
1Incremental Maintenance of Online Summaries

Over Multiple Streams

Fatih Altiparmak1, Ertem Tuncel2, Hakan Ferhatosmanoglu1

1Department of Computer Science and Engineering, The Ohio State University

2Department of Electrical Engineering, University of California, Riverside

emails : ertem@ee.ucr.edu,{altiparm, hakan}@cse.ohio-state.edu

Abstract

We propose a novel approach based on predictive quantization (PQ) for online summarization

of multiple time-varying data streams. A synopsis over a sliding window of most recent entries is

computed in one pass and dynamically updated in constant time. The correlation between consecutive

data elements is effectively taken into account without the need for preprocessing. We extend PQ to

multiple streams and propose structures for real-time summarization and querying of a massive number

of streams. Queries on any subsequence of a sliding window over multiple streams are processed in real-

time. We examine each component of the proposed approach, prediction and quantization, separately and

investigate the space-accuracy tradeoff for synopsis generation. Complementing the theoretical optimality

of PQ-based approaches, we show that the proposed technique, even for very short prediction windows,

significantly outperforms the current techniques for a wide variety of query types on both synthetic and

real data sets.



I. I NTRODUCTION

Although many solutions have been proposed in the literature for maintaining dynamic data-

bases, such as efficient insertion of new data objects, efficient update of data with evolving se-

quences has attracted attention only very recently [31]. The elements of data objects change over

time in many cases such as in a multiple data stream application where a new element of each data

sequence, is periodically inserted to the database. For example, in stock market analysis, a data-

base is usually formed by incrementally storing multiple data streams of stock prices. The current

stock value for each company is periodically inserted to the corresponding company’s stock

profile for real-time analysis of stock price movements. There are about 50,000 securities trading

in the United States, and every second up to 100,000 quotes and trades (ticks) are generated [31].

The users are often concerned with finding correlations and trends on a specific stock or a set of

stocks.

n-N+1 n-1 n

S
tr

ea
m

s

X1

X2

XM

n+1n-N+2

Data Elements

Timen
Timen+1

Fig. 1. Data under the Sliding Windows at Timen

and Timen+1

The data streams are usually sized by a window on the

most recent data, e.g., the last 30 days, or the last 24

hours, etc. This is called the sliding window model. In

this model, data elements arrive in a stream and only

the lastN (window size) elements to have arrived are

considered relevant at any moment. For multiple (M )

streams, the model is summarized in Figure 1. At each

time instant, a new data element arrives and the oldest entry in the window is forgotten for each

stream. In order to be able to respond to the volatility of the stock market, the user requests

need to be analyzed continuously whenever new stock prices arrive. Besides the stock market

applications, several other applications, such as telecommunications data management, intrusion

2



detection, and sensor networks, involve periodically querying a database of multiple streams.

Online and ad-hoc queries are continuously executed to discover useful patterns over data.

Immediate responses are desirable since these applications are usually time-critical and important

decisions need to be made upon the query results. To address these issues and several others,

the concept ofdata stream management systems(DSMS) has recently attracted the attention of

the database community [4], [7], [9], [14], [15], [19], [20], [27], [28], [29].

A fundamental challenge in data stream management is to develop an online technique to

summarize multiple data streams. A general-purpose summary can be utilized by a large number

of data mining and management tasks over multiple streams, such as clustering, classification,

change detection, statistical monitoring, selectivity estimation, query optimization, and query

processing. While reducing the size of the data, the resulting summaries are typically designed

to have certain qualities needed for the applications, such as preserving the original pairwise

distances as much as possible [1], [18].

Most of the stream data of practical importance, such as stock values, telecommunications

records, and sensor data, possess a high amount of correlation between nearby sample values.

Consecutive elements of a stream are highly correlated to each other. Therefore, there is an

inherent redundancy in the representation of the data, and efficient data summarization techniques

rely on removal of this redundancy to reduce the size of the summary. Recently, several signal

transformation techniques have been proposed to reduce redundancy in data streams [6], [12],

[24], [25], [31].

These techniques, as their traditional analogs, store the most significanttransform coeffi-

cients of the time series signal, and discard the rest of the coefficients, after applying one

of Principal Component Analysis (PCA), Discrete Fourier Transform (DFT), Discrete Cosine

3



Transform (DCT), or Discrete Wavelet Transform (DWT). For example, Statstream [31] is a

stream monitoring system that utilizes a DFT-based summary. The DFT of the stream data is

computed and a summary is continuously generated by taking the top coefficients. Similarly,

Surfing-Wavelets [12], Awsom [24] and Stardust [6] utilize wavelets for data summarization.

Spirit [25] employs the firstK principal components of the PCA for monitoring multiple streams.

The principal components are updated at each time instant inO(KM) time, whereK is the

number of corresponding principal components of that time instant andM is the number of

streams.

As a powerful alternative to signal transforms, one can consider the scalar quantization

approaches that have been successful in traditional high dimensional databases [5], [26], [30]. In

the VA-file method [30], the data is summarized by quantizing each dimension independently,

and mapping each data point into the bit approximation of the cell that contains it. This approach

is especially attractive for data stream summarization, because each newly arrived element can be

quantized without affecting the previously quantized dimensions, i.e. time instants both in sliding

window and semi-infinite window cases. This results in fast and one-pass updates. However,

the performance of such an approach heavily suffers from the fact that correlation between

the data dimensions are completely ignored. Removal of the redundancy via signal transforms

followed by quantization is more effective than purely quantization-based or purely transform-

based approaches [11]. Following such an intuition, VA+-file [10] has been proposed for highly

correlated data (such as time series). In this approach, first, the dimensions of the data are

decorrelated via the application of a transform, then the available bits specified by the size of

the synopsis are allocated non-uniformly among the dimensions. Finally, a scalar quantizer is

designed for each transformed dimension independently. Unfortunately, although shown to be

4



effective for static databases, applying such preprocessing is infeasible for the case of streaming

data because of real-time requirements.

All these observations call for an algorithm for summarizing multiple data streams that would

enjoy the best of both worlds, i.e., that would be as effective as transform domain processing

in removing the inter-dimensional redundancy and as fast as scalar quantization for online

computation of the summary. In this paper, we propose such an algorithm based on a differential

representation and predictive quantization of the data. Prediction has been applied in signal

processing and multimedia applications for transmission of asingle data stream of data, such

as video or speech signal. A prediction model is used over a long period so that the cost of

storing the coefficient of this setting is amortized. In our approach, which we call PQ-Stream,

the correlation between the data elements is exploited through the prediction of the incoming

elements ofmultiple streams in terms of the latest few elements. In this prediction, the error is

efficiently quantized at each instant independently by utilizing a different setting for that instant.

We find the optimum parameters for the setting immediately over multiple streams and with the

prediction error we also save the parameters of the setting for each instant to reconstruct the

previous data points.

Our contributions in this paper are as follows:

• We adopt predictive quantization which is theoretically shown to achieve the performance

of any transform-based data summarization technique in terms of representation quality

for a single signal. Although very powerful, to the best of our knowledge, predictive

summarization has not been utilized before for data stream summarization.

• We extend PQ tomultiplestreams and propose techniques to summarize and query massive

amounts of streams in real time.

5



• The summary over a sliding window of most recent entries is computed in a one-pass

fashion. The correlation between consecutive data elements are effectively taken into account

without the need of any preprocessing.

