
Structure-Based Querying of Proteins Using Wavelets

Keith Marsolo
Srinivasan Parthasarathy
Department of Computer Science

and Engineering
The Ohio State University

contact: srini@cse.ohio-state.edu

Kotagiri Ramamohanarao
Department of Computer Science

and Software Engineering
University of Melbourne

ABSTRACT
The ability to retrieve molecules based on structural simi-
larity has use in many applications, from disease diagnosis
and treatment to drug discovery and design. In this paper,
we present a method for representing protein structures that
allows for the fast, flexible and efficient retrieval of similar
structures. We use pairwise inter-atom distances to trans-
form the 3D structure into a 2D distance matrix. We nor-
malize this matrix to a specific size and apply a multi-level
wavelet decomposition to generate a series of approximation
coefficients, which serve as our feature vector. This transfor-
mation reduces the overall dimensionality of the data while
still preserving spatial features and correlations. We test our
method by running queries on three different protein datasets
used previously in the literature, using labels from SCOP as
our basis for comparison. We find that our method signifi-
cantly outperforms existing approaches, in terms of retrieval
accuracy, memory utilization and execution time. Specif-
ically, using a k-d tree and running a 10-nearest-neighbor
search on a dataset of 33,000 proteins against itself, we see
an average accuracy of 89% at the SuperFamily level and a
total query time that is approximately 125 times lower than
previously published techniques. In addition to processing
queries based on global similarity, we also propose innova-
tive extensions to effectively match proteins based purely on
shared local substructures, allowing for a more flexible query
interface.

1. INTRODUCTION
The past decade has seen an explosion in the amount of
publicly-available genomic and proteomic information. Low-
cost shotgun sequencing techniques have led to the deter-
mination of entire genomes, including cat, dog and human.
The completion of these projects have generated vast repos-
itories of sequence information. Scientists believe that these
sequences hold the key to determining the cause and treat-
ment of many diseases. The desire to mine this information
has led to the development of query and search tools like
BLAST and its variants [2, 3].

There has been a similar increase in information in the pro-
tein domain. The UniProt1 database, a repository of non-
redundant protein sequences, has doubled in size every two
years to a current total of 2.8 million entries. However, be-
cause of their functional significance, and the belief that there
is a link between structure and function, there is also consid-
erable interest the structure of proteins. Solving the structure
of a protein molecule, typically through techniques such as X-
ray crystallography or Nuclear Magnetic Resonance (NMR),
is much more difficult than determining its sequence. Con-
sequently, the number of solved protein structures trails that
of determined sequences.

In most cases, once a protein structure has been solved, it
is deposited into the Protein Data Bank (PDB)2. As of May
2006, the PDB contained over 36,000 structures. While this
number is far lower than the number of known sequences,
the PDB has doubled in size every four years. The ex-
pected development of high-throughput crystallization tech-
niques means that the number of solved structures will in-
crease dramatically in the coming years. In addition, projects
such as Folding@Home3 are looking to simulate the folding
of a protein as it progresses from an unfolded amino acid
sequence to its final structure [12]. These simulations are
expected to generate a tremendous amount of data and a
corresponding increase in intermediate structures that will
need to be examined.

While tools such as BLAST have been adapted to work with
protein amino acid sequences, proteome researchers are also
interested in determining the structural similarity between
proteins. Here we present two methods of protein represen-
tation that allow for the fast, efficient retrieval of similar
structures, based on either global or local features. We use
pairwise inter-atom distances to transform the 3D structure
into a 2D distance matrix. To create our global represen-
tation, we apply a multi-level 2D wavelet decomposition on
this matrix to generate a series of approximation coefficients,
which serve as our feature vector. We compute the local
representation using two 1D decompositions that allow us to
effectively match proteins based purely on shared substruc-
tures. This allows for additional functionality that is not
available through existing retrieval methods. We evaluate
our technique by running classification and nearest-neighbor
queries on three protein datasets used previously using la-

1http://pir.uniprot.org
2http://www.rcsb.org
3http://folding.stanford.edu



bels from the Structural Classification of Proteins database
(SCOP) [17] as our basis for comparison. We find that our
global method significantly outperforms the retrieval perfor-
mance of existing approaches [4, 10], in terms of retrieval
accuracy, memory usage and execution time. Using a k-d
tree and running a 10-nearest-neighbor search on a dataset
of 33,000 proteins against itself, we see an average accuracy
of 89% at the SuperFamily level and an individual query time
that is approximately 125 times lower than previously pub-
lished results. We find our retrievals based on local substruc-
ture to be highly accurate as well. Finally, while we limit
this work to protein data, our techniques can be applied to
any structural dataset.

