMED events,
we create an asynchronous thread. This
thread is in the sleep state, and wakes
up only on the occurrence of events gen-
erated by the HCA. The interaction of
the main execution thread and the asyn-
chronous thread is shown further in Fig-
ure 3. Since the path migration mod-
ule assumes that the alternate path has
been loaded, we maintain data structures
shared by the asynchronous thread and the
main execution thread. The asynchronous
thread updates these data structures on
the occurrence of ARMED events. Using
these data structures, the main thread of
execution can ascertain the path migration

status of its QPs. For MPI evaluation, we use MVAPICH [4], which supports multiple ports,
multiple HCAs and combinations. To understand the impact on large scale clusters, we create
multiple QPs between each pair process. Each of these QPs are used in a round robin fashion.
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4 Performance Evaluation
In this section, we evaluate the performance of our Network Fault Tolerant design modules
over InfiniBand. At the Verbs layer, we design a ping-pong latency test and a computation test.
We study the impact of different transition states in APM, when they are requested at different
points in the execution of the test. This is followed by the study at the MPI applications and
the impact of these states on execution time, in the absence and presence of faults. We begin
with a brief overview of our experimental testbed.
4.1 Experimental Testbed
Our Experimental Testbed consists of four IA32 nodes each having 133 MHz PCI-X slot.
Each node has two Intel Xeon CPUs running at 2.4 GHz processors, 512 KB L2 cache and
1 GB of main memory. This cluster uses II Generation MT23218 4X Dual Port HCAs from
Mellanox. The kernel version we used is Linux 2.6.9-15.EL. The IBGD version is 1.8.2 and
HCA firmware version is 3.3.2.
4.2 Evaluation of the Network Fault Tolerance Modules at the Verbs Layer
In this section, we evaluate the performance of the network fault tolerance modules at the verbs
layer. To study this performance, we design a ping-pong latency test. The test is built over the
concept of two processes: sender and receiver. The sender sends posts a send descriptor and
polls on the completion queue for receiving a receive and a send CQE each. The receiver polls
on completion queue for recv CQE. Once a recv CQE is obtained, the receiver sends a reply
back to the sender. This step is reported for a large number of iterations. The sender reports the
latency as the half of the total time for above operation. To understand the impact on a large
scale cluster, we create multiple QP connections between these processes. These QPs are used
in a round-robin fashion for communication. The legend corresponding to original is the case
when none of the network fault tolerance modules are invoked at all.
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In Figure 4 and Figure 5, we present the time consumed in INIT-RTS stage, when alter-
nate path specification module and Path loading request module are invoked during RTR-RTS
phase. We notice that the total time taken by each of the lines is linear with increasing number
of queue pairs. An increased time in execution by around 15% is noticed. For all the remaining
tests, we assume that port 1 is the primary path of communication and port 2 is the alternate
path of communication for all QPs.

In Figure 6 and Figure 7, we present the time consumed in Migrated-Armed and Armed-
Migrated stages with increasing number of QP connections between the processes. To calculate
the timings for Migrated-Armed transition, the alternate path specification module is invoked
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during INIT-RTR phase and time is calculated till ARMED events for all QPs are received by
the asynchronous thread. For calculating the Armed-Migrated transition timings, path migra-
tion module is invoked for all QPs. Once the asynchronous thread receives MIGRATED event
for all QPs, shared data structure between main thread and asynchronous thread is updated
along-with the time-stamp of updation. A linear trend is observed with the increasing number
of QPs in these transitions as shown by the figures. For small number of QPs, armed-migrated
transition takes around 30% more time than migrated-armed transition. For larger number of
QPs, the time reduces to around 16%. However, since these requests are asynchronous in na-
ture, it remains to be seen, how these transitions impact the ongoing communication.
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Figure 8 compares the performance of the original case with different transition sequences.
To see the impact on latency, we initiate the transition sequence for the QP which is used
in current iteration. Since QPs are used in a round robin fashion, this step is performed till
request has been done for all QPs. We measure the latency till all events for the corresponding
transition sequence have been generated. The graph shows the average latency observed for
those iterations. The results show that both Migrated-Armed and Armed-Migrated requests
add significant overhead to ongoing communication. We now show the results for acid test,
the impact of performance on latency, when network fault occurs. After the alternate path is
loaded, we disable the primary path of communication by manually plugging out the cable
corresponding to primary path of communication. The HCA automatically moves the alternate
path of the current QP to be used as a primary path of communication. Since QPs are used in a
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round robin fashion, the HCA does it for every QP. We measure the average latency observed
till all MIGRATED events for all QPs has been generated. This test helps us understand that
for large scale clusters, the impact on latency for small message, each process pair using one
QP for communication. Figure 9 shows the impact on latency for small messages, when 512
QPs are used for communication. We notice that the amount of overhead remains almost same
with increasing message size. Hence, the overhead paid per QP remains same independent of
the message size.

