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Abstract

Angular similarity measures have been utilized by several database applications to define semantic

similarity between various data types such as text documents, time-series, images, and scientific data.

Although similarity searches based on Euclidean distance have been extensively studied in the database

community, processing of angular similarity searches has been relatively untouched. Problems due to

a mismatch in the underlying geometry as well as the high dimensionality of the data make current

techniques either inapplicable or their use results in poor performance. This brings up the need for

effective indexing methods for angular similarity queries. We first discuss how to efficiently process

such queries and propose effective access structures suited to angular similarity measures. In particular,

we propose two classes of access structures, namelyAngular-sweepand Cone-shell, which perform

different types of quantization based on the angular orientation of the data objects. We also develop

query processing algorithms that utilize these structures as dense indices. Proposed techniques are shown

to be scalable with respect to both dimensionality and the size of the data. Our experimental results
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on real data sets from various applications show two to three orders of magnitude of speedup over the

current techniques.

Index Terms: Angular query, Performance, Indexing, Angular similarity measures, High dimen-

sional data.

I. I NTRODUCTION

Similarity measures based on angular distances have been effectively utilized in a wide range of

modern database applications. The general approach is to first generate a multi-dimensional feature

vector for each data object, then use an angular distance between representative vectors as a measure

of similarity in the semantic space. For example, the cosine angle measure computes the difference

in direction, irrespective of vector lengths, where the distance is given by the angle between the two

vectors. Being scale-invariant is a particularly useful property in heterogeneous or real-time databases

since preprocessing for normalization is not required [30]. In fact, angular measures are closely related

to the Euclidean distance metric. However, depending on the application, there are cases where one

measure is preferred over the other.

A. Applications

Angular measures have been used to compare a large variety of data types. We list some examples

below.

Astronomy and astrophysicsThe apparent positions and separations of constellations and objects in

the sky are not determined by the linear distances between two objects but by their angular separation.

Their positions are related to angular distances or angular separations from well known or readily

identified reference positions or objects. The standards to measure some distances are the angles between

imaginary lines coming from the objects or positions of interest and intersecting at the eye of the

observer. In order to determine an arc-angle or distance between two vectors, the dot product and the

Cartesian difference of the vectors are used. Being the natural underlying distance measure, angular

measures are commonly used in querying astronomical data [41], [4], [36], [24].
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Aviation An angular query in an Air Traffic Control (ATC) system is to find all objects within the

flight route of the plane [13]. The route consists of several segments of lines and the query is defined as

a series of cones because of the uncertainties as the distance from a starting point increases. Similarly,

an angular query can be defined in a Space Transportation System to check the objects, e.g., satellites,

within the route of a spacecraft [23].

Graphics Data processing based on angular regions are common in computer graphics applications.

With spot light sources, to make an appearance determination of an object, a cone is specified and a

spot direction which provides the center of the cone is defined. The light source to a surface direction

and the inner product with the spot direction is computed. If the result is less than the cosine of spot

angle, the light source is not visible at that surface [39].

ImagesSimilarity measures for retrieval based on the angular distance are also shown to be efficient

and robust for image processing applications [38], [29]. For example, feature vectors are generated based

on segmentation and pixel analysis, and the angle between query vector and each indexed representative

vector is utilized for a more accurate similarity searching. This is done by first calculating the cosine

of vectors and then computing the angle between them [3], [17].

Protein structures For classifying protein folds and for revealing a global view of the protein

structures, structural similarity measures based on angular distances, i.e. cosine, are utilized to provide

an objective basis. Its efficiency and scale-invariance properties make the angular distance particularly

useful in this domain [2], [16], [11].

Text documentsAngular similarity has been popularly used in information retrieval for semantic

analysis of text documents. After removing the stop words, articles, conjunctions, etc., the number

of occurrences of each word/term is computed and stored as a feature vector for each document

[42], [10], [33], [34], [35], [30], [37], [27]. Since the number of features may be very large, some

information retrieval techniques, such as Latent Semantic Analysis (LSA/LSI) [1], [14], [15], apply

some preprocessing to reduce the dimensionality of the vectors. Similarity between documents is then

measured as the cosine of the angle between these feature vectors [35], [42], [10], [30].
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Time series Correlation measures, which are angular distances for standard vectors, are widely

used in the analysis of time series data [25], [31]. There have been recent studies that apply a

spatial autocorrelation among spatial neighboring time series by locating them on the surface of a

multi-dimensional unit sphere. Then the correlation coefficient (r) of these transformed time series is

formulated in terms of the cosine of the angle between them [43], [44]. Actually, any transformation

ending up with time series whose mean is zero, makes the same effect, i.e.,r of the new two series is

equal to the cosine of the angle between them.

The proposed techniques are targeted towards the applications that use a single origin for measuring

the angular similarity. This is the case for most of the applications presented above, including images,

protein structures, text documents, and time series analysis. Extensions are needed for the proposed

techniques to be utilized in dynamic geographic applications, such as the aviation, where the angle

needs to be dynamically computed with respect to changing origins.

B. Technical Motivation

For efficient processing of queries, indexing support is vital, and angular similarity queries are no

exception. An angular similarity query corresponds to the shape of a conic in the geometric space.

On the other hand, current index structures, including well-known families of R-trees [21], [5], grid

files [28] and VA-Files [40], use rectangles and/or circles as the underlying geometric shapes. Similarly,

partitioning-based approaches [9], [18] use an incompatible organization of the space. On the other

hand, a popular similarity measure,cosine, is not a metric space function (which is the building block

of M-trees) since it does not satisfy the triangle inequality, and for this reason, M-trees [12] can not be

applied. Due tomismatch of geometriesand high dimensionality of the feature space, current techniques

are either inapplicable or perform poorly for applications that utilize angular distances. They have a

poor performance even when the data objects are transformed into their native domain where they were

originally developed (e.g., normalizing the data to use Euclidean distance). The need is further amplified

for higher dimensions, where the current techniques retrieve the majority, if not all, of the disk pages

that do not include any related information.
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C. Our Approach

We propose access structures to enable efficient execution of queries seeking angular similarity. We

explore quantization based indexing, which scales well with the dimensionality, and propose techniques

that are better suited to angular measures than the conventional techniques. In particular, we propose

two classes of scalar quantizers and index structures with query processing algorithms. A quantizer is

designed for each data object considering its angular orientation. It is based on a partitioning technique

optimized for angular similarity measures which results in significant pruning in processing of angular

queries. The first technique partitions the space into multi-dimensional pyramids, and quantizes the data

based on the partitions in a sweeping manner. The second technique quantizes the partitions following

a shell structure.

