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Abstract

Companies, hospitals, and research laboratories in certain domains have developed extensive databases, such
as clinical databases, as part of their research or daily activities. The entities that have developed these databases
may wish to lease or allow use parts of the database by external users. Due to the significant time and monetary
investment in the development of the databases, and the proprietary or the private nature of the data itself, they
may not want to sell or allow access to the entire database. However we show that such databases are vulnerable to
reverse engineering using popularly employed similarity-based queries. We identify some important security issues
related tok-NN search and investigate their vulnerabilities against users who try to copy the database by sending
automated queries. We analyze two models for similarity search, namely reply model and score model. Reply
model responds with the k tuples that most closely match the query according to some metric, and score model
responds with only the score of similarity search which provides more power in preserving the privacy. For these
models we analyze possible attack methodologies and develop strategies that can be used to detect the potential
attacks. We state the limits of protection provided by each query response model, and also provide techniques to
guard the database against malicious discovery.

I. I NTRODUCTION
Collecting data and maintaining large databases can require a great expenditure of both time and

monetary resources. Owners of these databases may wish to lease or allow use of their database without
exposing the entire database to discovery. As such, the owners of such databases want to know the
vulnerabilities in their systems. Bioinformatics databases provide an example of this limited user database
access paradigm, because the database owner can benefit economically or through symbiotic research
relationships by provided limited access to the database but does not want to provide access to the entire
database because of privacy concerns, the intellectual proprietary nature of the data involved or resources
expended in its development.

In this paper, we first discuss how the contents of a database can be copied using intelligent automated
queries. We focus on similarity queries which is the common type of query in many modern data
repositories and web-based search engines. We analyze the vulnerabilities of databases against automated
similarity queries using two different models and discuss possible approaches to detect such attacks. These
models are:

• Reply Model. Client sends vectorx and database responds with the closest k vectorsyi (i = 1...k).
This is the model used in most of the current applications.

• Score Model. Client sends vectorx and database responds with similarity score‖ x − y ‖, where
y is the closest vector in the database to thex. This model is suitable for proprietary databases but
requires development of distance functions which give the user a clear idea of how similar the vector
is to query vector.

Both models are appropriate for medical and biological databases where gathering data is a costly
process, and preserving privacy or intellectual proprietary is crucial. For example, consider a database
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consisting of DNA sequence of people with cancer. A user can search this database to see if his or her
DNA sequence is similar to the ones in the database. Based on the score, user can decide to see a doctor
to investigate it further. Many common diseases are hereditary so such a system using the score model
[22] would be invaluable. Also consider a clinical data warehouse, generated by a hospital or a clinical
trials study, consisting of patients’ blood and urine measurements. Such data contain not only private but
also proprietary information, such as data about responses to a newly studied drug. For a set consisting
of blood measurements where all records belong to a patient with a specific disease, such as Arthritis,
using the score model database owners can let users search information without revealing the proprietary
measurements. In this way, a user could determine if any person with the disease in the database is within
some similarity threshold to their own measurements. Such information could be useful in determining
the possibility of having the disease. Now, consider a data set that contains the records of all patients,
both healthy and non-healthy, with any adverse conditions for each patient identified. Using the reply
model, a user could get a consensus of the type of diseases the nearest k-patients have in terms of blood
and urine measurement similarity and gain information about their own potential health state.

Using the two models, we investigate the following general issues in this paper :
• What is the best strategy a potential attacker can use to copy the whole database or to learn contents

of the database?
• What can be done to prevent such attacks on the database?

A. Related Work
Privacy-preserving Data ManagementOver the last few years there has been considerable amount of

interest on privacy-preserving database operations [5], [10], [2], [25], [6], [24] including access control,
indexing, and mining. A somewhat related problem isPrivate Information Retrieval(PIR). In PIR [16],
the server has an n bit information vectorx, the client requests a bitxi and the server returns the bit
with the constraint that server do not learn the index of the bit. It has been shown that the solution to
the PIR problem has a communication cost equal to transmitting the entire database. Recent approaches
achieve polylogarithmic communication using different intractability assumptions [15]. However, proposed
solutions are impractical for most large datasets. Most of the solutions to these problems make use of
random vectors. Also,all the approaches presented in the literature for these problems make use of trusted
third party anonymizers.

Secure-multi party computation is a closely related field to privacy-preserving database operations. It
has been theoretically proven that secure-multi-party computation problem can be solved using circuit
evaluation protocol [31], [53]. In circuit evaluation protocol, each functionality is represented by a
boolean circuit and the parties run a protocol for every gate in the circuit. This approach is general
but communication complexity is high. Using solutions based on circuit evaluation for special cases of
multi-party computation is impractical and special solutions needs to be developed for efficiency reasons.
During the last couple of years special solutions are developed for secure multi-party computational
geometry [9] and privacy preserving statistical analysis [23].

Most of the privacy research focuses on privacy-preserving data mining which aims to enable mining
without direct access to specific private information. Watermarking research [3], [4], [44], [43] embeds
information into the database that can later be used to identify the owner. Cryptographic primitives are
used for distribution of XML documents to clients that allows clients to locally process them without
violating access controls [39]. Automated trust negotiation [48] establishes trust between server and client
through the exchange of digital credentials. There is a growing need to address security issues in modern
database applications that require extensive research to develop or involve intellectual proprietary data.

Inference Control Even if an access control policy is used, illegal data accesses via inference channels
may occur and inference channels must be eliminated. In relational databases, integrity constraints in-
cluding functional, multivalued, and join dependencies are important for inference control. There are two
main approaches to detect and remove inference channels. The first approach removes inference channels
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by modifying the database design and by increasing classification level of some items [32], [38], [47].
The second approach eliminates inference channels during query processing [19], [21], [14]. For more
information on inference control readers are referred to [27], [1], [34]. Above approaches are tailored
for relational databases and are not suitable for emerging database applications such as high dimensional
databases and nearest neighbor queries. Logic based representation and formal method based inference
control can not be used for high dimensional databases since dependencies do not exist. In this paper,
we use a geometry based approach to protect the databases from malicious discovery through similarity
queries.