Figures 10 and 11 show the impact on computation for different APM transition sequences.
Since the ARMED and MIGRATED events are handled by asynchronous thread, we run
both the processes on the same node. The test initiates APM transition request (migrate-
armed/armed-migrated) for all QPs and performs computation. We have chosen a minimum
computation loop, such that all interrupts are generated before the computation loop finishes.
We subtract the time spent in requesting the transition and report the performance. We notice
that with increasing number of QPs, the amount of computation time increases significantly.
However, with the increasing computation loop, the overhead incurred remains same for the
same number of QPs. For 2048 QPs, the overhead incurred is almost 60 ms.
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Fig. 10. Impact on Computation, Migrated-Armed
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4.3 Evaluation of the Network Fault Tolerance Modules at the MPI Layer
In this section, we present the performance for NAS parallel benchmarks, when APM sequence
transitions are requested. We also study the impact when network fault occurs in the system.
We use a 4x2 configuration (4 nodes and 2 processes per node). Before taking these results,
we profiled applications to make sure that network fault tolerance modules are invoked during
the critical execution of the application. We break the primary communication path by un-
plugging the cable at different points in the application execution for sixteen runs and present
the average performance we have observed. At this point, we do not have a very systematic
methodology for network fault injection. In future, we plan to design software based error
injection mechanism.

Figure 12 and Figure 13 show the results with different transition states in the absence of
faults, and compare its performance to the case when faults occur for IS, Class A and Class B
respectively. Without the occurence of the fault, there is some increase in timing for IS Class
A. However, the execution time of IS Class B is higher than of Class A, and as a result, the
impact is unnoticeable for IS Class B benchmark. In the presence of network faults, with the
increasing number of QPs and , the execution time increases sharply, since more time is spent
in moving the alternate path to primary path. This step needs to be done with all QPs, since
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they are used in a round robin fashion for communication. Clearly, for application running for
fraction of a minute, APM does not provide any benefit.
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Fig. 12. Performance Evaluation on IS, Class A, 4x2
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Fig. 13. Performance Evaluation on IS, Class B, 4x2
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Figure 14 and Figure 15 show the results for NAS FT Class B and LU Class B respectively.
Since the overhead paid per QP almost remains same, when a network fault occurs, we notice
that the percentage of performance degradation is much lesser in these cases. We notice that
even with increasing the number of QPs/process to 64, we only notice around 5-6% degradation
in performance. For LU class B in particular, the execution time is around 256 seconds, and
hence the overhead of state transitions is amortized with the long running application. Hence
for applications running for reasonably long time, APM incurs almost negligible overhead in
the overall execution time.
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5 Related Work
A couple of researchers have focused on designing MPI for providing network fault tolerance.
In our previous work [3, 7], we have focused on combining multiple IBA HCAs. However, the
design does not support network fault tolerance. LA-MPI [5] is an MPI implementation devel-
oped at Los Alamos National Labs. LA-MPI was designed with the ability to stripe message
across several network paths. OpenMPI [1], also provides striping across multiple intercon-
nects. It is capable of striping messages across a combination of interconnects, IBA, Myrinet
and Ethernet. It also supports network failover. Pakin et. al. has also proposed VMI [6], which
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provides support for multiple interconnects and failover. However, above works are software
based solutions and none of the above works have focused on providing network fault tolerance
at MPI layer using InfiniBand’s APM hardware mechanism.

6 Conclusions and Future Work
Increasing scale of clusters has reduced the MTBF (Mean Time Between Failures) of asso-
ciated components. Network component is one such component of clusters, where failures
of NICs, cables and switches breaks existing paths of communication. InfiniBand provides a
hardware mechanism, Automatic Path Migration (APM), which allows user transparent recov-
ery from network faults. However, the current InfiniBand literature lacks the understanding
of APM mechanism intricacies, associated designs and performance evaluation. In this paper,
we have designed modules alternate path specification module, path loading request module
and path migration module, which act as the workhorse for providing network fault tolerance
with APM for user level applications. We have interfaced these modules for simple micro-
benchmarks at the Verbs Layer, the user access layer for InfiniBand, and studied the impact of
different state transitions associated with APM. We integrate these modules with the MPI layer
to provide network fault tolerance for MPI Applications. We have also discussed the need of
interfacing alternate path specification module with the subnet manager, to provide the path
with least errors. Our performance evaluation has shown that APM incurs negligible overhead
in the absence of faults in the system. For MPI applications executing for reasonably long time,
APM causes negligible overhead in the presence of network faults. For Class B, FT and LU
NAS Parallel Benchmarks with 8 processes, the degradation is around 5-7% in the presence of
network faults.

In future, we plan to study the impact of our design for large scale clusters at the application
level. We plan to design software based error injection mechanism and study the impact. One
of the limitations of APM is the requirement of the alternate path to be in healthy state. We
plan to design solutions which overcome this limitation. We also plan to use traces for fault
generation and compare the performance of hardware and software based solutions.
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