• The running time of our synopsis update algorithm isindependentof the size of the sliding

window, N .

• The synopsis saved for each stream givesflexibility to run queries onany subsequenceof

the latestN data elements, whereN is the size of the sliding window.

• Supporting the theoretical effectiveness of PQ-Stream, our experiments, performed on both

real and synthetic data sets, demonstrate its superiority over the current techniques, in terms

of both quality of data representation query results.

The rest of the paper is organized as follows. Section II gives the technical motivation of

the proposed approach. Section III outlines the PQ-Stream scheme, by describing the generation

and update of the synopsis, as well as query processing over the synopsis. Section IV presents

an extensive performance evaluation of PQ-Stream including comparisons with the current

techniques using various queries. Section V discusses the current synopsis generation techniques.

Finally, Section VI concludes the paper.

II. T ECHNICAL BACKGROUND AND MOTIVATION

In this section, we provide a background on transform coding and quantization, and present

the technical motivation and basis of the proposed approach. The notation and symbols used

throughout the paper are described in Table 1.

A. Transform Coding

The most common approach for summarization of high dimensional data has been to apply

transformation techniques such as DFT, DCT, and DWT and utilizing the most significant

6



Symbol Meaning
xi[j] jth data point of theith stream
N Size of the sliding window
M Total number of streams
K Size of the prediction window

pk[n] kth prediction coefficient of time-instantn
x̃i[j] Estimation using previous K elements
x̂i[j] Reconstructed data
ei[j] Prediction Error
êi[j] Quantized Prediction Error
Qn Quantizer for time-instantn
fn Encoder for time-instantn
gn Decoder for time-instantn

TABLE I

NOTATION AND SYMBOLS

dimensions of the transformed data. Recent stream summarization techniques also adapted a

similar approach and used DFT [31] and DWT [6], [12], [24] to summarize the data for indexing,

query processing, and mining of data streams. The optimal approach, in the sense of minimizing

the quality degradation, is to transform the data using the Karhunen-Loeve Transform (KLT) [11,

Section 8.6], which also appears in the literature as Principal Component Analysis (PCA) and

Singular Value Decomposition (SVD). Because of being dependent on the whole data set and

its high computational cost, KLT has not been popularly used to summarize large and highly

dynamic databases.

Orthogonal to the transform based approach, scalar quantization has also been proposed for

high dimensional data summarization. The most prominent example of this approach, where the

dimensions are independently quantized, is the VA-file method [30]. Scalar quantization is a

natural choice also for data streams, since each newly arrived data element can be quantized

without affecting the previously quantized data. However, it fails to exploit the high correlation

between data dimensions, which is crucial in data stream summarization.

It is well-established that the optimal data summarization scheme is the combination of the

7



−60 −40 −20 0 20 40 60 80 100
−100

−50

0

50

100

150

(a) Plain quantization

−60 −40 −20 0 20 40 60 80 100
−100

−50

0

50

100

150

(b) Quantization of KLT coefficients

−60 −40 −20 0 20 40 60 80 100
−100

−50

0

50

100

150

(c) Predictive quantization

Fig. 2. Comparison of the resultant quantization cells.

transformation and quantization approaches (which is referred to astransform codingin the data

compression literature), i.e., distributing a total quota of bits over transform coefficients (see [11,

Section 8.3]), as opposed to simply taking the most significant coefficients with full precision

(quantization with 32 bits/coefficient), and discarding the rest of the coefficients (quantization

with 0 bits/coefficient). This two step process is successfully applied to static databases [10],

where long processing of data may be amortized with gains in query processing. However, it is

not of immediate use as an online technique, because such preprocessing is infeasible for the

case of streaming data.

B. Predictive Quantization

Prediction has been employed in applications such as multimedia and speech coding, where

the data can be represented tailored to the underlying signal. To the best of our knowledge,

prediction [21] and quantization [22] have been applied to data streams and databases separately,

however, predictive quantization has not been used before. A prediction functionf estimates the

value of the samplex[n], for time instantn, using previous samples, i.e.,

x̃[n] = f(x[n− 1], x[n− 2], . . . , x[n−N + 1]).

It is only the prediction errore[n] = x[n] − x̃[n], which usually has much narrower dynamic

range compared tox[n], that is to be efficiently represented. Samples of the prediction error

8



can be theoretically shown to be uncorrelated with the right choice of the prediction function

f(·), which indicates the success of the PQ approach in terms of removing the redundancy

between data elements. The simplest type of prediction, which is performed by taking a linear

combination of previousK ¿ N samples, i.e.,

x̃[n] =
K−1∑

k=1

pkx[n− k]

is calledlinear prediction. We adopt in this paper this kind of prediction because of its tractability

and ease of use.

An important question is how PQ compares in quality with a purely transform domain

processing method, a purely scalar quantization based method, and finally the transform coding

method, which performs scalar quantization over transform coefficients. As we will discuss next,

PQ achieves as high a performance as transform coding in terms of reconstruction quality. Since

transform coding is the optimal approach, this in turn implies the superiority of PQ over purely

transform domain processing and purely scalar quantization based methods. We will experimen-

tally demonstrate the validity of this claim, even when PQ is applied over multiple streams. A

major advantage of using PQ instead of transforms is that in sliding window applications, where

only a synopsis of the most recent data is stored in main memory, it is very difficult to update

the synopsis if it is based on keeping the transform coefficients. On the other hand, in a scheme

based on predictive quantization, the whole synopsis can be updated in constant time (in terms

of the sliding window length,N ) both in semi-infinite and sliding window cases, as will be

shown later.

Before going into technical details of the optimality of PQ-based methods, however, let us

provide some intuition on a real-world example. Figure 2 exhibits a practical comparison of scalar

quantization, transform coding, and PQ. The collection of points in the 2-D plane represents two

9



consecutive samplesx[n − 1] andx[n] taken from thousands of different streams. Independent

quantization ofx[n − 1] and x[n], as shown in Figure 2(a) results in a poor utilization of all

the available 64 quantization cells, which can be represented by 6 bits. In transform coding,

the points are first transformed, i.e., rotated, and then each transform coefficient is quantized

separately. In the PQ scheme, on the other hand, firstx[n− 1] is quantized independently, and

then itsreconstructed, or decompressedversionx̂[n− 1] is used for the estimation ofx[n]:

x̃[n] = p1x̂[n− 1] .

The prediction errore[n] = x[n]− x̃[n] is then quantized. In Figure 2(b) and (c), the equivalent

number of quantization cells are depicted on the original signal domain. In Figure 2(b), 4 bits

are used to quantize one of the resulting dimensions after the transformation and the remaining

2 bits are used for the other one. Where as in Figure 2(c), 4 bits are used to quantizex[n− 1]

and the remaining 2 are used for the error. It can be observed that both methods are superior to

plain quantization, and comparably efficient in covering the signal points using 64 cells.

C. Theoretical Optimality of PQ

For a data sequence of lengthN , the coding gainof a transform is defined as

Gtc =
Ddirect

Dtc

whereDdirect is the resultant mean square error (MSE) of the scheme where signal samples are

quantized without any transformation, andDtc is the resultant MSE of the particular transforma-

tion followed by bit allocation and quantization. In the idealized case where the signal samples

are jointly Gaussian, the coding gain of KLT is given by

GKLT =

(∏N
n=1 σ2

n

)1/N

(∏N
n=1 λ2

n

)1/N

10



whereσ2
n andλ2

n are the variances of original signal samples and of KLT coefficients, respectively.