Among the current techniques that are comparable with the proposed approaches for angular queries,

VA-Files is the most convenient and has the best performance, and that is discussed in Section II-B. For

this reason, the performance of angular range and k-NN queries are analyzed and compared with VA-

Files, on synthetic and real data sets from a variety of applications mentioned earlier. Experimental results

establish that each proposed technique has its unique advantages, and they both achieve a significant

performance improvement over VA-Files (e.g., three orders of magnitude speedup for angular range

queries over a text data set).

The paper is organized as follows. In the following section, we present a background information

about angular similarity and quantization based approaches. We highlight the problem behind the con-

ventional techniques and briefly introduce our approach. In Section III, we describe our first quantization

technique and give details about the processing of angular range and angular k-NN queries. Section IV

describes our second technique and explains the query processing. Representative experimental results

are presented in Section V. Section VI concludes the paper with a discussion.

II. BACKGROUND

In this section, we first define similarity queries with angular measures, e.g., cosine, inner product,

and correlation coefficient, and then describe the quantization approach for high dimensional indexing.
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Fig. 1. Angular range query

A. Angular Similarity

An angular range query is defined by(Q, α), whereQ is the query point(q1, q2, . . . , qd) in a d

dimensional space, andα denotes the angle that represents the range, and seeks all data in the cone

whose axis (OQ) is the line defined by the originO and the query point,Q, and whose apex or the

vertex is on the origin as illustrated in Figure 1. The angle between the axis and all the lines on the

lateral surface of the cone isα. All the feature vectors that are equally similar to the query vector are

on an equivalence region which corresponds to a conic surface.

If a feature vector is represented asX(x1, x2, . . . , xd), the cosineangle measure (a widely used

similarity measure) is defined by the following formula

cos(α) = (

d∑
i=1

xiqi)/(||X|| · ||Q||) (1)

Without loss of generality, if we assume the query point to be normalized, then Equation 1 can be

simplified tocos(α) =
∑d

i=1
xiui

||X|| , whereU(u1, u2, . . . , ud) is the unit normalized query. Additionally,

if the feature vectors are also normalized, then the equation becomes theinner productof the query

with a feature vector in the domain. Similarly, Pearson’scorrelation coefficient[20], another popular

measure, can be defined as the inner-product of two vectors when they are standardized, i.e., the means

of the new vectors are0 and the standard deviations are1.

For simplicity, we based our initial discussions on a 3-dimensional model, which will later be

extended to higher dimensions. LetQ be a 3-dimensional query point, andu = (u1, u2, u3) be the unit

vector which is the normalization of the query vector. That is,ui=qi/
√

q2
1 + q2

2 + q2
3 for i = 1, 2, 3.
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The expression for an equivalence conic surface in angular space is the following equation.

(x1u1 + x2u2 + x3u3)
2 = (x2

1 + x2
2 + x2

3)cos
2α. (2)

B. Quantization Based Access Structures

A large number of indexing techniques have been proposed in the literature to improve the efficiency

of similarity queries in multi-dimensional data sets. It has been established that the well-known indexing

techniques and their extensions are outperformed on average by a simple sequential scan if the number

of dimensions exceeds 10 [8], [40]. Quantization has been proposed as a more effective alternative to

the tree-based approaches. For example, the VA-File, a dense-index based on scalar quantization, has

been shown to be superior to the traditional techniques [40]. In this technique, the data space is split into

2b rectangular cells whereb is the total number of bits specified by the user or the system requirements,

such as available memory. Each dimension is allocatedbi bits, which are used to create 2bi splits in

the corresponding dimension. As a result, each cell has a bit representation of lengthb which is used

to approximate the data points that fall into the corresponding cell. The dense index, e.g. VA-File, is

simply an array of these bit vector approximations (bit-strings) based on quantization of the original

feature vectors. There have been extensions to VA-Files, e.g., IQ-tree [6] and A-tree [32], which are

proposed to build the VA-File in a hierarchical way. From now on, we will interchangeably use the

termsbit vector approximationandbit-string.

The quantization based indices can be used to approximately answer the query without accessing

any real data, or to filter the data and eliminate some of the irrelevant data to give an exact answer. As

an example, exact nearest neighbor queries can be executed as follows. In the first phase, quantized data

is scanned sequentially and lower and upper bounds on the distance of each vector to the query vector

are computed. If a bit-string is encountered such that its lower bound exceeds the (k-th) smallest upper

bound found so far, the corresponding object can be eliminated. In the second phase, the algorithm

traverses the real data that correspond to the candidate set, in the order of their lower bounds. If a

lower bound is reached that is greater than the (k-th) actual nearest neighbor distance seen so far, then

the algorithm stops retrieving the rest of the candidates. Other queries, such as range queries, can be
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executed in a similar way where the first step identifies the candidates using the bit-strings and the

second step computes the actual results. Two-step query processing guarantees that no actual result is

missed.

A VA-File example is given in Figure 2(b). The rectangular partitioning based quantization rep-

resents grid based vector approximations. The data subspace between the arrows shows the angular

query space. The goal is to find the feature vectors (data points) that are in this query space. This space

intersects a large number of approximations (based on the rectangles) and, thus, the technique retrieves

many irrelevant data points. For example, the data pointA will be retrieved since its approximation is

intersected with the query space, althoughA itself is not in the query space, and there will be many

irrelevant points likeA. In higher dimensions, the number of similar points gets higher and they cannot

be eliminated.