Similarity Queries Due to the nature of the data and the large quantity of information, traditional
database queries such as exact match queries are largely being replaced by similarity-based queries. The
degree of similarity between objects in a database is often quantified by a distance measure, e.g., Euclidean
distance, operating on the multi-dimensional data objects or the feature vectors extracted from the data
objects. For example, a user may pose a query over a medical database asking for X-rays that are similar
to a given X-ray in terms of Euclidean distance of multi-dimensional texture feature vectors [36], [35].
3D Shape histograms of proteins are used to identify their similarities [7]. Similarity query is usually
implemented by finding the closest feature vector(s) to the feature vector of the query data. This type of
query is known as nearest neighbor (NN) query [42] and it has been extensively studied in the past [30],
[33], [51], [8], [11], [28], [12], [20]. A closely related query is theε-range query where all feature vectors
that are withinε neighborhood of the query pointq are retrieved.

Bloom Filters Bloom filters are used in many applications in databases and networking including query
processing [41], [18], [40], IP traceback [45], [46], per-flow measurements [17], [37], web caching [50],
[26] and loop detection [52]. A survey of Bloom filter applications is given in [13]. A Bloom filter
computesk distinct independent uniform hash functions. Each hash function returns and n-bit result and
this result is used as index into a2n sized bit array. The array is initially set to zeros and bits are set as
data items are inserted. Insertion of a data is accomplished by computing thek hash function results and
setting the corresponding bits to 1 in the bloom filter. Retrieval can be done by computing thek digests
on the data in question and checking the indicated bit positions. If any of them is zero, the data is not
stored in the table (since storing the data would set the bits). If all the bits are set, the data is stored in the
table with high probability. It is possible to have all the bits set by other insertions. This is called afalse
positive, bloom filter returns a result indicating the data is in the filter but actually it is not. However,
bloom filters do not causefalse negatives. It is not possible to return a result that says data not in filter
whereas data is stored in the filter.

The rest of the paper is organized as follows. In Section 2, we analyze vulnerabilities associated with
the reply model and discuss possible attack detection techniques. In Section 3, vulnerabilities associated
with the score model and possible detection techniques are considered. We compare these two models
in Section 4. We discuss attack detection in replicated databases in Section 5. We conclude and provide
directions for future work in Section 6.

II. V ULNERABILITIES IN THE REPLY MODEL

The reply model is the natural and the common way of implementing a similarity query. In the reply
model upon receiving a query, the database responds with the closestk tuple(s) according to the Euclidean
distance as the distance metric. In this section, we discuss some of the possible attacks that can be used to
learn the contents of the database using the reply model for similarity query response. Then, we present
approaches to detect such attacks.

A. General Scheme

We will first explain the attack on 1 dimension and then generalize it to higher dimensions. Assume
a 1-dimensional continuous attribute with lower boundl1 and upper boundu1. The minimum distance
between a point in the database and itskth closest point in the database,ck, is formalized as follows.
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Definition: 2.1: ck = minx{dknn(k, x)} wheredknn(k, x) is the distance betweenx and kth nearest
neighbor ofx.

DiscoveredPoints =∅
α =bu1−l1

ck
c+ 1

for i= 0 to α− 1 do
probe =l1+

ck

2
+ick

q = sim search(probe)
for j = 1 to k do

if |probe− q[j]| ≤ ck/2
DiscoveredPoints.insert(q[j])

Fig. 1. General Probe algorithm for 1 dimension

The algorithm in Figure 1 can be used to replicate the contents of the database by usingbu1−l1
ck
c + 1

equally spaced queries. The additional probe(+1) is added to capture any potential data points lying on
the upper bound of the attribute. Sample execution of the algorithm fork equal to1 is given in Figure
2. Arcs denote the result of similarity search and x’s on arcs denote that the most similar point found is
not inserted into the data structure that contains the discovered points for the given probe. Triangles on
the bottom depict the boundaries of the region being covered by the current query.
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Fig. 2. Sample execution of probe algorithm, k=1

All nodes in this case are discovered using8 probes (and guaranteed to be discovered in9 probes).
Sample execution fork equal to2 is given in Figure 3. Not only the interval between probes but also
number of probes is different from thek = 1 case. As the definition of2-NN implies, the2nd closest
neighbor is also returned together with the1st one. All nodes are discovered using5 probes. Ask increases,
the interval between probes (ck) will increase and this will lead a decrease in total number of probes.

We can optimize this algorithm and skip some probes if the returnedkth neighbor is multiple probe
points away. Following lemma is based on the algorithm given in Figure 1.

Lemma 2.1:Probe algorithm discovers the whole database.
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Fig. 3. Sample execution of probe algorithm, k=2

Proof: Consider the voronoi diagram of probe points. The voronoi region of a probe pointp is the
region which is closer top than any other region. Every point is in some voronoi region since voronoi
regions cover the whole space. Each voronoi region has at mostk points since the maximum distance
in a voronoi region isck. Therefore every point is returned as a result of one of the similarity searches.
Hence the whole database is discovered.

The value ofck in this database may not be known to the attacker. The attacker can pick some distance
d and use the algorithm based ond assuming that the minimum distance to thekth neighbor isd. Some
points may not be discovered using the probe algorithm in this case. However we will still have an idea
of what we might have missed in the database.

Lemma 2.2:Using probe algorithm with distanced, missed points are less than d distance away from
some discovered point.

Proof: Consider voronoi regions. Voronoi regions cover the whole space. Points are missed if more
than k points fall into one voronoi region. In that case, thek closest points to probe point is returned.
Since the maximum distance in a voronoi region isd, missed points are less thand away from some
discovered point.

B. Progressive Scheme

For some data setsck can be very small. This causes a very high number of probes to be required to
learn the whole database. In this section we show a progressive probe algorithm which discovers the data
in finer detail as the number of probes increases.