For stationaryprocesses, where the statistics do not change with time,σ2
n becomes a constant,

and therefore,
GKLT =

σ2
n(∏N

n=1 λ2
n

)1/N
. (1)

The coding gain of prediction is defined similar to that of transform coding:

Gp =
Ddirect

Dp

whereDp is the resultant MSE after prediction and quantization. For stationary processes, it can

be shown [11] that
Gp =

σ2
n

µ2
n

(2)

whereµ2
n is the variance of the prediction errore[n]. Therefore, it is the quality of the prediction,

in the sense of minimizing the variance of the prediction error, that determines the resultant

coding gain.

The premise of our approach is the following theorem (Theorem 4.9.3 in [11]).

Theorem 1:For a stationary Gaussian process, as the prediction window length,K, and the

sliding window length,N , become very large,

µ2
n −→

(
N∏

n=1

λ2
n

)1/N

This asymptotic result, together with (1) and (2), suggests that the performance of predictive

quantization with a large window approaches that of the optimal transform coding. In practice,

the quality of prediction quickly converges to its maximum asK increases, hence a much smaller

prediction window of lengthK ¿ N is observed to be as effective as infiniteK. The prediction is

typically applied over a single signal and through the estimation of the time-statistics of the data.

Compression can be achieved by using the same set of prediction coefficients{pk} over a long

enough period so that the cost of storing those coefficients in addition to the quantized prediction

error is amortized. In the current problem, however, we have multiple streams{x1[n], . . . , xM [n]},

11



which can statistically exhibit a highly non-stationary behavior. Hence, we adopt a different

approach and estimate new prediction coefficients for each time instantn = N , but use the

same coefficients to predict thewholeset of incoming data elements{x1[N ], . . . , xM [N ]} each

in terms of the corresponding few previous data elements, i.e.,

x̃m[n] =
K−1∑

k=1

pk[n]xm[n− k] .

Hence, we amortize the additional cost of storing{pk} over a large number of streams, instead

of over long time periods. Even though Theorem 1 no longer holds for non-stationary and non-

Gaussian streams, the theoretical competitiveness of PQ carries over to practice, as we show

experimentally, thanks to the feasibility of updating the prediction coefficients at every instant.

III. PQ-STREAM TECHNIQUE

In this section we describe the proposed PQ-Stream technique in detail. We first present our

algorithm for online generation of a PQ-based synopsis over multiple streams. We define the

elements of the synopsis kept for each instant and present a technique to compute each of them.

We then introduce our algorithm to update the synopsis in O(K2M ) time, i.e., O(K2) amortized

time per data element, as the data points arrive. Finally, we describe how the dynamically

maintained synopsis is utilized by query processing algorithms. We discuss how to reconstruct

actual data from the synopsis and process a variety of query types over the synopsis.

A. Generation of Synopsis over Multiple Streams

Let xm[n] for 1 ≤ m ≤ M and0 ≤ n ≤ N−1 denote the value of themth data stream at time

instantn. Here,n = N−1 refers to the most recent sample, andn = 0 is the oldest sample which

is to be forgotten when a new sample arrives. Using our summarization technique which will be

described below, estimates ofxm[n− 1], . . . , xm[n−K], denoted bŷxm[n− 1], . . . , x̂m[n−K],

12



are to bereconstructedusing the synopsis of the data, and used for prediction ofxm[n]. We

adopt the linear prediction scheme

x̃m[n] =
K∑

k=1

pk[n]x̂m[n− k] (3)

for all m, where pk[n] are called theprediction coefficients. Note that the coefficients are

themselves functions of timen. However, the additional cost of storingpk[n] will be negligible

compared to storing the synopsis of allM streams.

The prediction coefficients are computed in a least squares manner, i.e., so as to minimize the

energy M∑

m=1

em[n]2 ,

where
em[n] = xm[n]− x̃m[n] (4)

is theprediction error. Minimization of this energy will result in a more efficient summarization,

simply because the summary is comprised ofquantizedversions ofem[n]. The energy minimizing

coefficients can be computed in a standard manner (e.g., see [11, Section 4.3]), i.e., as the solution

of the so-called Yule-Walker equations

A[n]




p1[n]

p2[n]

...

pK [n]




= c[n] , (5)

where

Aij[n] =
M∑

m=1

x̂m[n− i]x̂m[n− j]

and
ci[n] =

M∑

m=1

xm[n]x̂m[n− i] .

The prediction errorem[n] is the input to thequantizer function Qn, which is specifically

designed for the distribution ofem[n] along m. That is,Qn is designed in real time so as to

13



minimize M∑

m=1

(em[n]− êm[n])2 (6)

where êm[n] is the quantized version ofem[n]. Although intuitively sane, this objective must

still be justified. The justification is that the reconstructed data, which we denote byx̂m[n], will

be computed usinĝem[n] as
x̂m[n] = x̃m[n] + êm[n] (7)

and therefore using (4), we obtain

em[n]− êm[n] = (xm[n]− x̃m[n])− (x̂m[n]− x̃m[n])

= xm[n]− x̂m[n] .

This, in turn, implies that the optimal quantizer minimizing (6) also minimizes
M∑

m=1

(xm[n]− x̂m[n])2

for fixed prediction coefficientspk[n].

We use the Lloyd algorithm [23] for the design ofQn. This powerful technique is an iterative

process which quickly converges at least to a local minimum. In order to ensure that it is not

trapped in a poor local minimum, however, one must initialize it carefully. We adopt a splitting

approach which starts with a 0-bit quantizer and gradually increases the number of bits used in

the quantization. The advantage of the splitting approach is that it does not suffer from poor

initialization, as the optimal 0-bit quantizer simply maps the whole real line to themeanof the

distribution ofem[n] alongm.

We also need to discuss here the structure of the quantizerQn to emphasize its ability to

reducethe amount of data to be stored in the synopsis. The quantizerQn can be decomposed

into anencoderfn and adecodergn, i.e.,

Qn(e) = gn(fn(e)) ,

14



Q
N

error
prediction

reconstructed

Q
0

−1

AUXILIARY

forget

^
mx   [−K] mx̂   [−1].....

Σ

prediction
error

x  [N]m

Σ

mx  [N]
~

predict

+

+

reconstructed

predict

+

+
~
mx   [0]

−

+

MAIN SYNOPSIS

Σ

^
mx   [N−1]mx̂   [N−K] .....

forget

AUXILIARY

reconstructed

Fig. 3. Block diagram of the synopsis update algorithm.

where the output offn is thebit descriptionof the prediction errore. Let

bm[n] = fn(em[n])

and
êm[n] = gn(bm[n]) = Qn(em[n]) .

Note that at any time instantn, the same quantization functionsfn and gn are used for allM

streams, and therefore they require only negligible extra storage. The bit descriptionsbm[n] for

1 ≤ m ≤ M and0 ≤ n ≤ N − 1 constitute the main summary of the data.

The reconstruction of the data from the synopsis is performed as in (7) usingêm[n] =

gn(bm[n]). This process can be more explicitly stated as

x̂m[n] =
K∑

k=1

pk[n]x̂m[n− k] + gn(bm[n]) . (8)

Observe the recursive nature of (8), i.e., we needK previously reconstructed values of the data in

order to computêxm[n]. This implies that the reconstructed values of the data atK time instants

outside the sliding window,̂xm[−1], . . . , x̂m[−K], have to be stored as an auxiliary synopsis.