All of the above mentioned techniques are specifically developed for Euclidean or general metric

spaces. Due to a mismatch of geometries, they are either infeasible or ineffective for our purposes.

For instance, our experiments on an adaptation of conventional VA-Files for angular measures (by

normalization) show a very significant degradation on the performance. Similarly, Figure 2(a) depicts

the partitioning structure of the Pyramid technique [9] which obviously has more irrelevant points due to

geometric mismatch. We compared our techniques with VA-Files which achieves the best performance

for current approaches.

The only work that is considering the geometry mismatch problem into account is a declustering
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technique based on a conical partitioning [19]. However, this approach works only for uniform data

and does not scale up with dimensionality, hence it is infeasible for the mentioned applications. There

is a need for access structures that scale well with dimensionality and that are optimized for angular

similarity measures which are used in several database applications.

III. A NGULAR SWEEPQUANTIZER (AS-Q)

We propose novel access structures based on an effective quantization of the data objects using

their angular orientations with respect to the origin. A bit-string for each object is generated based on

their angular positions as opposed to their values in each dimension. For 2 dimensions, the underlying

partitioning for our quantization technique is illustrated in Figure 2(c), which is much better suited

for angular queries than pyramidal or rectangular structures in Figures 2(a) and (b). For the clarity of

the development, without loss of generality, we assume that the data space is a unit hypercube, i.e.,

[0...1]d, and we only use the positive coordinates. The formulations do not depend on this assumption and

knowing the limit values (minimum and maximum) for each dimension is enough for the development. In

this section, we describe Angular Sweep Quantizer (AS-Q), our first access structure for high dimensional

angular similarity searches. We first describe the partitioning used as a basis of the quantizer and develop

a dense index by an effective quantization of the data. We then describe how to process range andk-NN

queries.

A. Data-Space Partitioning

The first step for the AS-Q technique, ford number of dimensions, is to divide the data space intod

major hyperpyramids, each having the side planes of the unit hypercube as the base area, and the origin

O = (0, 0, . . . , 0) as the apex. Figures 3(a) and (b) illustrate the 3-dimensional example of a major

pyramid whose base isx = 1 plane. Note that for 3-dimensions, there are 3 major pyramids (whose

bases arex = 1, y = 1 andz = 1 planes - or squares) that cover the entire data space, namely unit cube.

The major pyramids are then divided into sub-pyramids as shown in Figure 3(c). The sub-pyramids can

be constructed either as equi-volumed, or as equi-populated as will be discussed in Section III-B. These
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Fig. 3. Underlying partitions for the first technique

sub-pyramids are the underlying partitions for the quantization, and a bit-string will be derived for each

of them.

B. Angular Sweep Quantization

Bit Allocation Once the partitioning is performed, the next step is to develop a bit allocation

scheme where each partition is assigned to a bit-string. The number of bit-strings allocated for a major

pyramid is equal to the number of sub-pyramids in that major pyramid, and thus proportional to the

number of data points in the major pyramid (i.e., the higher the number of data points, the higher the

number of assigned bit-strings). Hence the partitions are assigned non-uniform number of bit-strings,

which is well suited to the distribution of the data.

The pyramids are defined by the equations of their enclosing planes. For instance, in 3-dimensions,

the pyramid formed by the origin and the base planex = 1, is enclosed by the planesx = y, x = z,

y = 0, z = 0, andx = 1. We mainly name a major pyramid by its base plane, i.e., “x=1 major pyramid”.

Representing the dimensionsx, y, z by x1, x2, x3 respectively; a particular pointPk(x1, x2, . . . , xd) is

contained in major pyramidxdmax = 1, wherexdmax is the dimension with the greatest corresponding

value, i.e.,∀i(xdmax ≥ xi). For instance in 3-dimensions, P(0.7, 0.3, 0.2) will be in “x1=1 major

pyramid” since 0.7 (x1) is greater than both0.3 (x2) and 0.2 (x3). The bit allocation scheme is as

follows.
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For d dimensions, a data setP consisting ofN points, and total number of bitsb. Let Pop(i)

give the population for major pyramidi, andBS(i) is a list that will keep the bit-strings assigned

for that major pyramid in sorted order.

1) For each major pyramidi, find Pop(i).

2) For each major pyramidi, assign the nextPop(i)
N × 2b bit-strings toBS(i).

Generating Bit-Strings Major pyramids are sliced into sub-pyramids as we mentioned before. For

example, in Figure 3(c),x = 1 major pyramid is sliced according toy dimension, i.e.,y is the split

dimension forx = 1. Similarly, z = 1 major pyramid is sliced according tox dimension, and in this

casex is the split dimension forz = 1. The number of bit-strings allocated to each major pyramid

is determined on the basis of this chosen split dimension. This dimension could be the one with the

greatest spread or with the greatest variance. Alternatively, the split dimension could be chosen in a

systematic manner. For instance, for all dimensions except the first dimensionx1, the base planes of the

major pyramids can be divided according to the first dimension,x1. And the first dimension,x1, can

be divided with respect to any of the others, sayx2. Another approach would slice the major pyramids

in round robin manner. For instance,x1 = 1 according tox2, x2 = 1 to x3, x3 = 1 to x1 (in a cyclic

manner). In the subsequent formulations, without loss of generality, we assume that the major pyramids

are sliced in this manner, i.e.,xi = 1 with respect toxi+1 for i < d, andxd with respect tox1. The

only reason for this assumption is the simplification of implementations.
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We utilize both equi-volumed and equi-populated partitionings. In the equi-populated version,

each bit-string represents an equal number of data points, as illustrated in Figure 4(b). Equi-volumed

partitioning, as shown in Figure 4(a), is easier to compute and store. In order to produce a bit-string for

a given data pointPk, the following general algorithm is used for both equi-volumed and equi-populated

partitionings.

Algorithm: In a major pyramid, letR(Pk) be the rank of the sub-pyramid (approximation) for

point Pk, 1 ≤ k ≤ N .

1) For eachPk, find R(Pk).

2) The bit-string for eachPk will be the R(Pk)th bit-string in BS(i).