DiscoveredPoints =∅
α = bu1−l1

ck
c+ 1

levelno = dlog αe
for i = 1 to levelno do

for j = 1 to total numberof nodesin level i
q = sim search(levelNode(i, j))
if q not in DiscoveredPoints

DiscoveredPoints.insert(q)

Fig. 4. Progressive probe algorithm for 1 dimension

The algorithm for progressive probing is given in Figure 4. The functionlevelNode returns thejth node
in level i. Progressive probe uses the same probe points but in different order, therefore it also discovers
the whole database. Total number of levels (levelno) is calculated based on the total number of probes.
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For the sake of reader clarity, it may be appropriate to remind that total number of probes decreases as
k increases. The probes at a given level are determined by the mod operation. Indices of the probes start
from 0. In each level, we have probes whose indices are divisible by2levelno−levelnumber but not by higher
powers of2. As an example, fork = 1 we have 9 probes, hencelevelno is 4. In the first level we have
points whose indices are divisible by24−1. In the second level we have points whose indices are divisible
by 24−2 but not by8. In the third level we have points whose indices are divisible by24−3 but not by
higher powers of2 and so on. The strategy used to compute the level of a single node for progressive
scheme is summarized in Figure 5.

Is Index Divisible by 2  ?

levelno−1Is Index Divisible by 2                 ?

NO

Level = levelno

NO

NO

levelno−2Is Index Divisible by 2                 ?

YES

Level = 1

YES

Level = levelno−1

Level = 2

YES

Fig. 5. Computing the level of a single node for Progressive Scheme
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Fig. 6. Sample execution of progressive probe algorithm

Sample executions of the algorithm fork = 1 and2 are given in Figure 6. The arcs denote results of the
similarity search andx’s on arcs denote that the point is already discovered. The progressive probe scheme
distributes probes in the data space in a way that probes are more likely to find previously undiscovered
tuples. Note that, in these example executions, the last levels do not introduce any new data and total
number of probes to discover all nodes is 5 fork = 1 and 3 fork = 2. As a result, for equal number of
queries to a non-skewed database, the progressive scheme will gather more information about the database
than the general one.

The performance of the progressive scheme will degrade on highly skewed data. We propose an adaptive
progressive scheme which will adaptively change itself according to the distribution of the data points.
The general idea of adaptive scheme is to dig deeper into denser regions which are more likely to contain
more points and various heuristics can be used for this purpose. Forn dimensional region,2n corners
and the center point are identified andk-NN query for each of these points is executed. The sum of the
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n: dimension of database
PQ: priority queue
e,e2,e3: element (structure with2n + 1 points)
e: initial element corresponding to whole region
PQ.push(e)
while PQ not empty

e2 = PQ.pop()
for i = 1 to 2n do

e3 = developregion(i)
if e3.distsum()< threshold

PQ.push(e3)

Fig. 7. Adaptive progressive algorithm for 2 dimensions

distances from these points to theirkth nearest neighbor is computed. We use a priority queue and at each
iteration, we find the region with smallest sum, divide it into2n subregions, find sum of distances for
each subregion and push them into the priority queue. We use a pruning strategy to eliminate the regions
that potentially contain no points. The algorithm for the adaptive progressive scheme is given in Figure
7.

C. Random Scheme

In the random scheme, random points in the space are picked and sent to the database as probe points.
Although this scheme performs well initially, probabilistically a huge number of queries is needed to
discover the whole database. The random scheme is ideal for uniformly distributed data but real data
sets are usually highly correlated and clustered. Data clustered in dense chunks will be very difficult to
discover using the random scheme.

D. Distributed Scheme

A powerful way of probing is to employ a distributed scheme. A number of sites can send independent
probes, collect data and then construct the database by combining individually constructed databases. The
probes can be clustered or de-clustered and each cluster or de-cluster can be assigned to a site.

E. Using Query Histories

To discover every point in the database, the space is divided into equally spaced voronoi regions. The
edge of a voronoi region is selected such that the query sent from the center of the region will discover
at least all the points in the region. This will result in some of the data points returned for more than one
probe. It is possible to eliminate unnecessary probes by using the results of the earlier ones.

In Figure 8 squares and circles represent data points and probes respectively. Letri(i from 1 to k)
be the result of probep, then all the probes whose voronoi cells lie completely within the circle can be
eliminated. This optimization can be formally stated as follows.

Lemma 2.3:Let p and q be two probe points. Assume that the result of probep returnsk points and
dknn(k, p) = s. If the region of probeq lies completely in the circle with centerp and radiuss, then
probeq is unnecessary.

Proof: By selection of probe points there are at most k points in the region of a probe point. This
guarantees that all the points in the region are returned as a result of the query with the probe point. If
probep returnsk points withdknn(k, p) = s and the region of probeq lies completely in the circle with
centerp and radiuss, then there is no data point in the region of probeq. Therefore, elimination of probe
q does not cause any missed data points and probeq is unnecessary.
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p

r2

K = 2

r1

Fig. 8. Elimination of Unnecessary Probes

The above lemma can be applied by verifying that all four corners of the voronoi cell are in the circle
with radiuss and centerp. An easier way is to use the bounding circle of the voronoi cell. Voronoi cells
are constructed to make sure that at mostk data points lie in the cell. Therefore, the bounding circle of
voronoi cell has radiusck/2 and we can use the following to test if voronoi cell lies completely within
the circle.

Lemma 2.4:Let p and q be two probe points. Assume that the result of probep returnsk points and
dknn(k, p) = s. If d(p, q) < s− ck/2 then the region of probeq lies completely in the circle with center
p and radiuss

Proof: Let x be a corner of the region. By construction of bounding circle we haved(q, x) = ck/2.
By triangle inequality we haved(p, x) <= d(p, q) + d(q, x) <= s− ck/2 + ck/2 <= s. Thereforex is in
the circle with centerp and radiuss.

F. Extensions to Higher Dimensions

Both the general scheme and the progressive scheme can be extended to higher dimensions. For example
in 2 dimensions, the general scheme can send probes in order from left to right in each row and when a
row is completed it can move on to next row. The number of probes to discover the whole database is given
below, whereck denotes the minimum distance to kth neighbor,ui denotes upper bound of dimensioni
and li denotes lower bound of dimensioni. Recall that the euclidian distance is used for the reply model.