As will be described in the next subsection, in order to update the synopsis efficiently at time

n = N , we also need to storêxm[N − 1], . . . , x̂m[N −K] directly, even though those values can

be computed from the rest of the synopsis via (8).

15



B. Constant-time Updating the Synopsis

Given the dynamic nature of data streams, having negligible update times is crucial for the

summary to be useful for further analysis. This section outlines the update algorithm of PQ-

stream which is constant in computational cost, and simple to implement. The block diagram

of the update algorithm is shown in Figure 3. Below is a step-by-step verbal explanation of the

actions taken by our algorithm:

1) Since the sliding window will be shifted one unit towards the future, the auxiliary synopsis

x̂m[−1], . . . , x̂m[−K] needs to be updated as well. This is achieved by forgettingx̂m[−K],

shifting x̂m[−1], . . . , x̂m[−K + 1] towards the back of the auxiliary synopsis window, and

replacingx̂m[−1] with x̂m[0], which is to be computed using

x̂m[0] =
K∑

k=1

pk[0]x̂m[−k] + g0(bm[0]) .

2) All stored parameterspk[n], fn, gn, andbm[n] for 1 ≤ n ≤ N −1 are shifted once towards

the past, thus forgetting old values ofpk[0], f0, g0, andbm[0].

3) Similarly, the auxiliary sequenceŝxm[N − 1], . . . , x̂m[N −K + 1] are shifted towards the

past. The old values of̂xm[N −K] are thus forgotten, and a new value forx̂m[N − 1] is

to be computed in the following steps.

4) New coefficientspk[N − 1] are to be computed for efficient prediction of newcoming

samplesym. This is accomplished solving (5) withn = N−1 andym replacingxm[N−1],

i.e.,



p1[N − 1]

p2[N − 1]

...

pK [N − 1]




= A[N − 1]−1




d1

d2

...

dK




,

16



where
dk =

M∑

m=1

ymx̂m[N − 1− k] .

In fact, we do not need to invertA[N ]. Since it is symmetric and approximately Toeplitz

for largeM , one can use the O(K2) time Levinson-Durbin [11] recursion to solve (5).

5) The prediction errorem[N − 1] is computed using (3) and (4), again replacingxm[N − 1]

with ym.

6) A new quantizerQN−1 is designed usingem[N − 1] as training data and the values of

fN−1, gN−1, andbm[N − 1] are computed accordingly.

7) The reconstructed valuêxm[N − 1] is computed using (8).

Notice that the total time complexity of these steps isindependentof N , the sliding window

length. The “shifting” of the synopsis{pk[n], fn, gn, bm[n]} can be implemented using pointers

without physically shifting these parameters.

As described above, the update of the synopsis in the PQ-Stream technique is done in constant

time in terms of the sliding window lengthN . Furthermore, it does not require the actual value

of xm[0], the oldest sample in the window, for the updating procedure. In contrast, in order to

update the stored coefficients with full precision in the DFT-based method, one needs to know

xm[0], which must be forgotten after being processed in a truly one-pass algorithm. The solution

proposed in [31] was to use “basic windows,” which are obtained by further dividing the sliding

window into windows of lengthb, and to store digests of these windows facilitating the update

of the first few DFT coefficients of the whole sliding window. However, to amortize the storage

cost, one must choose large enoughb, which, in turn, will create delay problems. For the DWT

method, it is even more difficult to update the wavelet coefficients, a simple shift in time could

significantly change the coefficients. In practice, on the other hand, anyxm[n] can be estimated

using the transform coefficients themselves, and new coefficients can be approximated using this

17



estimate and the new incoming sample. However, since it is the approximated coefficients that

will be used for approximating the newxm[n], the error could eventually become large and a

reinitialization might be needed.

C. Reconstruction and Utilization of the Synopsis

In previous sections, we explained our algorithms to generate and update the synopsis ef-

ficiently. We now describe how to reconstruct the actual data in the sliding window from the

generated synopsis to execute online queries. Sincex̂m[N−1], . . . , x̂m[N−K] are already stored,

no further action is needed for the reconstruction of the required data. For the rest of the data

elements in the sliding window, the reconstruction starts with the last forgotten entry and go

back till the last entry or last queried entry. It is performed in a reverse order using (8), i.e.,

x̂m[n−K] =
x̂m[n]− êm[n]−∑K−1

k=1 pk[n]x̂m[n− k]

pK [n]

beginning withn = N−1 and untiln = K. An important fact to remark here is thatpK [n] must

be non-zero. For numerical stability considerations in practice, an even more severe constraint

is thatpK [n] should not be very small. This can be ensured by not letting the prediction window

lengthK be unnecessarily long. In fact, our experiments have shown thatK = 1 is already very

effective in practice, and that the optimal prediction coefficientp1[n] is usually close to 1.

Although queries involving other time intervals can also be answered, the recursive nature

of the synopsis especially facilitates the queries involving most recent data entries. This extra

support is, in fact, easily justified by the very reason why a sliding window is used: because recent

values of the data are more significant. Hence, we will focus on queries involving the lastL time

instantsN−1, . . . , N−L, whereL ≤ N . Since the query involves onlyxm[N−1], . . . , xm[N−L]

for 1 ≤ m ≤ M , only those values need to be reconstructed, rather than the whole sliding

18



window. If L ≤ K, as discussed above, no further action is needed. IfL > K, on the other

hand,L−K data elements needed to be reconstructed so, the reconstruction process will continue

until n = N − L + K instead ofn = K. The process takes at mostO(KL) time.

As discussed in the introduction section, the application of such utilization is wide, such as

clustering, indexing, query processing, etc. To evaluate the quality of the synopses, we will focus

on query processing for clarity in the paper.

IV. EXPERIMENTAL RESULTS

We performed experiments on real and synthetic data sets of multiple streams to demonstrate

that PQ-Stream is generated and updated in real time and produces highly accurate summaries.

We compared PQ-Stream with transform-based methods, DFT, DWT, 2-D DFT, and PCA in

terms of recall and precision for a variety of queries. We also compared with SPIRIT [25], a

recent technique to compute correlations in multiple streams by applying PCA and updating a

set of principal components at each time instant. Since, the number of stream clusters can change

as new data arrives, the number of components (hidden variables) is allowed to vary as needed.

The weights of each stream on each hidden variable are stored and updated to reconstruct the

actual values. However, the snapshot of the matrix needs to be stored for each corresponding

time instant. This requires more space than the one required to save the original data.

In our experiments, the settings were favoring the methods in comparison. For example, since

the focus of SPIRIT is monitoring, rather than summarization, we have not enforced any space

limitations on it. Also, we assume, in favor of the transform-based methods (DFT, DWT, 2-D

DFT, and PCA) that there exist very efficient algorithms that keep track of the top coefficients

as time proceeds and old values of the streams are forgotten. Even when the DFT, DWT, 2-D

DFT, and PCA coefficients are assumed to be efficiently updated in full precision and no space

19



restriction is put on SPIRIT, our experiments show that PQ-Stream achieves in real-time a more

accurate representation of the data.