Equi-population method sweeps the data points in a major pyramid in the chosen split dimension

until the required number of points are found. Then the boundary values (i.e.,M1, M2, M3 in Fig-

ure 4(b)) of the split dimension are stored as the demarkation of the equivalence regions each of which

corresponds to an approximation. While this technique takes into account the data distribution for a

better performance, it also requires a large amount of storage for higher order bits.

C. Processing Angular Range Queries

An angular range query, defined in Section II-A, seeks all data similar to a given query within a

given angular thresholdα. To process such queries, we need to first identify the candidate approximations

which intersect the conic query volume. The second step computes the actual results among the

candidates.

Filtering Step For 2-dimensions, Figure 5(a) represents four underlying partitions (whereA1 and

A2 are inx1 = 1 major pyramid, A3 andA4 are inx2 = 1 major pyramid) and the unit square is

the data space. The easiest way to decide whether an approximation intersects the range query space, is

to look at the boundaries of the unit square which are not intersecting the origin. Here, these boundaries

are the line segments from point (1, 0) to (1, 1) and from (0, 1) to (1, 1). Thus, finding the pointsK1

andK2 in Figure 5(b) will be sufficient to decide whether approximationsA1 andA2 (in Figure 5(a))

intersect the query space or not. We only need to compareK1 & K2 with M & N .
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Fig. 5. Range query filtering approach

The query volumes will intersect all the infinite boundary planes that do not intersect the origin.

Some intersections will be outside the unit hyper-cube. This can be used to eliminate some of the

approximations. For 2-dimensions, the query in Figure 5(b) intersects both infinite boundary lines (i.e.,

x1 = 1 x2 = 1). However, the query does not intersect thex2 = 1 line within the boundaries, i.e.,

K3 andK4 are outside the unit square. In this case, the approximationsA3 andA4 are automatically

eliminated. In 3-dimensions, in a similar case, major pyramidx2 = 1 is totally eliminated.

However, if the query intersects a plane within the boundaries, then our goal is to find minimum

(min) and maximum (max) values of the query on the boundary. For instance, in Figure 5(b)K1 and

K2, in Figure 5(c)max(x2) andmin(x2) will be such values.

Obtaining min and max values In order to find the ellipse-shaped intersection of the query on

thex1 = 1 plane, which is the base of the major pyramid, the equivalence surface equation (2) is used.

For x1 = 1, the closed form of the ellipse equation is

(u1 + x2u2 + x3u3)
2 − (1 + x2

2 + x2
3)cos

2α = 0. (3)

Lagrange’s multipliers approach is applied to the above equation. To maximize or minimizef(p)

subject to the constraintg(p) = 0, the following system of equations is solved.

∇f(p) = λ∇g(p)

g(p) = 0 (4)
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To compute the extreme values forx2 on x1 = 1, take f(x1, ..., xn) = x2, and g(x1, ..., xn) =

(u1 + x2u2 + x3u3 + ... + xnun)2 − (1 + x2
2 + x2

3 + ... + x2
n)cos2α.

In order to compute the min-max values in a systematic and a fast manner, we arrange the equations

for the min and max values as a linear system, i.e.Ax = B, wherex is the solution set of the system,

andA andB are coefficient matrices.

Identifying query results Once we have the min-max values, we can use them to retrieve the

relevant approximations. These are the approximations in the specifiedα range neighborhood of the

query. We earlier described two techniques for generating approximations - one based on equi-volume

regions and the other on equi-populated regions of the major pyramid. We explain in this section how

this design enables us to use these min-max values to effectively filter unrelated vectors.

For 3-dimensions, in Figure 5(c),min(x2) and max(x2) are the extreme values for dimension

number1 (i.e., forx1 = 1 plane). In Figure 5(c),P1, P2 andP3 represent the base rectangular planes of

the corresponding sub-pyramids inx1 = 1 major pyramid. We filter the approximation which is based

on P1 by utilizing min(x2) andmax(x2) values.

In the general case, given the bounds(mini,maxi) for each dimensioni, the following algorithm

computes the approximations (whose bases are on thexi = 1 plane) we need. The algorithm filters the

non-intersecting approximations.

Algorithm: Filter Approximations

Input: The extremes(mini, maxi) for xi+1 on xi = 1 plane. An empty setSA.

1) For each approximation (a), if min(a) ≥ mini andmax(a) ≤ maxi, thenSA = SA ∪ {a}.

Here,min(a) andmax(a) represent the minimum and maximumxi+1 values on the base of

a.

2) If min(a) ≤ mini ≤ max(a) or min(a) ≤ maxi ≤ max(a), thenSA = SA ∪ {a}.

3) The intersected approximations forxi = 1 plane are now inSA.

The previous algorithm retrieves the approximations intersecting with the angular range query space.

However, some of the data points in these approximations might not be in the query space. We need

to discard those data points. At this point, we start disk accesses.
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Let a1, a2 . . . aN denote the approximations in a major pyramid. Assume thatak, ak+1, . . . , ak+n−1

are then approximations from this set which are identified asintersectingby the above algorithm. Note

that they are physically consecutive, which means the partition ofai comes physically between the

partitions ofai−1 andai+1. We need to access all the candidate data points, and this fact is a motivation

to sort the whole feature vectors once according to their vector approximations at the very beginning.

Since they will be kept (in disk) in sorted order according to their approximations, I/O accesses of

these points will be sequential, not random. Considering all the major pyramids that have candidate

approximations in them, while processing a query, there will be at mostd number of seek time for ad

dimensional data space.

The performance can be further improved by applying the page access strategy proposed in [7]. Their

strategy is not to access each candidate block using random I/O. Instead they keep reading sequentially

if another candidate block is on the way. They read more pages sequentially than needed but eventually

they beat the random-I/O-for-each-block approach. The same technique is applicable for our methods.

For the second pruning step, we need to compute the angular distance of every candidate point to

the query point, and if a point is in the given range (α) then we output that point in the result set. The

following algorithm is repeated for each major pyramid.