Theorem 2.1:Probe algorithm requires(b u1−l1
ck/

√
2
c+ 1) (b u2−l2

ck/
√

2
c+ 1) probes to discover all elements of

a 2 dimensional database using the general scheme.
Proof: The range of the database is divided into cells of sizeck/

√
2 by ck/

√
2. At centers of the

cells we have probe points. Voronoi regions of probe points are also squares of sizeck/
√

2. Voronoi
regions cover the whole range and we can have at most 1 point in a voronoi region. All the points in the
database will be in some voronoi region therefore the whole database will be discovered.

Similarly probe algorithm can be extended to higher dimensions as follows.
Corollary 2.1: Probe algorithm in n dimensions requires∏n
i=1bui−li

ck′ c+ 1 probes to discover all elements of a n dimensional database using general scheme where
ck′ is a linear function ofck to guarantee that only one point will be in each voronoi region. The value
of ck′ is ck√

n
in n dimensions.

The progressive scheme is better at discovering more of the database with earlier queries since it spreads
the probe points. For higher dimensions, the level of a probe is calculated similar to the one dimensional
case. The only difference is in the number of indices, which is equal to the number of dimensions, for
a probe point . The total of the indices is used and the level of a probe is calculated by the modula
operation. For example, for two dimensions modula of the sum of row number and column number is
used for calculating the level of a probe. Note that probe indices for each dimension start from 0. As an
example,levelno for a two dimensional space divided into 5 columns and 5 rows is 4 (dmax row index +
1 + max column index + 1e). The probe pattern of progressive discovery for this space is given in Figure
9.



9

Level 1 Level 2 Level 4Level 3

Fig. 9. Levels of Progressive Probing in 2 dimensions

G. Experimental Results

We implemented random probing, random probing with query histories, progressive probing with query
histories and adaptive progressive probing.k-NN queries (for different values ofk{1, 2, 5, 10}) were
performed on two synthetic and two real-life data sets. There are three 2-dimensional datasets (shown
in Figure 10) each of which represents a different type of distribution. The first data set is latitude and
longtitude of road crossings in Maryland. This data set is a good example for uniformly distributed data.
The second one is correlated data typically seen in time series data such as stock price movements [29].
The third data set has points mostly clustered in one region. For each of these three data sets, if the data
set contained more than1000 points, we used a subsampled version with1000 points. The fourth data set
is a clinical data obtained from a pharmaceutical company. The data contains measurements of4 blood
ingredients for244 patients. Half of them are healthy patients and the rest are suffering from Arthritis.
Since the minimum and maximum value each blood ingredient can take is known finding theli and ui

for each dimension is a trivial task.
The number of queries sent and the number of points discovered are given in Figure 11. For all

strategies, ask increases, the total number of queries needed to gather whole database decreases. An
interesting result is that for the same data set, shape of the curves remains same ask increases. The only
difference is the total number of queries that needs to be sent to gather same amount of data points.

The probing algorithms that take advantage of the information provided by early query results perform
well for anyk. Adaptive probing considers the results of the queries corresponding to the corners and the
center of the region while digging into the regions, however, it has to send these queries without making
any check if they are necessary or not. Hence, it requires more probes to discover the whole database.
For two dimensional data sets, random probing performs initially better than the adaptive progressive one,
especially on data sets with nearly uniform distribution of points. Adaptive progressive probing performs
similar to random probing initially but it discovers points with fewer probes as the number of queries
increases.

Since the four dimensional data set is sparse, random probing with query histories performs better than
progressive probing with query histories. Random probing performs better than the progressive probing
with query histories for lower number of queries but the latter needs less probes to discover whole data set.
The performance of Adaptive progressive probing is similar to random scheme. As the number of queries
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increases, more points are discovered by both schemes. The maximum number of points discovered by
both schemes uses same number of queries.

These results show that similarity search based systems are highly vulnerable under the reply model
and protection mechanisms must be designed to protect them.
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Fig. 11. Performance of 4 probing algorithms for reply model

H. When to Stop Sending Queries

Without using the results of the earlier queries, for general and progressive models user should send
all possible probes to be sure that the whole database is discovered. The adaptive scheme has its own
stopping criteria which is the emptiness of the priority queue. For random scheme, we need to know
when all the points in the database are discovered. For example in2 dimensions withk = 1, if the circles
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(center is probe point, NN is on the perimeter) cover the domain then all the points are discovered. We
can formally state this fork-NN and high dimensions as follows:

Theorem 2.2:Consider a d-dimensional system where N probes fork-NN are sent andkth nearest
neighbor of probepi=(ai, bi) is ri=(αi, βi) whered(pi, ri)=si. If
∪N

m=1 Hypersphere(pm, sm) covers the domain[l1, u1] x [l2, u2] x...x [ld, ud] then all the points in the
database are discovered where Hypersphere(pm, sm) denotes hypersphere with centerpm and radiussm.

Proof: Assume that Hyperspheres cover the domain[l1, u1] x [l2, u2]x...x [ld, ud] and a pointq is not
discovered by the probes. Since hyperspheres cover the domainq has to be in at least one hypersphere.
Let Hypersphere(pj, sj) be a hypersphere in whichq lies. Then,q satisfiesd(pj, q) < sj. This contradicts
the fact that Probe with centerpj has returnedk-NN with kth nearest neighbor beingrj = (αj, βj) where
d(pj, ri) = sj. Probepj must have returnedq.

Using the results of earlier queries prevent the user from sending unnecessary queries. Results have
shown that for progressive model, which has equal number of probes to that of the general scheme, by
using query histories total number of queries sent is about1% of all possible probes. For random scheme
the total number of probes is determined according to adaptive probing which sends more queries than
the other two schemes. In random scheme with query histories, the stopping criteria is when all the space
is covered by the queries sent. In our implementation, the stopping criteria is when no new data points
are discovered by certain number of probes. This number depends onk.

I. Attack Detection

For the reply model database discovery techniques described, we can use a number of tools to attempt to
detect such attacks. As the nature of the discovery method becomes more sophisticated, a more detailed
attack detection method is necessary. Query information that can be useful in the detection of attacks
includes the requesting user IP addresses, successive query patterns and differences, and query success in
terms of avoiding unnecessary queries. Possible detection methods as well as the challenges associated
with the probe techniques as they increase in sophistication are described below.