We first describe the data sets we used. We then show an illustrative example for effectiveness

of PQ-Stream in signal representation quality. Then we show the results for generation and update

of the synopsis, as well as the query processing over the generated synopsis.

A. Datasets

In our experiments, we used three datasets. The first dataset consists of daily stock values

of 6,470 companies for 360 days. The second one is obtained from the National Climatic Data

Center and consists of the temperature measurements for the year 2000 (366 days), sent from

5,009 weather stations worldwide. The last one is a synthetic data consisting of 100,000 streams

of length 100, where the samplesxm[n] are generated according toxm[n] = 0.99xm[n − 1] +

wm[n] + sm[n] , wherewm[n] is a Gaussian noise independently drawn for eachm andn with

zero mean and variance 4, andsm[n] is a random spike with a 0.01 probability of occurrence.

The function ofsm[n] is to occasionally disrupt the predictability of the signal. The first data

element of each stream is created randomly over a uniform distribution.

B. Effectiveness of PQ-Stream in Signal Representation Quality

In this section, we demonstrate the superiority of the PQ-Stream scheme over current transform-

based techniques in terms of average MSE. For comparison, we fix the total number of bits per

stream to be used in the summarization of the data, thus using the same space complexity with

transform based methods. We also take into account the utilized storage for the reconstructed

version of the current time point, i.e.̂xm[n]. In Figure 4, we show the average MSE for PQ-

Stream, DFT, DWT, 2-D DFT, PCA, and SPIRIT-based summarization techniques for all datasets.

20



10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

TIME

A
ve

ra
ge

 M
S

E

PQ−STREAM
SPIRIT
DWT
DFT
2−D DFT
PCA

(a) Synthetic Data

20 40 60 80 100 120
0

1

2

3

4

5

6

TIME

A
ve

ra
ge

 M
S

E

PQ−STREAM
SPIRIT
DWT
DFT
2−D DFT
PCA

(b) Stock Data

20 40 60 80 100 120
0

10

20

30

40

50

60

70

TIME

A
ve

ra
ge

 M
S

E

PQ−STREAM
SPIRIT
DWT
DFT
2−D DFT
PCA

(c) Weather Data

Fig. 4. Comparison of Average MSE by DFT, DWT, 2-D DFT, PCA, Spirit, and PQ-Stream methods with the same space
complexity.

The prediction frame,K, is set to 1. In Figure 4(a), the sliding window length isN = 64, and a

total bit quota of 96 bits/stream is used for summarization. 32 bits are used for the reconstructed

version of the current time unit. We distribute the remaining 64 bits uniformly among 64 time

instants by designing 1-bit quantizers forem[n] at each time instant. An equal space complexity

is achieved by storing top 3 Haar wavelet coefficients for the DWT, and PCA methods, and the

first two frequency coefficients for the DFT method (since the second coefficient is complex).

For 2-D DFT, we keep the greatest3 × 100, 000 coefficient values. SPIRIT maintains varying

number of principal components (PCs) for each time point. The minimum number of PCs it

can utilize is set to 3 for the synthetic data. The PQ-Stream technique clearly has less average

MSE per stream compared to the DFT, DWT, 2-D DFT, PCA, and SPIRIT-based techniques.

Figure 4(b) demonstrates a similar result on a real-life data set consisting of stock values. In

this example,N = 128, and a total of 224 bits are reserved for each stream. Again 32 bits

are utilized for the reconstructed version of the current time unit and the remaining 192 bits

are distributed evenly among 128 time instants by alternating 1-bit and 2-bits for consecutive

instants. With this space complexity, we can store 7 top Haar wavelet and PCA coefficients and

first 4 DFT coefficients (three of them are complex numbers). For 2-D DFT, we keep the highest

21



7 × 6, 470 values. Similarly, the minimum number of PC, SPIRIT can maintain at each time

instant is set to 7. For this dataset, PQ-Stream achieves the minimum average MSE for80 time

instants. The average MSE for the whole window is 1.04 for the PQ-Stream and it is 1.14 for

the closest method, DWT. The setting for weather data is same as the one for the stock data,

except the 2-D DFT technique. For this transformation, we keep the highest7× 5, 009 values.

As can be seen in Figure 4(c), PQ-Stream clearly minimizes the average MSE per stream the

most for all time instants. These graphs not only show how superior the PQ-Stream is in terms

of minimizing the average MSE per stream but also demonstrates the effect of number of bits in

this error. In Figure 4(a), we are utilizing same amount of bit per time instant and the average

MSE is not fluctuating compared to other methods. This is not the case for the other graphs.

This can be seen clearly in Figure 4(c), for the instants using 1 bit the average error is greater

compared to that of the ones using 2-bits. It is worth noting that SPIRIT utilizes at leastN

(i.e., 64 for synthetic data and 128 for stock and weather data) times more memory than other

methods for all graphs.

C. The Synopsis and Its Update

The sliding window lengths and total bit quotas are fixed asN = 128 andB = 224 for the

real data, andN = 64 and B = 96 for the synthetic one. The bit quotas are chosen so as to

ensure that they can be fully utilized by transform-based methods to store 32-bit floating point

coefficients. Since the first coefficient of DFT is always a real number, and the rest is in general

complex, we reserved an odd multiple of 32 bits for summarization. In the PQ-Stream technique,

we distributeB − 32 bits amongN time instants evenly and the remaining 32 bits are utilized

for saving the reconstructed version of the last time instant (since we use a prediction window of

22



lengthK = 1 in our method). Recall that we have not enforced any space limitations on SPIRIT

and it automatically decides the total number of principal components held for each instant. We

only set the minimum number of PC it can maintain on behalf of this technique. Hence, we did

not tabulate its parameter information in the results.

To verify our claims that the update of the synopsis is performed in a very time-efficient

manner, we have physically measured the time spent on the update of the synopsis for the

synthetic data set of size 100,000. A MATLAB code run on a computer with a 1.7GHz Pentium

M processor updates the whole synopsis in 351.6ms. In other words, PQ-Stream is capable of

handling about 284,000 stream updates per second. Therefore, even a non-optimized PQ-Stream

code on a standard computer can handle the stock trading example mentioned in the introduction.

D. Query Models and Quality of Results

We used three types of queries involving lastL ≤ N values of the streams, whereL is picked

randomly.

We call the first class of queries “momentum queries.” An example for this type of query is:

“Find all companies whose stocks appreciated value by 10% in the last two months.”This

query is particularly useful in testing how the resulting synopsis preserves the previously existing

correlations between consecutive dimensions.

The second class is called “range queries.” A sample query might be as follows:“Find all

companies whose stock values remained in between 20 and 40 dollars per share in the last

quarter.” This type of query can be considered as an aggregation query: Find all companies

whose stock values has max≤ 40 and min≥ 20 in the last quarter.

Finally, the third type of queries we used is commonly known as “similarity queries:”“Find

the 25 companies whose stock value behavior were most similar to this waveform last week”,

23



or “Find the 25 companies whose stock value behavior were most similar to that of stock index

YYZXX last week.”The results for this query illustrate how much relative pairwise distances

are preserved by the underlying summarization technique.

For each class of queries, we randomly generated 250 examples for the real datasets and 50

examples for the synthetic dataset, and measured therecall and theprecisionof the outcomes.

Recall is the ratio of the number of relevant streams retrieved to all relevant streams, and

precision is the ratio of number of relevant streams retrieved to number of streams retrieved.