2. BACKGROUND & RELATED WORK
In this section we provide biological background on our prob-
lem domain and a discussion of related work. We begin with
a brief overview of proteins and protein structure databases.
We follow with details on some of the publications that have
looked to use protein databases to determine structural simi-
larity. We conclude with a high-level presentation of the fun-
damentals of the wavelet transformations used to construct
our structural representations.

2.1 Proteins
Proteins are comprised of a varying sequence of 20 differ-
ent amino acids. Individual amino acids are called residues.
Each type of amino acid is composed of a number of differ-
ent atoms, all contain a central Carbon atom denote as Cα.
The position of this atom is often used as an abstraction for
the position of the entire residue. The sequential connec-
tion of the Cα atoms is called the protein backbone. Amino
acids combine to form interacting subunits called secondary
structures. Two of the most common secondary structures
are α-helices and β-sheets. Residues that belong to these
secondary structures are said to have a secondary structure
assignment. There are a number of different labeling systems
used to assign residues, but in this work, we use the simplest
system: a residue can either be part of an α-helix (H), a
member of a β-sheet (B), or have no assignment (−). All of
the 3D information and secondary structure assignments for
a protein are obtained from the PDB.

There are several public databases that provide information
on protein structure. In our experiments, we use the classifi-
cations from SCOP database as ground truth. The SCOP
database arranges proteins into several hierarchical levels.
The first four are Class, Fold, SuperFamily and Family. Pro-
teins in the same Class share similar secondary structure in-
formation, while proteins within the same Fold have similar
secondary structures that are arranged in the same topolog-
ical configuration. Proteins in the same SuperFamily show
clear structural homology and proteins belonging to the same
Family exhibit a great deal of sequence similarity and are
thought to be evolutionarily related.

2.2 Related Work
In the past, there has been a large effort in the database
community to develop tools to search for similarity in pro-
tein databases. One of the first proposed an algebra to handle
queries to determine similarity among protein sequences [11,
21]. While useful on sequences, it is not immediately ap-
parent how to extend such an algebra to structure-based

datasets. For instance, sequence queries allow for partial
matches that include gaps. There is a clear notion on the
meaning of a gap in terms of sequence, but not when applied
to a 3D structure.

Çamoğlu, Kahveci and Singh proposed a method of finding
similarity that created feature vectors based on triplets de-
rived from SSEs [8]. These vectors were placed into an R∗-
tree, which was used to retrieve similar proteins as a pruning
step for the VAST alignment algorithm [13], greatly reduc-
ing the time needed to conduct a pair-wise alignment of small
datasets. However, pair-wise alignment is not feasible on very
large databases, even those containing just 30,000 structures.
Finally, Tan and Tung proposed a method to convert a pro-
tein into a series of 3D substructures. These substructures
were clustered and sequential substructures were merged [20].
However, this method again relies on pair-wise alignment and
does not scale well to large datasets.

Recently, there have been a number of publications that
have looked at representing proteins for large-scale struc-
ture retrieval [4, 6, 7, 10]. Three of the latest are PSIST [10],
ProGreSS [6] and Protdex2 [4]. In PSIST, a feature vector is
generated for each protein based on the distances and angles
between residues. These vectors are placed into a suffix-tree,
which serves as the indexing structure. With ProGreSS, a
sliding window is placed on the backbone and several struc-
ture and sequenced-based features are extracted. Retrieval
is handled by a maximum bounding rectangle-based index
structure. Protdex2, on the other hand, converts the dis-
tances between residues into a matrix and uses SSE-based
sub-matrices to derive a feature vector, including informa-
tion such as angle, area and amino acid type. Queries are
executed on an inverted file index.