The general probe scheme is the easiest to detect. It sends probes in an ordered sequence. When a
probe is sent to the database, the reply has to be received to learn the data in the database. Therefore the
real IP address of each node should be sent to the database. This IP address helps in attack detection. To
detect such an attack, one need only to detect a sequence of ordered probes from an IP address.

A level of complexity is added if the attacker sends the same sequence in some arbitrary order without
sending a probe twice. For example if we have 8 probes numbered 0 to 7, we can send them in the order
1,6,3,0,5,2,7,4. This follows from the number theory fact that if number of probesnp and skip values are
relatively prime (gcd(np,s)=1) then each number is repeated only once. Same argument applies to higher
dimensions as well with condition that the skip value in each dimension should be relatively prime tonp.
Detecting such attacks is difficult and sophisticated mining algorithms may be needed.

This level of complexity is similar to that experienced with the progressive attacks. Progressive attacks
are harder to detect since we need to look at the pattern the probes are sent. Probes at a given level can
be reordered making it even more difficult to detect. Still more complexity can be added to the probing
by distributing the attacks from different receiving IP addresses. Typically distributed attacks are the most
difficult to detect. The ability to detect such attacks will depend on the number of hosts involved in the
attack.

Most of the above attacks will require large number of queries being sent to the database. The database
server can identify the clients based on their IP address. These attack strategies useck to determine the
positions of the probes. In the case whereck is unknown they used. So, if a user is identified such that
the corresponding queries uses a commond for all dimensions, the number of queries that can be sent
by that user can be limited in some time interval. If he continues to send such queries, the time interval
can be increased according to the total number of queries. As an example, if a user has sent10 queries
with a commond, then he is subsequently allowed to send only one query in1 minute period. The key to
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the detection of these attacks is detecting the use of a commond in a sequence of queries. This method
could be problematic if a user queries the database in such a way that it appears that a commond is
being used (such as always querying with2 significant figures).

As the experimental results highlighted, the probing algorithms using query histories perform well. An
additional complication is that random probing with query histories does not use a commond. Therefore,
detecting such attacks is more difficult than the organized ones. However, the strength of these strategies,
using query histories, may also be a weakness. The queries sent after a queryq should not have a probe
point such that the corresponding voronoi region of that point completely lies in the region covered byq
and its answer. By storing the topm queries with their results according to the spread of their coverage
for a user, we can check if the user avoids sending unnecessary queries or not. According to the number
of queries do not include any unnecessary ones, the user can also be limited as described for the previous
case.

Detecting this class of attacks requires a more complicated structure. To store the information, we use
need a space-efficient lightweight data structure. We use a bloom filter for this purpose. We insert the
client IP address into the bloom filter. This address uniquely identifies the computer used to send the query.
The insertion sets several bits in the bloom filter. Upon receiving a query, the filter is checked to see if
the corresponding bits are set. If they are then the query is rejected. Otherwise, the corresponding bits
are set. To reduce the cost of bloom filter operation, we can insert a query into the filter probabilistically.
In this case our detection scheme will also be probabilistic. Assume that the query is inserted into the
bloom filter with probabilityp. Let Z count the number of failures (queries not inserted into filter) prior
to the first success (query inserted into the filter). Then,Z has a geometric distribution with parameter
p. The probability mass function ispZ(k) = (1 − p)kp and E[Z] = 1−p

p
. So, givenp expected number

of failures prior to first success is1−p
p

and total number of trials is1−p
p

+ 1 We can choosep depending
on how many queries we are willing to let from a given user. For example, if we choosep = 0.1 then,
1−0.1
0.1

+ 1 = 10 queries from a single client will be accepted on the average. In order to havem queries
to be accepted,p should be 1

m
. The probability that more than desired number of queries is accepted can

be computed as follows
∞∑

k=m

p(1− p)k = p
(1− p)m

p
= (1− p)m.

III. V ULNERABILITIES IN SCOREMODEL

In the score model, upon receiving a similarity queryx from user, the database responds with similarity
score‖ x− y ‖ [22]. As only the distance from the query point to the closest data point in the database
is returned, c will be used instead ofc1 in this section. The attack strategy will initially be explained for
2 dimensions usingl2 (Euclidian) distance and then will be generalized to n dimensions using lp norm as
distance metric.

n = dimensionality of vectorsx andy
q1 = sim search([0, 0, ...0])
for i= 1 to n do

q2 = sim search(createV ector(n, i, 1))
yi = (q2

2 − q2
1 − 1)/− 2

Fig. 12. Algorithm to discover y

We will first focus on a simple version where a database has only asinglen-dimensional vectory. By
using the algorithm given in Figure 12, the vectory can be discovered usingn + 1 queries. So, for2
dimensions3 queries are needed. The functioncreateV ector(d, i, v) creates ad dimensional vector which
has 0 in all dimensions butv in the ith dimension.

Lemma 3.1:Algorithm in Figure 12 discoversy.



13

Proof: Considerith iteration of the loop. We haveq1 = (
∑n

k=1(yi)
2)1/2 and q2 = ((yi − 1)2 +∑n

k=1,k 6=i(yi)
2)1/2. By simple algebra we getq2

2− q2
1 = −2yi +1. We can solve this equation to findyi.

(1/2,1)

(0,0)

(0,1)

Fig. 13. Example on score model

Now let us consider a database with large number of tuples. In this case, the algorithm in Figure 12
can not be used since queriesq1 and q2 can return scores based on different vectors in database. The
example shown in Figure 13 returns a score of1 for similarity search(0, 0) and returns a score of1/2
for similarity search(0, 1). These are not comparable since their distances are to different nodes.