For the similarity search, the queries are randomly drawn over the data streams themselves and

25 nearest neighbors (25-NN) are asked.

Although the average recall and precision together indicate the quality of a particular summa-

rization scheme, it is even more informative to have the standard deviations achieved for these

metrics. The table below simultaneously depicts the average values and standard deviations in

the format “avg| std”. As can be seen from the table, the PQ-Stream method achieves high

recall and precision values not only on the average, but also consistently for each query for the

class of momentum queries.

Data Type Accuracy PCA 2-D DFT DFT DWT SPIRIT PQ-STREAM

Stock Recall .77 | .06 .28 | .09 .59 | .12 .86 | .07 .85 | .05 .87 | .03

Data Precision .85 | .03 .54 | .18 .59 | .21 .80 | .05 .82 | .05 .72 | .07

Weather Recall .15 | .10 .52 | .19 .48 | .26 .79 | .19 .78 | .19 .87 | .07

Data Precision .18 | .14 .84 | .14 .46 | .36 .80 | .18 .85 | .13 .83 | .10

Synthetic Recall .56 | .02 .31 | .10 .65 | .15 .71 | .06 .33 | .03 .88 | .01

Data Precision .76 | .03 .69 | .08 .57 | .09 .73 | .03 .70 | .03 .88 | .01

Similarly, for range queries, PQ-stream consistently outperforms the transform-based methods,

as it achieves comparable recall (which is very high) and significantly higher precision. The

reason why recall values are very high for the transform-based method is that they tend to smooth

out positive and negative spikes in the signal, as they only keep low frequency coefficients.

24



Therefore, if a signal is in between the two values provided by the range query in the whole

query window, it is very likely to stay there after being reconstructed from transform coefficients.

But because of the same filtering property, the answer sets also include many false hits, thus

resulting in poor precision. Average and standard deviation of the recall and precision values for

the range query class are as provided below.

Data Type Accuracy PCA 2-D DFT DFT DWT SPIRIT PQ-STREAM

Stock Recall .98 | .01 .94 | .04 .97 | .03 .98 | .01 .97 | .02 .97 | .01

Data Precision .92 | .05 .91 | .04 .87 | .05 .88 | .05 .94 | .03 .97 | .02

Weather Recall 1.0 | .01 .97 | .02 1.0 | .01 1.0 | .01 1.0 | .01 .95 | .01

Data Precision .81 | .05 .90 | .02 .72 | .07 .71 | .06 .84 | .04 .97 | .01

Synthetic Recall .97 | .01 .88 | .10 .98 | .02 .99 | .03 .81 | .12 .94 | .01

Data Precision .70 | .01 .75 | .08 .53 | .05 .56 | .07 .80 | .03 .95 | .01

Recall that number of streams retrieved for 25-NN queries is 25 and number of relevant

streams is also 25, hence, the recall and precision is equal to each other for this query type.

For 25-NN queries, the average and the standard deviation of the recall and precision values are

provided below.

Data Type Accuracy . PCA 2-D DFT DFT DWT SPIRIT PQ-STREAM

Stock Data Recall = .75 | .16 .43 | .25 .64 | .23 .75 | .17 .71 | .16 .81 | .13

Weather Data Precision .61 | .21 .61 | .18 .34 | .29 .55 | .25 .63 | .18 .80 | .18

Synthetic Data .09 | .14 .20 | .16 .07 | .12 .14 | .16 .01 | .04 .55 | .16

E. Analysis of PQ-Stream Components

We analyzed the effect of the two main components of PQ-Stream, prediction and quantization,

when used separately. In the first set of experiments, we applied prediction followed by 0-bit

quantization using 0 as the only reconstruction level. In the second set, we quantized each

data element by using the default setting (i.e., 224 bits for real datasets and 96 bits for the

artificial dataset) as in the VA-file method [30]. Although prediction and quantization individually

achieves reasonable recall and precision values for certain cases in all types of queries, PQ-Stream

25



consistently and significantly outperforms both. In many cases, PQ-Stream is able to capture

query answers which are missed by both of them individually. Similarly, false hits introduced

by each of the techniques are removed by PQ-Stream. The highest individual contributions of

each of prediction and quantization were in range queries, which are summarized below.

Data Type Accuracy Prediction Quantization PQ-STREAM

Stock Recall .5137 .4650 .9741

Data Precision .5041 .5647 .9685

Weather Recall .9008 .6151 .9448

Data Precision .7009 .8189 .9664

Synthetic Recall .2144 .0277 .936

Data Precision .5163 .0399 .9518

For momentum and similarity queries, the improvement of PQ-Stream over each component

are even more significant. For range queries, prediction usually achieves more accurate results.

This is because the range of the predicted values are usually close to the range of the original

values. For momentum and similarity queries, influence of quantization is more than that of

prediction. Since similar data are quantized to similar values, such comparison based queries

perform better under quantization.

To analyze the effect of prediction on the quantization, we compared the average MSE

achieved by quantization with and without prediction. As can be seen in all subgraphs of

Figure 5, prediction followed by quantization achieves much fewer average MSE than the plain

quantization. The main premise of PQ-Stream technique is not that all streams rise and fall in

lockstep. The main assumption of it is that there is high correlation between nearby data elements

of each stream, and hence the difference between the consecutive elements has a narrower range

than the original elements. Prediction narrows down the range of this difference and error of the

prediction is given as the input to the quantizer. The quantizer is built in an MSE minimizing

way. Hence, small number of bits, i.e.3/2 bits/time instant, is capable of capturing the changes

26



for each time unit.

20 40 60 80 100 120
0

50

100

150

200

TIME

A
ve

ra
ge

 M
S

E
PQ−STREAM
QUANTIZATION

(a) Stock Data

20 40 60 80 100 120
0

50

100

150

200

250

300

TIME

A
ve

ra
ge

 M
S

E

PQ−STREAM
QUANTIZATION

(b) Weather Data

10 20 30 40 50 60
0

50

100

150

TIME

A
ve

ra
ge

 M
S

E

PQ−STREAM
QUANTIZATION

(c) Synthetic Data

Fig. 5. Effect of Prediction on Quantization.

F. Space-Accuracy Trade-off

It is clear that the performance of PQ-Stream varies depending on the number of bits used

for quantizing the sliding window: more bits translate into more precision of the quantized error

and therefore into more accuracy when reconstructing the stream. To measure the effect of the

number of bits on the averageMSE over the sliding window, we designed 6 configurations for

each data set. For the configurations, we are usings bit(s) per time instant, wheres ∈ [1, 6]. The

total number of bits utilized for configurations is N × s + 32, i.e. for the artificial data (N=64)

it is 64s + 32 bits and for the real datasets, whereN is 128, it is128s + 32 bits. For DWT and

PCA we are storing the top2s+1 coefficients for the synthetic dataset and4s+1 top coefficients

for the real ones. For SPIRIT these are the minimum number of PCs that can be stored. The

top s+1, and2s + 1 coefficients are stored for synthetic data and real datasets respectively for

DFT. We are keeping the top(2s + 1) × 100, 000 coefficient values for the synthetic data and

(4s + 1)×M top values for real datasets, whereM is the number of streams in the dataset for

2-D DFT.