Algorithm: Identifying feature vectors in the given range for a major pyramid

Inputs: Set of intersected approximations for major pyramidi : ak, ak+1, ...., ak+n−1. Angular

range similarity parametersQ(q1, q2, . . . , qd) andα. An empty setSF .

1) af denotes the approximation of a vectorf in ak, . . . , ak+n−1. For eachf , if af ∈ {ak, . . . ,

ak+n−1} and
∑d

i=1
fiqi

||f ||·||q|| ≥ cos(α), thenSF = SF ∪ {f}.

2) The resulting feature vectors in the given angular similarity range forxi = 1 major pyramid

are now in the setSF .
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Fig. 6. Lowest angular distance calculation for an approximation

D. Processing Angular k-NN Queries

We now describe how to process k-NN queries using the AS-Q index. For filtering purposes, we

will need to compute the lowest angular distance between a given query point and a pyramid. For a 3

dimensional visualization, Figure 6 represents an approximation which is based on the pyramid defined

by the pointsO(origin), C1, C2, C3, C4. Imagining the query space as a growing cone, at the very

first time it touches the pyramid, we will get a line from the origin and along the lateral side of the

cone, i.e.,OL in Figure 6. The lowest angular distance from this pyramid to the query point (Q) is the

angle between the lines defined byOQ andOL.

However, if L is not betweenC1 and C2, then we call itout of bounds. In this case, one of the

corner points,C1, ..., C4, will be the point on the pyramid that makes the lowest angular distance, i.e.,

the angle defined byOQ andOC1 will be less than the angle defined byOQ andOL.

For the 3 dimensional case, only the third dimensions of the pointsL, C1, C2 will be different, i.e.,

C1 = (1, x2, 1), C2 = (1, x2, 0) and L = (1, x2, z). The only unknown will bez, and if 0 ≤ z ≤ 1,

thenL is in the boundsas in Figure 6. In this case, we calculate the angular distance betweenOQ and

QL and give the angle as the lowest angular distance bound for the current approximation. Otherwise,

we use the corner points for lowest bound calculation (i.e.,C1, ..., C4 instead ofL).

k-NN Filtering Having the lowest angular distances for the approximations, the next step is to

use these values in filtering. For a given query point, we first find the approximation the query point

is in. Naturally, the lowest possible angular distance from the query point to this approximation will
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be zero. We retrieve all the feature vectors in this approximation from disk and insert thek closest of

them as the candidates in a list that we callNNlist in nondecreasing order. Then, for the remaining

approximations, we consider the lowest angular distances from the query point without retrieving any

more feature vectors from the disk.

In-memory Filtering At this step we prune the approximations which have lowest angular distances

greater than thekth value in NNlist we found so far. Then, we sort the remaining approximations

according to their lowest values in nondecreasing order. At this moment, the second filtering step starts.

Filtering in Disk We retrieve the first approximation in the sorted order, and retrieve the feature

vectors (points) in this approximation from the disk. If a retrieved point is closer than thekth closest

point in theNNlist, then we updateNNlist, i.e., remove the previouskth value with the new one

and sort theNNlist again. We repeat this updating step for all the feature vectors in the current

approximation. After that, if the newkth value is less than the lowest value of the next approximation

in the sorted order, then we stop and return ourNNlist as the result of thek-NN search. Otherwise,

we move on to this next approximation and repeat the same process until we stop.

Algorithm: k-Nearest Neighbor for queryQ. The approximation (subpyramid) ofQ is aq. AD is

abbreviation forangular distance.

1) Retrieve vectors inaq from disk, keepk closest of them inNNlist in nondecreasing order.

NNlist(i) is the ith closest vector,distance( NNlist(i)) is AD of the ith closest vector.

2) Find lowest angular distances fromQ to the remaining approximations as described in Figure 6.

lowest(i) is the lowestAD of approximationi.

3) If lowest(i) > distance(NNlist(k)) prunei . Repeat for all approximations.

4) Sort candidates according tolowest(i) values.c(i) is the ith candidate in sorted order.

5) Retrieve the vectors inc(1) from the disk. If a vector has lessAD thandistance(NNlist(k)),

updateNNlist.

6) STOP ifdistance(NNlist(k)) <= lowest(c(2)). Otherwise, retrieve the vectors inc(2) and

process them as the previous step and repeat for the nextc(i) until we STOP.

7) The k-nearest neighbors will be inNNlist.
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IV. CONE-SHELL QUANTIZER (CS-Q)

We now propose a second quantization based structure, Cone-shell Quantizer (CS-Q), which uses

cone partitions, rather than pyramids, and is organized as shells, instead of the sweep approach followed

by AS-Q. CS-Q is a variation of AS-Q and shares many of its fundamental algorithms. The underlying

partitioning of the quantizer is shown in Figure 7(a). The axis for each of the cone-shells is the line

from the origin to a reference point, i.e.,OR. We have chosen the reference point asR(0.5, 0.5, ... ,

0.5) which gives statistically better results. Figure 7(b) represents a cross-section of the cone-shells and

an angular range query cone.

O (Origin)

R

O (Origin)

(b)(a)

Q

R

Fig. 7. Underlying partitions for CS-Q technique

As in AS-Q, we can follow an equi-volume or an equi-population based structure. Here, we only

present the equi-populated one. The algorithm is as follows.

Angular Approximations based on Equal Populations,N is the number of data points,R is the

reference point,Sa is the set of all approximations, andSa(i) is the ith approximation.

1) For each data pointPk, 1 ≤ k ≤ N , calculate the angular distance betweenPk andR.

2) Sort the data points in nondecreasing order based on their angular distances toR.

3) Assumet is the given population for each approximation. Assign the firstt number of points

in sorted order toSa(1), the secondt number of points toSa(2), and so on.

Equi-volume based structure is trivial, i.e., the only constraint for the cone-shells (from center to

the out) in Figure 7(a) is to have angles ofβ, 2β, 3β, ... between their lateral surfaces andR.
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The bit allocation schemeis as follows.

Total number of bitsb, and |Sa| is the total number of approximations.

1) Generate the approximations as described in the previous algorithm.

2) For each approximationi, assign the next2
b×i
|Sa| bit-strings toSa(i).