To discover every point in the database, closely located queries need to be sent to make sure that all the
queries return a score to the same data point. Assume that the whole space is divided into equally spaced
squares as in the general scheme of reply model and that the length of an edge of the square, which
is also the distance between two consecutive probes, isc′. In the best case, (n+1)=3 probes having the
coordinates x,y,x,y+c′,x+c′,y are required to return score to the same data point to guarantee discovering
it. Recall that in the score model we have the probes and the associated scores, but do not have any
information identifying the data point for the returned score. Therefore, to discover data points when the
databases use the score model, we must take advantage of all the information at hand: the returned scores
and the distance between probes,c′. The task becomes finding a probe distancec′ such that putting a
condition on the returned scores for the nearby probe points guarantees that the score returned by each
of them is to the same data point. In the following lemma we put a condition, maximum score, on the
returned distance for a probe to guarantee that each of itsc′ distanced neighbors returns a score to the
same data point.

Lemma 3.2:Let the score for a probep = (x, y) be δ whereδ ≤ c
4

and the closest point to probep
be q = (s, t), then the closest point to probesp2 = (x + c

4
, y), p3 = (x − c

4
, y), p4 = (x, y + c

4
), and

p5 = (x, y − c
4
) is q = (s, t).

Proof: Consider the distanced(p2, q). By triangle inequality we haved(p2, q) ≤ d(p2, p)+ d(p, q) ≤
δ + c

4
. Therefore,d(p2, q) ≤ c

4
+ c

4
≤ c

2
. Sincec is the smallest distance between pairs, closest point to

probep2 = (x + c
4
, y) is q = (s, t). Proofs forp3, p4, p5 are similar.

The required distance,c/4, andc′, c
4
, are selected such that sum of them is≤ c/2 and at least one of

the corners of the square a data point lies in returns a score≤ the required distance,c/4 to the point.
Algorithm shown in Figure 14 utilizes lemma 3.2 to discover all points in a two dimensional space.

Theorem 3.1:Algorithm in Figure 14 discovers the whole database.
Proof: To make the proof complete we need to show for each data point that

(1) at least one probe exists such that distance between
the probe and the data point is≤ c

4
and

(2) algorithm guarantees to find the data point.

The proof for each item will be made separately.
(1) Since voronoi regions cover the whole region, each data point lies in a square having edge ofc

4
.

Hence, the longest distance between a data point and the nearest corner of the square it lies into can be
c
√

2/8 which is less thanc/4. Thus, at least one of these probes will return a score≤ c
4

to the point.
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α1 =du1−l1
c/4

e+ 1

α2 =du2−l2
c/4

e+ 1

for i= 0 to α1 − 1 do
for j= 0 to α2 − 1 do

probe[1] = l1+i c
4

probe[2] = l2+j c
4

disti,j = dist search(probe)

for i= 0 to α1 − 2 do
for j= 0 to α2 − 2 do

if disti,j ≤ c/4

y1 =

dist2
i+1,j

−dist2
i,j

c/4
−2(l1+i c

4
)−c/4

−2

y2 =

dist2
i,j+1

−dist2
i,j

c/4
−2(l2+i c

4
)−c/4

−2

if y not in database
savey

Fig. 14. Solution for Score model with General Probe Algorithm

(2) As stated by Lemma 3.2, each of the probes with indices{i, j}, {i+1, j} and{i, j +1} returns the
distance to the the same data point if the returned distance for{i, j} ≤ c

4
. Let us call this data pointy. We

havedisti,j = ((l1+i c
4
−y1)

2+(l2+j c
4
−y2)

2))1/2 anddisti+1,j = ((l1+(i+1) c
4
−y1)

2+(l2+j c
4
−y2)

2))1/2.
By simple algebra we getdist2i+1,j−dist2i,j = c

4
(−2y1 +2(l1 + i c

4
)+ c

4
). We can solve this equation to find

y1. We can findy2 similarly by considering probe with indices{i, j + 1} instead of{i + 1, j}. Since we
have shown that such a probe exist for each data point, the algorithm will discover the whole database.

For 2 dimensional space, the probe points are placed at the center of the squares in the reply model,
whereas in score model they are located at the corners. Therefore, instead of the floor operation, the ceiling
operation is performed while the total number of divisions for each dimension is decided. The distance
between two consecutive probes in reply model,ck/

√
2, is selected such that at most2 point(s) will be

in each square. Hence, each point is returned as an answer for at least one query. In the score model,
the distancec/4 is selected to guarantee that for each data point, at least one of the probes belonging to
corners of the square that the data point lies in returns a score less than or equal to the required distance,
c/4. Therefore, there is at least one probe withinc/4 distance to each point and by using Lemma 3.2 the
point can be discovered.

A. Extension to n Dimensions and lp norm

We will extend the solution presented for2 dimensions ton dimensions in three steps. As a first step,
we will show that there is a solution for the simple case where the database has only one point. Then
the function to calculate the total number of probes in n dimensions is provided. This function depends
on the distance metric (lp norm) andn. The last step is to generalize Lemma 3.2, on which solution was
built, to the case where we have n dimensions and use thelp norm as the metric.

Definition: 3.1: lp norm betweenn dimensional vectors x and y is defined aslp(x, y) = (
∑n

i=1 |xi −
yi|p)1/p.

The solution shown in Figure 15 is an extended version of the solution in Figure 12. There are two
differences between these solutions. The first difference is that we send a value of−1 instead of a value of
1 in the appropriate dimension when we are gathering information about a dimension. The other difference
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q1 = sim search([0, 0, ...0])
for i = 1 to n do

q2 = sim search(createV ector(n, i,−1))
Computeyi

Fig. 15. Algorithm to discovery

is that while for2 dimensions usingl2 norm we can find an exact solution foryi, we can only show that
a unique real solution exists for n dimensions usinglp norm.