To study the performance of PQ-Stream on datasets not having correlation between nearby

27



points, we generate another artificial dataset. The configurations, the number of streams and the

number of time instants for this new dataset, is same as the ones for the old one. The samples

xm[n] are generated according toxm[n] = minm + |stdm| × |wm[n]| , whereminm is created

randomly over a uniform distribution over[0, 100], stdm is independently drawn for eachm

from Gaussian distribution with zero mean and variance 2500, andwm[n] is from Gaussian

distribution with 0 mean and variance 1.

The performance of all techniques on averageMSE for these 4 datasets are depicted in

Figure 6. As can be seen in all subgraphs, increasing the number of bits per time instant is

leading to decrease the averageMSE for each technique. After a certain number of bits, this

average error approaches to zero, i.e. after 4 bits for the stock and the weather datasets, for our

technique, PQ-Stream. This is not the case for the transform based techniques even for saving

25 coefficients, out of 128, for the real datasets and 13 coefficients, out of 64, for the synthetic

ones. In Figure 6 (d), results for 2-D DFT and SPIRIT are not shown because the smallest error

they achieve is greater than 1500 and adding them in the graph is leading less detail on the

comparison between other methods.

1 2 3 4 5 6
0

1

2

3

4

5

6

Number of Bits Per Data Element

A
ve

ra
ge

 M
S

E
 fo

r 
T

he
 W

in
do

w

PQ−STREAM
SPIRIT
DWT
DFT
2−D DFT
PCA

(a) Stock Data

1 2 3 4 5 6
0

10

20

30

40

50

60

Number of Bits Per Data Element

A
ve

ra
ge

 M
S

E
 fo

r 
T

he
 W

in
do

w

PQ−STREAM
SPIRIT
DWT
DFT
2−D DFT
PCA

(b) Weather Data

1 2 3 4 5 6
0

5

10

15

20

25

30

35

Number of Bits Per Data Element

A
ve

ra
ge

 M
S

E
 fo

r 
T

he
 W

in
do

w

PQ−STREAM
SPIRIT
DWT
DFT
2−D DFT
PCA

(c) Synthetic Data

1 2 3 4 5 6
0

250

500

750

1000

1250

1500

Number of Bits Per Data Element

PQ−STREAM
SPIRIT
DWT
DFT
2−D DFT
PCA

(d) New Synthetic Data

Fig. 6. Effect of total number of bits used to quantize the whole sliding window.

28



G. PQ-Stream over Clustered Streaming Data

Data stream sources can be grouped into clusters to further improve the quality of the

prediction model, the summaries and the accuracy of queries. For example, sensor nodes can

be naturally grouped with respect to their spatial locations. We analyze the effect of build-

ing a PQ-Stream for each stream cluster. We applied K-Means [23] clustering algorithm over

the real data sets for 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 clusters.

The clustering was done after a training phase. Up to a certain time point, a single PQ-

Stream was maintained for all streams. As only the data under the sliding window can be

reconstructed from the main synopsis, this point was selected as the the first time the slid-

ing window is full, i.e. timen = 128. Then, the data elements under the sliding window

were reconstructed for all streams and clustering was done on top of this data. The experi-

ments were performed using the same number of bits, 224, as used for the original setting.

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Clusters

A
C

C
U

R
A

C
Y

STOCK DATA

Momentum_Recall
Momentum_Presision
Range_Recall
Range_Precision
Similarity

0 20 40 60 80 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Clusters

A
C

C
U

R
A

C
Y

WEATHER DATA

Momentum_Recall
Momentum_Presision
Range_Recall
Range_Precision
Similarity

Fig. 7. Effect of establishing a PQ-Stream

for each stream cluster.

As shown in Figure 7, the accuracy mostly increases

with increasing the number of clusters. The most significant

improvement is observed for similarity queries. There has

been a sharp increase for up to 5 clusters in stock and

10 clusters in weather data. This improvement can also

be translated into a reduction in space with comparable

accuracy. Specifically, after the clusters were formed, we

decreased the total number of bits from 224 to 160 and

obtained the results summarized in the following table.

29



Query Type Accuracy Stock Original Stock Clustered Weather Original Weather Clustered

224 bits 160 bits 224 bits 160 bits

Momentum Recall .8711 .8715 .8692 .8750

Precision .7246 .8111 .8339 .8316

Range Recall .9741 .9619 .9448 .9526

Precision .9685 .9620 .9664 .9511

Similarity Recall=Pre- .8107 .8221 .8000 .7618

cision .8107 .8221 .8000 .7618

V. RELATED WORK

V-Optimal histogram was introduced by Ioannidis and Poosala in [17]. The problem is to

find the best piecewise constant representation of the data with at mostB pieces, in a way

that minimizes the sum of squares error between the data and the representation for givenn

numbers and a constantB. Recently, Guha et al. [13] provided an O(n2B) time O(n) space

algorithm to find the optimumB bucket synopsis. For the sliding window model, the first data

stream histogram algorithm was presented by Guha and Koudas [15]. For each new data point

the algorithm uses O(N(B3/ε2)log3(N)) time to find theε-approximate histogram. It requires

O(N ) storage space since it saves a structure for each data point in the window. For each

newly arrived data element, the histogram is recomputed for the last window. Thus, those data

elements are needed to be saved and retouched for each new element. This leads to a multiple-pass

update algorithm. Our approach, PQ-Stream, utilizes O(N ) bits, but retouches each reconstructed

element K times.

If the data is arriving faster than it can be processed, a small random sampleS of the data is

often used to execute queries [2]. Distribution of the data in the sliding window can be different

than that of the whole stream. Hence, a sample from the lastN dimensions should be kept. In

[3], the authors studied the problem of maintaining a uniform random sample of items within the

30



current window. The provided results do not give any bound for estimating similarity/distance.

Sketch of ann dimensional vector is ak dimensional vector computed byk dot products. To

compute each dimension of a sketch ann dimensional random unit vector is utilized. A bound

on Euclidean distance, depending onk, was provided by Johnson-Lindenstrauss Lemma [18].

Indyk et al. [16] proposed that with probability of 1/2, success on error bound can be provided

depending not only on k but also on the size of the vector set. However, forM >> N ,the

requiredk for the success of1/2 is close toN . To extract representative patterns from a single

massive time series data, Indyk et al. [16] employed convolution to compute all possible sketches

of the same size. As the possible number of subsequences and the required size for each sketch

are bothN ; the required space, O(N2), is greater than the size of the actual data. Due to the

size of each sketch, the comparison between two sketches for any arbitraryL will take O(N )

time. In contrast, PQ utilizes O(L) time for the same operation. Hence, keeping such a synopsis

would be infeasible.

Datar et al. [8] provided efficient algorithms to obtain Lp norms (forp ∈ [1, 2]) of the vector

under the sliding window. Their model is time, and space efficient for the queries on the statistics

of the lastN elements of a single vector such as min/max, sum, average and number of distinct

values. However, ifR, range of the data elements, is poly(N ) then all N elements have to

be stored [8] for Min/Max queries. This approach is not feasible for the queries considering

similarities between multiple streams, i.e., similarity queries. The algorithm combines the buckets

and saves the statistics of the combined bucket. Therefore, it is not viable for comparing two

different elements of the same stream, momentum queries. On the other hand, PQ-Stream can

be used for any purpose that requires the actual data.

Our approach provides a flexible synopsis that can be used to execute queries over lastL data

31



elements, whereL ∈ [1, N ]. It can handle an arbitraryL since it is based on reconstructing the

actual data from the synopsis at hand. In contrast, most of current approaches require generation

and maintenance of a synopsis for each possibleL. An exception to this is transform-based

methods, which are used for comparison in experimental section.