2.3 Wavelets
The use of wavelets is natural in applications that require a
high-degree of compression without a corresponding loss of
detail, or where the detection of subtle distortions and dis-
continuities is crucial [14]. Wavelet transformations fall into
two separate categories: continuous (cwt) and discrete (dwt).
In this work, we deal with the discrete wavelet transform.

Given a one-dimensional signal of length N (typically a power
of two), the dwt consists of at most logN stages. At each
stage, two sets of coefficients are produced, the approxima-
tion and detail coefficients. The approximation coefficients
are generated by convolving the original signal with a low-
pass filter, the detail coefficients with a high-pass filter. After
passing the signal through the filter, the results are down-
sampled by a factor of two. This step is repeated on the
approximation coefficients, producing another smaller set of
approximation and detail coefficients.

To operate on a two-dimensional signal, the decomposition
proceeds as follows: First, the rows are convolved with a low-
pass filter and downsampled by a factor of two, resulting in
matrix rL. The process is repeated on the original signal us-
ing a high-pass filter, which leads to matrix rH . The columns
of rL are convolved two separate times, once with a low-pass
filter and again with a high-pass filter. After passing through
the filters, the signals are downsampled by a factor of two.
This results in a set of approximation (rLcL) and horizontal



detail coefficients (rLcH), respectively. These steps are exe-
cuted once more, this time on the columns of rH , resulting
in a set of diagonal (rHcH) and vertical (rHcL) detail coef-
ficients. The whole procedure can then be repeated on the
approximation coefficients represented in matrix rLcL. There
are a fairly large number of wavelet families that can serve
as filters. We tested several, but found that the simplest, the
Haar, worked well for our purposes.

Wavelets are used frequently within the vision and image
processing community for clustering and retrieval [9, 18, 22].
In many cases, images are retrieved based on a subset of
the most dominant coefficients that correspond to some un-
derlying property of the image. While effective for such ap-
plications, we require a stronger measure of similarity. Our
rationale for using wavelets is based on the belief that we
can represent proteins in such a way that secondary struc-
ture information is captured in the transformation process.
Databases like SCOP classify proteins based on the topologi-
cal arrangement of secondary structures. Therefore, we must
take into account the relative position and location of the
secondary structures.

3. REPRESENTATION
In this section, we provide details on the techniques used to
construct our wavelet-based feature vectors. We begin by
describing our approach for creating a global representation
of protein structure using a 2D wavelet decomposition and
follow with a method designed to capture local substructures
using two 1D transformations.

3.1 Global Structure
The first step in generating both of our feature vectors in-
volves converting the protein structure into a distance matrix.
This process occurs in the following manner: First, we obtain
the 3D coordinates of the protein from the PDB and calculate
the distance between the Cα atoms of each residue. We place
these values into an n x n matrix D, where n represents the
number of residues in the protein and D(i,j) represents the
distance between the Cα atoms of residues i and j. Figure 1
(a) provides a graphical depiction of this matrix (for protein
1HLB), with higher elevations, or larger distances, having a
lighter color. In these matrices, secondary structures such as
α-helices and parallel β-sheets emerge as dark bands along
(or parallel to) the main diagonal, while anti-parallel β-sheets
appear perpendicular to it.

To create our global structure representation, we apply a 2D
decomposition to the distance matrix. To use the results of
this transformation as a feature vector, the final number of
coefficients must be the same for every protein. This can
be done either by normalizing the size of the input (distance
matrix), or the output (approximation coefficients). It is not
immediately clear how to normalize a variable-size coefficient
matrix while still preserving the necessary spatial correla-
tions. Thus, we elect to normalize the input signal, fixing the
size of the distance matrix to 128x128. This normalization
occurs through interpolation or extrapolation, depending on
whether the input protein was shorter or longer than 128
residues. We choose a value of 128 because discrete wavelet
transformations are most effective on signals whose length is
a power of 2. We prefer interpolation, smoothing or averag-
ing the excess points, to extrapolation, where we would be

forced to generate additional data. Most of the proteins in
our datasets are shorter than 256 residues, thus our choice of
128.

We perform a multi-level 2D decomposition on this normal-
ized matrix and use the final level of approximation coeffi-
cients as our feature vector. Examples of the wavelet de-
composition can be seen in Figure 1. The figure on the left
illustrates an original distance matrix, while the figures in the
middle and on the right correspond to a 2nd and 4th level
decomposition, respectively. Since the matrix is symmetric
across the diagonal, we only need to keep the coefficients in
the upper (or lower) triangle, plus those that fall on the di-
agonal itself.