Theorem 3.2:Algorithm in Figure 15 discoversy for every lp.
Proof: Considerith iteration of the loop. Using the definition oflp norm, we have

q1 = (
n∑

j=1

|yj|p)1/p

and

q2 = (|yi + 1|p +
n∑

j=1,j 6=i

|yj|p)1/p

By using above equation we have

qp
2 − qp

1 = |yi + 1|p − |yi|p

Left hand side is known since we knowq1, q2 andp. As q1 andq2 are returned for the same data point,
we know that this equation has at least one real solution,yi. Therefore, we need to prove the uniqueness
of the solution to discoveryi. We need to show that this is an increasing function in each of the possible
3 intervals,≥ 0, [−1, 0), and< −1, to prove the uniqueness of the solution.
¦ yi ≥ 0: The expression becomes(yi + 1)p− (yi)

p. If we take the derivative with respect toyi we get

p(yi + 1)p−1 − p(yi)
p−1

Sincep ≥ 1 above expression is always positive. Therefore, in this interval the function is increasing.
¦ −1 ≤ yi < 0: The expression becomes(yi + 1)p − (−yi)

p. If we take the derivative with respect to
yi we get

p(yi + 1)p−1 + p(−yi)
p−1

Above expression is always positive therefore, in this interval the function is increasing.
¦ yi < −1: The expression becomes(−(yi + 1))p− (−yi)

p. If we take the derivative with respect toyi

we get
−p(−(yi + 1))p−1 + p(−yi)

p−1

If we reorganize the expression we get

p((−yi)
p−1 − (−(yi + 1))p−1)

Since the first term in the parenthesis is always greater than the second one, the derivative is always
positive in this interval. Hence, in this interval the function is increasing .

Since the function is increasing in all of the intervals, it is an increasing function. As a result, independent
from p we have a unique real solution foryi and it can be computed by Newton’s method.

As shown for the reply model, the total number of probes forn dimensions is found by multiplying
the number of probes needed for each dimension separately. The following theorem considers this fact
and the gives the method to find the common distance between closest probes,c′.

Theorem 3.3:For score model, general scheme inn dimensions utilizinglp norm as the distance metric
requires

∏n
i=1dui−li

c′ e+ 1 probes to discover all elements of ann dimensional database wherec′ is equal
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to the minimum ofc/4 and c
2(n)1/p .

Proof: The general scheme divides the whole space into hypercubes having an edge ofc′ which is
selected to guarantee that the returned score for at least one of the probes belonging to the corners of
the region that a data point lies in is≤ the required distance,c/4. To make this guarantee,c/4 should be
the longest distance between a point and its closest probe. Hence, the diagonal of the hypercube should
be c/2 and an edge of it,c′ should be c

2(n)1/p . However, we should also consider the requirement thatc′
should be≤ c/4. So,c′ is the minimum of c/4 and c

2(n)1/p for n dimensions using lp norm.

Lemma 3.2 is at the heart of the solution for 2 dimensions usingl2 norm shown in Figure 14. The
extended version of this Lemma should be used for the solution forn dimensions usinglp norm. We will
not make the proof, instead we will verify that the sum of the required distance,c/4 and thec′ is ≤ c/2.
The value ofc′ for n dimensions usinglp norm is given in Theorem 3.3 as the minimum ofc

2(n)1/p and
c/4. So, the sum will be less than or equal toc/2. As a result, if the distance returned for a probe is less
than or equal toc/4, all probes which are in thec′ distance to this probe will return a score to the same
data point. In total, there are2n such probes.

The proof outline for proving the existence of a unique real solution when the database contains a large
number of data points, and the probe that has a score≤ c/4 is considered with itsc′ neighbors is to
follow the same path as Theorem 3.2. It is trivial if the path of this proof is followed.

B. Experimental Results

In the score model, due to the nature of the solution, only the organized algorithms can be used.
Therefore, we implemented general probing with query histories and progressive probing with query
histories. Since we do not utilize any distance> c/2 while discovering a data point, we used already sent
queries to eliminate probes which have scores more than> c/2. Results for the data sets described in
Section II-G are given in Figure 16.

Because of the leveling strategy used in the progressive model, queries that are next to each other are
not sent until the last level. Therefore, this strategy does not find any points until it starts to send the
probes on this last level. On the other hand, the distribution of probes resulting from the progressive
scheme eliminates more probes than the general scheme. This phenomenon is shown in the graphs in
Figure 16. The progressive scheme does not begin to discover points until the general scheme has already
discovered about half the database, but it completely discovers the database before the general scheme
does. Depending upon when a potential attack detection method catches the attack, one of these two
schemes can be preferred.

Results for both of these models show that similarity search based systems are vulnerable and protection
mechanisms must be designed to protect them.

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000

# 
of

 p
oi

nt
s 

di
sc

ov
er

ed

# of queries

Performance of Different Probing Schemes for Latitude Dataset

General_wh
Progressive_wh

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

# 
of

 p
oi

nt
s 

di
sc

ov
er

ed

# of queries

Performance of Different Probing Schemes for Skewed Dataset

General_wh
Progressive_wh

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000 40000

# 
of

 n
od

es
 d

is
co

ve
re

d

# of experiments

Performance of Different Probing Schemes for Clustered Dataset

General_wh
Progressive_wh

0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000 80000

# 
of

 p
oi

nt
s 

di
sc

ov
er

ed

# of queries

Performance of Different Probing Schemes for Patient Dataset

General_wh
Progressive_wh

Fig. 16. Performance of General and Progressive probing using history

C. Attack Detection

Potential attack detection scenarios for both schemes were discussed in section II-I. In this section, a
score model specific detection model will be introduced.
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We know that two similarity queries with 1 dimension differing byc′ should be sent to reveal a specific
dimension of a vector. If we sum all coordinates of query points, then the two queries used to attack a
given tuple will differ by c′. Therefore, we can represent each query point by a single number. We will
use a data structure to store query points. When a new queryqnew is received, we first find the sum of
all coordinates and then search the data structure to see if there is a node which differs from sum of
coordinates of the query pointqnew by c′. If there is such a node then the database server denies this
query otherwise it responds to the query.

We can use hashing to deny similar queries by the same user by combining the identifier for user with
the sum of attributes of the query vector. For example, for a user with IP address 192.80.25.6 and query [2
5 8.2] in 3 dimensions, we sum the attributes of vector to get 15.2 and we concatenate it with IP address
to get 192080025006015.2. Note that we pad individual fields of IP addresses with 0’s to get a number
with same number of digits. Here we assume that score of similarity search will be less than 1000. We
use a bloom filter to store this information since bloom filters are space-efficient and lightweight. We
drop the fractional part and insert 192080025006015 into the bloom filter. Another query from the same
machine with vector sum of 15.* will be denied.