VI. CONCLUSION & D ISCUSSION

We proposed PQ-Stream, which is based on predictive quantization, as a novel methodology

for online summarization of multiple data streams. We focused on the model where the synopsis

of multiple data streams over a sliding window of most recent entries is to be computed in

a one-pass fashion. In this streaming scenario, predictive quantization is shown to be more

advantageous over transform-based techniques, as the amortized time complexity of the synopsis

update isO(1) for K =1, i.e., independent of the sliding window length. Moreover, the predictive

quantization achieves the same coding gain (i.e., representation quality) as any optimal transform-

based method when the prediction window length is large enough. Complementing this theoretical

result, we have shown that even when used with short prediction windows (as short asK = 1),

PQ-Stream is superior to current transform-based techniques both in data representation quality

and in precision and recall for various types of queries. We have provided step-by-step algorithms

for generating and updating the dynamic summary over data streams, and for processing of

queries. With PQ-Stream the queries are answered inO(L) time whereL stands for the length

of the query window, which can be over any subsequence of multiple streams. Although we

focused on the multiple data stream model, PQ-Stream is also effective for traditional high

dimensional databases. Even when the current approaches use extra preprocessing over the data,

PQ-Stream achieves provably better results with its online algorithm.

32



There are several interesting directions for use of PQ-Stream in other emerging data man-

agement applications. An immediate use isdistributed compression, where each stream is com-

pressed on-the-fly as it is generated by the data sources, e.g., sensor nodes. The main goal of

such a process is to reduce the amount of data transferred between nodes, hence the energy

consumed to send them. Sensor nodes are already grouped into flat or hierarchical structures,

mostly with respect to their spatial locations. Building a PQ-Stream for each stream cluster

improves the quality of the prediction model, the summaries and the accuracy for each query

types. After collecting the new data elements from its members, each group leader can compute

the prediction coefficient, summarize the collected data using PQ-stream, and transmit to a central

processing unit only this summary. Besides its use in data transmission, the already computed

prediction coefficient can also be effectively used forreal-time change detection. A change on

the prediction coefficient implies an overall change on the streams from the corresponding group

of data sources, such as spatially close sensors. It is highly efficient and simple to define and

monitor changes on a single parameter. The same process is applicable to sensors measuring

multiple attributes. In this case a prediction coefficient will be used for each attribute, resulting

a vector for all attributes. The parameters of the prediction function can be used for other data

mining purposes as well. For example, having similar coefficients for different regions may be

an indication of similarity in their environmental characteristics.

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases. In4th Int. Conference on

Foundations of Data Organization and Algorithms, pages 69–84, 1993.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. InPODS ’02:

Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 1–16,

New York, NY, USA, 2002. ACM Press.

33



[3] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. InACM-SIAM Symposium

on Discrete Algorithms(SODA), 2002.

[4] S. Babu and J. Widom. Continuous queries over data streams.SIGMOD Record, 30(3):109–120, September 2001.

[5] S. Berchtold, C. Bohm, H. Jagadish, H. Kriegel, and J. Sander. Independent quantization: An index compression technique

for high-dimensional data spaces. InProc. 16th Int. Conf. on Data Engineering, pages 577–588, San Diego, CA, 2000.

[6] A. Bulut and A. Singh. Stardust: Fast stream indexing using incremental wavelet approximations. Technical Report

TRCS03-24, Dept. of Computer Science, Univ. of California, Santa Barbara, 2003.

[7] E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates. InProc. ACM Symp. on Principles of Database

Systems, pages 223–233, San Diego, CA, 2003.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. InACM-SIAM

Symposium on Discrete Algorithms(SODA), 2002.

[9] A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi. Processing complex aggregate queries over data streams. InACM

Sigmod International Conference on Management of Data, pages 61–72, Madison, Wisconsin, June 2002.

[10] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi. Vector approximation based indexing for non-uniform

high dimensional data sets. InProceedings of the 9th ACM Int. Conf. on Information and Knowledge Management, pages

202–209, McLean, Virginia, November 2000.

[11] A. Gersho.Vector Quantization and Signal Compression. Kluwer Academic Publishers, Boston, MA, 1992.

[12] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Straus. Surfing wavelets on streams: One pass summaries for approximate

aggregate queries. InVLDB, 2001.

[13] S. Guha. Space efficiency in synopsis construction algorithms. InVery Large Databases(VLDB), pages 409–420, 2005.

[14] S. Guha, D. Gunopulos, and N. Koudas. Correlating synchronous and asynchronous data streams. InProceedings of

the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 529–534, Washington,

D.C., 2003.

[15] S. Guha and N. Koudas. Approximating a data stream for querying and estimation: Algorithms and performance evaluation.

In IEEE International Conference on Management of Data, San Jose, California, June 2002.

[16] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative trends in massive time series data sets using

sketches. InIn Proc. of the 26th Int. Conf. on Very Large Data Bases(VLDB), September, 2000.

[17] Y. E. Ioannidis and V. Poosala. Balancing histogram optimality and practicality for query result size estimation. In

SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD international conference on Management of data, pages 233–244,

New York, NY, USA, 1995. ACM Press.

34



[18] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. InConference in modern

analysis and probability (New Haven, Conn., 1982), Amer. Math. Soc., Providence, R.I., pages 189–206, 1984.

[19] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over unbounded streams. InICDE, pages 560–571,

Bangalore, India, March 2003.

[20] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor aggregates over data streams. InProceedings of

the Int. Conf. on Very Large Data Bases, Hong Kong, China, August 2002.

[21] B. Krishnamurthy, S. Sen, Y. Zhang, and Y Chen. Sketch-based change detection: Methods, evaluation, and applications.

In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, 2003.

[22] X. Liu and H. Ferhatosmanoglu. Efficient k-nn search on streaming data series. InInternational Symposium on Spatial

and Temporal Databases, pages 83–101, Santorini, Greece, July 2003.

[23] S. P. Lloyd. Least squares quantization in pcm.IEEE Transactions on Information Theory, 28:127–135, March 1982.

[24] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive hands-off stream mining. InVLDB, pages 560–571, Berlin,

Germany, September 2003.

[25] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. InVLDB ’05: Proceedings

of the 31st international conference on Very large data bases, pages 697–708. VLDB Endowment, 2005.

[26] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The a-tree: An index structure for high-dimensional spaces using

relative approximation. InProceedings of 26th International Conference on Very Large Data Bases, September 10-14,

2000, pages 516–526, Cairo, Egypt, 2000.

[27] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional histograms. InProc. ACM SIGMOD Int. Conf.

on Management of Data, pages 428–439, Madison, WI, June 2002.

[28] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation semantics in continuous data streams.IEEE

Transactions on Knowledge and Data Engineering, 15(3):556–568, 2003.

[29] S. Viglas and J. F. Naughton. Rate-based query optimization for streaming information sources. InProc. ACM SIGMOD

Int. Conf. on Management of Data, Madison, Wisconsin, June 2002.

[30] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in

high-dimensional spaces. InProceedings of the Int. Conf. on Very Large Data Bases, pages 194–205, New York City,

New York, August 1998.

[31] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data streams in real time. InVLDB, Hong Kong,

China, August 2002.

35