A. Query Processing

Angular range queries are handled similar to AS-Q. The difference lies in intersection formulas

in the filtering step. Figure 8 shows two cases for the range query with CS-Q technique.Q is the given

query point, the angleQÔK is α which is the given range, andR is the reference point. Let’s denote

the angleRÔQ asθ. The lowest angular distance from shelli to R is li and the largest angular distance

is ui. Figure 8(a) represents the case forθ > α and Figure 8(b) is forθ < α. The conditions for

approximation (shell)i to intersect the query space are given as follows.

1) For (θ > α), if (ui ≥ θ − α) and (li ≤ θ + α) then i is an intersecting approximation.

2) For (θ < α), if (θ + α ≥ li) then i is an intersecting approximation.

Next the data points in these intersecting approximations are retrieved and checked. The remaining

nonintersecting approximations are filtered out as in Section III-C. The main difference is, since there

are nomin and max values needed in this computation, the Lagrange multipliers are not utilized in

this design.

Angular k-NN query with CS-Q is again similar to AS-Q. The only difference is the way to

calculate the lower and upper angular distances from the query point,Q, to an approximationi.

1) For (θ > ui), the lowest angular distance is(θ − ui), and largest distance is(θ + ui).

2) For (θ < ui), the lowest angular distance is(li − θ), and largest distance is(θ + ui).

The remainder of the algorithm is same as in Section III-D.

V. EXPERIMENTAL RESULTS

This section summarizes the results of our experiments on the performance of the proposed access

structures. We used 6 data sets, two synthetic and four real data sets from text, time-series, and image
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database applications where angular similarity is widely used. We generated synthetic data sets with

Uniform and Gaussiandistributions for dimensions 16 and 32. The real-life data sets are Satellite

Imagery Data (Landsat), Newsgroups (NG), National Science Foundation abstract repository (NSF),

andStock.

Landsat data, Satellite Image Texture, consists of 100,000 vectors representing 32 dimensional

texture features of Landsat images [26]. TheNG data set is a compilation of 20,000 Usenet postings

in 20 different categories like religion, politics and sports. Another data set is a collection of abstracts

describingNSFawards for basic research. We performed Latent Semantic Reduction on these text doc-

uments, and stored the products of the term frequency and the inverse document frequency (tf/idf) [33]

for the terms occurring in each document, after eliminating the stop words. We applied SVD (Singular

Value Decomposition) [22] over the term vector representations, and generated 8, 12, ..., 32 dimensional

representations of the text documents. TheStockdata, which is very skewed, is a time series data set

which contain 16 (or 32) days (dimensions) stock price movement of 6500 different companies. In

addition to these 6, we also produced 5 different data sets each having a different distribution and we

talk about them in Section V-D.

We present performance results of angular range and angular k-NN queries. We compare the angular

range and k-NN search performances of the two proposed techniques with respect to each other and to

the VA-File approach. On each of the data sets mentioned above, we perform experiments for a variety

of range queries such as 0.25, 0.50, ... , 3.0 degrees of angular ranges. For a measure of perspective,
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for the 32 dimensional Uniform data set, 1.0 degree corresponds to a selectivity of 0.01 and 5 degrees

correspond to a selectivity of 0.1. This gives an insight into the performance for nearest neighbor queries

on the same data sets, i.e., a range query of 1 degree would correspond to a k-NN query, where k is

1% of the data size. For each data set experiment, we choose 200 totally random query points from the

data set itself and present the results as averages.

A. AS-Q Results

In Figure 9, we present the results for AS-Q. Figures 9(a) and 9(b) show the percentage of

vectors retrieved by AS-Q technique (asα increases) for Uniform, Gaussian, NSF and NG data sets

of dimensionality 16 and 32, and for reduced 64 bit representations of data objects. In Figures 9(c)

and 9(d), we show the results for the number of vectors accessed compared to the total number of vectors

(as α increases) for 32 dimensional Gaussian and Uniform data. Finally, in Figures 9(e) and 9(f), we

present the number of vectors accessed by AS-Q technique compared to the VA-File as the number of

bits per dimension increases, for 32 dimensional Stock data and forα=0.25 andα=1.5. Both because

of the geometric mismatch and extreme skewness of the stock data, the query intersects most of the

grid partitions of the VA-file, especially for small number of bits. Since the queries were chosen from

the data set, they are also skewed. Even a relatively small cone around the queries is likely to intersect

large rectangular partitions. The number of such intersections reduces as more number of bits is used

for quantization.

None of the current techniques provide a direct solution to execute angular queries. We compare our

results with an adapted version of the conventional VA-File based approach. The rectangular regions that

intersect the angular query space is computationally hard to find. To enable an experimental comparison,

we consider an approximation in VA-File to be intersecting if its representative value is in the angular

neighborhood of(α + ε), whereε is a derived parameter that guarantees the correctness of the results.

We fix the geometric center of the regions (i.e., a rectangle in VA-File) as the representative value of

the approximations for our experiments. Anε-space is needed to ensure that we do not miss those

approximations that actually intersect but whose center is not in the angular similarity space. This
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Fig. 9. Performance of AS-Q for angular range query. D (dimensions) andα (range)

approach works well where the cell regions describing the approximations are small enough. After

finding the intersecting approximations in this way, we look at the corresponding feature vectors and

return the ones that are in the given similarity range.

For angular range queries, we observe that AS-Q technique outperforms the VA-File significantly.

Even for very low selectivities, it is possible to filter a reasonable number of approximations using the

VA-File approach, however the AS-Q approach performs much better. For instance, for the Stock data

set, for an angular range query of 1.5 degrees, the number of vectors visited for AS-Q is 1741, while

it is 4370 for the VA-File, where both approaches use bit-strings of 8 bits per dimension.

In other data sets, we observe a similar performance improvement and they follow similar patterns.