Distributed attacks are harder to detect in any model, and the score model is no exception. Depending
on how many nodes are potentially involved in the attack, we can use slightly different detection strategies.
The difference will be the IP address used. There are 3 different types of IP addresses. IP addresses are
in the form of A.B.C.D where A,B,C and D are 8 bit binary numbers. Some domains have at most28

computers connected to them. Such domains will have the same A,B,C components in the IP address
only D components will differ for machines in these domains. Some domains can accommodate216

computers and have the same A and B fields in addresses. The third type of domains can accommodate
224 computers and have the same A fields in their addresses. Detection of distributed attacks will be based
on how distributed the attack can be. For example, all computers in a lab will have same A,B and C fields
in their IP address. To detect attacks launched used multiple computers in a lab, we can combine the A, B
and C fields of IP address with sum of attributes of tuples and use this number in hashing. For example,
for a user with IP address 192.80.25.6 and query [2 5 8.2] in 3 dimensions we insert 192080025015 into
the filter. The only way to detect truly distributed attacks (multiple computers from different domains) is
to use only the sum of attributes in hashing. This may result in some legitimate queries being denied.

As the number of queries increases, the data structure used to store the information will grow. The
structure can be maintained for a certain amount of time and then a new data structure can be started.
With this model, queries by the same user sent in the lifespan of the data structure will be denied. We
can partition the database and use different data structures for each partition. This approach will alleviate
the scalability problems caused by the data structure. Another approach for scalability is a probabilistic
approach. We can insert a query into this data structure based on some probability. Using this approach
the number of nodes in the data structure will be lower and queries are denied probabilistically.

IV. COMPARISON OFREPLY MODEL AND SCOREMODEL

If no attack detection scheme is used both models are vulnerable. However as the results of experiments
for score model and reply model with k=1 shows, the number of queries needed to obtain the contents
of the database in score model is much larger than the number needed for reply model. In reply model at
leastN queries and in score model at least(n+1)N queries needed to be sent to learn the contents of the
database. However, due to the nature of the question in score model, selectedc′ is 1/2

√
2 (when equal to

c/4) times that ofck′ in reply model. Therefore, the number of queries needed by the common probing
algorithms to discover whole data set varies according to the ratio between the edge of the hypercubes
rather than (n+1). For example for 2 dimensional data set this ratio is about 1/8.

In score model attacks are limited, very close queries should be sent to the database to learn information
and these can be detected without using much information. It is enough to store only the sum of attributes
of the tuples. Close queries will have similar sum and these can be detected. In reply model based on
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common increment factor for all dimensions or number of necessary queries we limit the number of
queries that can be sent by a single user in some fixed time interval. This can be implemented efficiently
by using hash table and the attributes needed for a user such as timestamp, IP address, common increment
factor and top m queries.

V. ATTACK DETECTION IN REPLICATED DATABASES

We considered a single copy of the database. If the database is replicated then attackers can send similar
queries to the different copies and avoid being detected. Therefore for replicated databases distributed
attack detection schemes should be used. All the copies of the database should jointly decide whether the
query sent to one of the copies should be denied or not.

For score model a detection scheme is as follows: Whenever a copy receives a query it sends the value
to be hashed (can be IP address concatenated with sum of attributes or only sum of attributes depending
on what is hashed) to other copies of the database. Upon receiving a check request, other copies use the
bloom filter table to see if they had received a similar query in the past or not. If they have not received a
similar query they send an accept message to database which originally received the request. If all other
copies send accept messages then the database accepts the query and sends the score to user.

Communicating a single number serves two useful purposes.
• It preserves the privacy of the copy of the database which received the request.
• It is communication efficient since instead of 100s of attributes only a single number is sent.
The databases can combine the data structures into a single structure by using the union property of

bloom filters. LetB(i) be a bloom filter for databasei that stores the queries sent to databasei. Then, the
bloom filter for all the queries can be computed as

∨k
i=1 B(i) where

∨
denotes the bitwiseOR operation

on the filters.
In score model we can also use a centralized detection scheme by using a centralized bloom filter

containing requests from all the copies. In this case, the database waits for permission from the central
detection server to respond to the query.

In reply model detection can be performed by limiting the number of queries sent by a single user
to any copy of the database. This can be done using a distributed algorithm or a centralized algorithm.
However, number of items shared within the nodes is much larger than the ones for score model. So, our
proposed solutions for detection can easily be extended to replicated databases.

VI. CONCLUSION

In this paper we showed the vulnerabilities of similarity search based systems against malicious
discovery through automated similarity queries. We addressed two kinds of similarity searches,reply
modelandscore model. In reply modelthe most similark data points to a query are returned whereas the
similarity score to the closest data point is returned inscore model. We stated that both systems reveal data
if automated queries are sent and measures must be taken to detect and deny such queries. We identified
possible attacks in both models and develop strategies against them. Reply model is the natural choice for
the majority of the applications, but it is clearly more vulnerable to attacks based on automated requests.
Our experimental results for reply model showed that ask increases the percentage of the points learnt
by sendingm automated queries for a database ofm points increases from 15% to 100%. For example,
for a data set with 1000 data points, only 200 queries were enough to identify the whole data set. When
the score model was used, only 2% of the data was revealed in the same experiment. Score model is less
vulnerable since it requires much larger number of queries and attacks are easier to detect. We proposed a
detection scheme for both models that utilizes common divisor for all dimensions or necessary queries to
determine the time interval in which only a single query is accepted from a user. In addition, a detection
technique is developed based on hashing a value composed of IP address of users and a single number
(sum of attributes of query) based on query sent for score model. We also extended proposed schemes to
detect attacks to replicated databases.
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Web-based search engines and many biomedical and clinical databases utilize similarity search as
their major type of query. We proposed a number of techniques that protect the proprietary and private
information in these databases while keeping them functional. More sophisticated data mining techniques
can be utilized to detect malicious discoveries. Quantitative measures are needed to evaluate the detection
schemes in terms of their power to minimize number of false denials (denied legitimate queries) and
missed attacks (attack queries identified as legitimate).
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