For instance, in VA-File the number of vectors visited for a range query of 3.0 degrees for the NG

data set of dimensionality 16 is 6157, whereas for AS-Q technique it is just 79, which corresponds to

a speedup of 77 times. For 32 dimensions, the speedup is 97 times. For a range query of 0.25 degrees,

which corresponds to a selectivity of roughly 0.0001, the number of vectors visited for AS-Q is 2, while
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it is 6 for VA-File. It is also important to note that the same performance is achieved by AS-Q with

a 32-bit representation of the data, while the VA-File method would require a 256-bit representation

of the data for 100% recall. Additionally, in the NSF data, for a selectivity of 0.001, the number of

approximations after filtering is 745 for VA-File and 156 for our technique.

TABLE I

K-NN RESULTS FORUNIFORM DATA

10-NN Step 1 Step 2 total pruned out of

6 bits 22 23 45 48

7 bits 26 67 93 96

8 bits 67 122 189 192

50-NN Step 1 Step 2 total pruned out of

6 bits 19 26 45 48

7 bits 32 59 91 96

8 bits 52 136 188 192

TABLE II

K-NN RESULTS FORNG REAL DATA

10-NN Step 1 Step 2 total pruned out of

7 bits 74 24 98 101

8 bits 157 42 199 202

9 bits 251 81 332 335

50-NN Step 1 Step 2 total pruned out of

7 bits 53 44 97 101

8 bits 137 61 198 202

9 bits 174 156 330 335

The results of angular k-NN search are similar to angular range query. Table I presents the k-NN

results for a synthetic data set which has equi-volumed and equi-populated approximations and also

equal number of approximations per dimension. We used 7, 8, 9 bits and we present the averages for

10-NN and 50-NN queries. The numbers in theStep 1column represents the number of approximations

that are filtered in the first step of the pruning algorithm. Similarly, the numbers in theStep 2column

represents the number of approximations that are filtered in the second step. The columntotal filtered

is the total number of approximations that are totally filtered in the first and second steps, i.e., the

summation of theStep 1andStep 2columns. The last column, namelyout of, is the actual total number

of approximations in the system.

In Table I, i.e., for 10-NN and8 bits, 67 out of 192 approximations are filtered at the first step. If
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there are10, 000 feature vectors in the data set, there will be approximately50 feature vectors in an

approximation. This means,50× 67 = 3, 350 feature vectors out of 10,000 are pruned in the first step.

Similarly, 122 out of 192 approximations are filtered in the second step, and this means,50×122 = 6100

feature vectors out of 10,000 are pruned in the second step. Similarly, Table II presents the experiment

results for k-NN similarity search approach for NG real data set. Tables I and II reveal the effectiveness

of our approach not only for very narrow queries but also for wider queries (i.e.,50-NN) as well.

B. CS-Q Results

Figure 10 presents the results for CS-Q technique for different data sets. Figure 10(a) represents the

results for an average selectivity of 0.00025, e.g., 25 results out of 100,000 data points. This selectivity

is the average taken for all the dimensions presented in the graph, i.e., 8, 12, ..., 32. In this figure, for

8 dimensions, 1740 vectors are accessed by the CS-Q technique and the number of vectors retrieved

increases as the dimensionality increases for NG data. Figures 10(c), 10(d), 10(e), and 10(f) show the

number and % of vectors accessed by CS-Q as the number of bits increases and as alpha increases.

TABLE III

# OF VECTORS ACCESSED FORNG16 & NG32

NG16 CS-Q CS-Q VA-File

11bits 16bits 16bits

α=0.25 1769 1759 7856

α=0.50 3470 3460 10281

α=0.75 5094 5084 12069

α=1.00 6603 6593 13968

α=1.50 9245 9237 15793

α=3.00 14260 14259 18276

NG32 CS-Q CS-Q VA-File

11bits 32bits 32bits

α=0.25 2154 2144 7373

α=0.50 4207 4197 9165

α=0.75 6119 6110 11786

α=1.00 7862 7852 13943

α=1.50 10752 10744 16202

α=3.00 15519 15513 18697

C. AS-Q vs. CS-Q

We compare the CS-Q and VA-File results in Table III. For 16 dimensional NG data and for 16

bits, CS-Q outperforms the VA-File approach. For example, foralpha = 0.25, VA-File accesses 7856
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Fig. 10. Performance of CS-Q for angular range query. D (dimensions) andα (range)

data points while CS-Q retrieves only 1759. One interesting property of CS-Q is, it achieves a better

performance than VA-File with much less number of bits than VA-File requires. That’s why we put

the 11bitscolumn in Table III. Forα = 0.25 in Table III, CS-Q accesses 1769 points for only 11 bits

which is again a much better performance than VA-File achieves. The results for 32 dimensional NG

data are similar.

As a performance comparison between the two proposed techniques, the CS-Q technique achieves

better results than AS-Q when we usesmall and equalnumber of total bits for both of them. For

example, for 32 dimensional Stock data,alpha = 0.25, and for 1 bit per dimension which makes

totally 32 bits per data point, the AS-Q retrieves around 1200 data points. However, in Figure 10(e), for

the same data and angle, the CS-Q retrieves 499 points with only 12 bits. Thus, CS-Q achieves better

performance results than AS-Q with less number of bits (12 vs 32).

Table IV presents another interesting property between the two proposed quantization techniques.
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TABLE IV

# OF VECTORS ACCESSED FORSTOCK16

Stock16 α=1.50 α=3.00

AS-Q(32bits) 1704 1753

CS-Q(12bits) 2922 4336

CS-Q(32bits) 2920 4335

VA-File(32bits) 5816 6011

In this case, AS-Q seems to have a better result, i.e., 1704 for AS-Q and 2920 for CS-Q. This is because

after some number of bits, the CS-Q approach’s performance only increases very slowly as we increase

the total bits. For example, when there are only a few data points per bit-string, decreasing the volumes

of underlying partitioning by increasing the total number of bits will not continue to distribute the data

points to many bit-strings. In other words, after some number of bits, the data points per bit-string

will not change so that the filtering will not continue to prune many points. For example, in Table IV,

increasing bits from 12 to 32 will only decrease the number of vectors accessed from 2922 to 2920 for

CS-Q. The two techniques both perform better than VA-File.

In general, if there is enough memory space available, AS-Q technique achieves better results.

The drawback of CS-Q is, it needs to check some points that are away from the query space if their

approximations intersects the query, i.e., pointD in Figure 8. For higher number of bits, AS-Q can

distribute the points into different bit-strings that are convenient for pruning and that’s why it performs

better. On the other hand, for lower number of bits (when the resources are limited), the CS-Q performs

better.

D. Results on Scalability

In order to investigate the scalability issue, we produced5 different 16-dimensional synthetic data,

each of them in different distributions. For each distribution there are4 files that have 1K, 10K, 100K,

and 1000K number of data points. Our experimental setup for the scalability tests differs from our other

setups. We take every500th data point as a query point, run the queries and present the average over
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Fig. 11. Scalability Test Results,α = 0.25

these queries as the result. That means we have2000 queries from a 1000K file, and200 queries from

a 100K file. We kept the range parameter constant, i.e.,α = 0.25. The results are depicted in Figure 11

and they indicate that our approach is linear to the number of data points in a data set.

E. Comparison with Sequential Scan

An important property of our techniques is that we keep the data points in sorted order in disk

according to their physical partitions. We have the discussion about this issue for AS-Q in Section III-

C. For CS-Q approach, we have a better outcome for the query processing in terms of the candidate

approximations. The data vectors are kept in the order of their angular distances from the reference point,

and since any query space (Figure 7(b)) has to intersect only consecutive approximations, the accessed

vectors will always be in physically consecutive approximations. Thus, by keeping these vectors in

consecutive disk blocks, the second step (disk access) of the query processing will require only one

seek time and the consecutive blocks are accessed in sequential order.

In order to validate our discussion, we compared our approach with sequential scan. We followed

the same experimental setup and used the same data sets as in Section V-D. We calculated wall clock

time results as a function of the data set size. For the Exponential data, with 10K number of points, the

total time for sequential scan is 237 msec, whereas our technique only takes 19.7 msec. The difference

gets higher as the number of data points increases. For instance, for 100K number of points, sequential
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scan time is 2294 msec, and our approach’s time is 195 msec. For 1000K, the comparison1 is 21180

vs. 2070 msec. For the Uniform data, the values are 222 vs. 9.2 msec for 10K. In addition, for 100K

and 1000K points, the results are 2035 vs. 62, and 19397 vs. 616 msec. We also made experiments

for the other distributions, and the comparisons follow very similar paths. Thus, we conclude that our

technique performs significantly better than the sequential scan in terms of time.

F. Results on Normalized Data

We now summarize our experimental results on the performance of indexing the normalized data: We

set the norm of all the vectors to unit length to be able to utilize the Euclidean space based indices. SDSS

SkyServer [36] follows a similar approach and develops a 3-dimensional quad tree over the normalized

data. Instead of an underlying partitioning that considers the angular nature of the data, the normalization

is used to transform the data into an Euclidean space. Besides being limited to three dimensions, and

having the geometric mismatch, our experiments also showed that the normalization introduces additional

problems for Euclidean distance based index structures. We have repeated our previous experiments with

normalized data both for VA-files and for the proposed techniques. In Table V, for 32 dimensional Stock

data and for 32 bits, the CS-Q retrieves 499 points while the VA-File accesses 4861. For normalized

data, the CS-Q again achieves the same number of points (499) but VA-File accesses 6415 which is

worse than the non-normalized case. Since the partitioning behind the quantization of our techniques

considers an angular organization of the data, the bit-strings of data points do not change when the

data is normalized. The data points map onto a hyper-sphere after normalization and this mapping is

along the line between the original data point and the origin. On the other hand, from the perspective

of Euclidean distance based index structures, the normalization causes the data points become closer to

each other and are harder to separate by the index. This causes degradation in the performance of the

traditional index structures, including VA-files.

1From now on, first number refers to the sequential scan time and the second number refers to our approach.
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TABLE V

NORMALIZED VS NON-NORMALIZED , ALPHA=0.25

Stock32 CS-Q(32bits) VA-File(32bits)

Nonnormalized 499 4861

Normalized 499 6415

VI. CONCLUSION

We studied the problem of efficient execution of similarity queries that are based on angular

measures. Although, angular measures have been popularly utilized by several important applications,

such as information retrieval and time-series data repositories, we are not aware of any indexing and

query processing technique for efficient execution of such queries. We first sought to overcome the

geometric mismatch between the underlying partitions of the conventional indexing techniques, and

built index structures that are better suited to angular queries. We developed two scalar quantization

methods, one is based on pyramid partitions angularly sweeping the data space, and the other is based

on cone partitions that are organized as shells. The quantized approximations are used as a dense index

for efficient execution of similarity queries. Each technique has its own unique strength. CS-Q technique

achieves better performance under limited memory conditions, i.e., for lower quota of bits. For a higher

number of bits, AS-Q becomes more successful in distributing the data objects into separate partitions

which enables more accurate summaries. We compared the proposed techniques with an adaptation of

VA-files. In all cases, the proposed techniques perform significantly better than VA-Files.

We have focused on optimizing query performance. An efficient update routine is necessary if there

are frequent and non-stationary changes over the data, and if sequential access is desired. If we want

to optimize insertions, we could just add the new items to the end of the file, with no changes in our

algorithms/structures. Clearly, this will introduce random I/Os. If one wants to avoid random I/Os and

guarantee sequential access to the data, one can use the common storage approaches such as keeping

empty space in blocks, using overflow files for insertions, and logical markers for deletions.

We chose to apply quantization as the last step of our techniques because of its well-known

29



scalability with higher dimensions. However, the proposed techniques can be applied to different classes

of access structures, e.g., indices based on data-space partitioning, tree structures, or the Pyramid-

technique. For example, the proposed angular structure can be used to map the data objects into 1-

dimension which is then indexed by a B+tree (as in Pyramid-technique [9]).

The use of an effective structure and algorithms for angular similarity searches will impact the

practical performance of several applications. We plan to extend our work to include angular similarity

joins, which are popularly used, among others, in financial market applications.
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