We calculate the approximation coefficients for several dif-
ferent levels (2-5), to see how performance, in terms of accu-
racy, varies with the reduction in the dimensionality of the
data. For a given 2D signal, as the level of the wavelet de-
composition is increased, the final number of approximation
coefficients is reduced by a factor of 4. If set too low, the
decomposition will result in a large, possibly noisy feature
vector, making it difficult to distinguish between the different
groups. Setting the level too high will lead to a large amount
of information loss, discarding potentially-distinguishing in-
formation. Both are situations we wish to avoid. We find
the performance of the 2nd, 3rd and 4th level coefficients
to be roughly the same. Thus we elect to use the 4th level
decomposition as it provides the largest reduction of data
among the three. This leaves us with a global descriptor of
36 coefficients per protein structure.

3.2 Local Substructures
Typical protein retrieval methods base similarity on overall
structure. Indeed, the techniques presented thus far were de-
signed for that very purpose. However, there may be cases
where a researcher is more interested in similarity based on
small pieces of the protein - a particular subsequence, for
instance. To that effect, we propose an alternate approach
that uses a windowing strategy and two 1D wavelet decom-
positions to generate feature vectors.

Figure 2 (a) shows a distance matrix for a hypothetical pro-
tein sequence. The letters correspond to the secondary struc-
ture assignment of each residue (H - helix, B - sheet, − - no
assignment). If we were interested in a seven residue se-
quence with SSE values of “BBBHHHH,” we would only be
concerned with the distances contained between the thick
black lines. Everything in gray can be ignored. In this man-
ner, every subsequence corresponds to a windowed distance
matrix.

While one can manually select a particular query subsequence,
to construct the subsequences on the target dataset, we need
to employ a sliding window strategy. Given a subsequence of
length n, for each protein, we start at the first residue, and
if the first n residues have the same SSE values as the query,
we create a windowed distance matrix for those residues. If
not, we move to the next residue of the sequence and re-
peat the process. We only generate distance matrices for the
matching subsequences in order to limit the number of target
features that must be generated for each query, though this
pruning strategy can be disabled to allow for approximate



20 40 60 80 100 120 140

20

40

60

80

100

120

140

5 10 15 20 25 30

5

10

15

20

25

30

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) (b) (c)

Figure 1: Left (a): Distance matrix for protein 1HLB. Larger distances a denoted with a lighter color. Middle
(b), Right (c): Example 2D decompositions for protein 1HLB. The figure on the left (b) represents a 2nd level
Haar decomposition. The image on the right (c) corresponds to a Haar decomposition of level 4. The matrix
on the left is of size 128x128. The figure in the middle contains 1024 coefficients (32x32), while the one on the
right is composed of just 64 (8x8).

(a) (b)

Figure 2: Left (a): Illustration of distance values
selected using windowing strategy. Hatched matrix
values are ignored. Right (b): Two methods for con-
verting a distance matrix to a one-dimensional signal.
The parallel conversion process is shown in the upper
triangle, the anti-parallel version in the bottom.

subsequence matches

There is no straightforward way to apply a 2D transforma-
tion to a windowed, non-square distance matrix like the one
in Figure 2 (a). Thus, we elect to use two 1D decompositions,
employing a transformation designed to capture the interac-
tions between secondary structures. We have recently shown
that this strategy can be used in conjunction with decision
trees to effectively classify protein structures [15]. The first of
the two decompositions is designed to model the interactions
and secondary structures that are parallel to the main diago-
nal of the matrix (α-helices and parallel β-sheets), while the
second focuses on those that are anti-parallel (anti-parallel
β-sheets).

To convert the matrix to a parallel signal, we start with po-
sition D(0,1) of the matrix and place it at position 0 of the

signal. We then place D(1,2) at position 1 and proceed down
the diagonal. D(0,2) will be mapped to position n, D(1,3) to
n+1, and so on, until the matrix has been converted. In this
manner, we first add the values closest to the diagonal and
gradually move toward the corner. This process is illustrated
in the upper right triangle of Figure 2 (b).

The anti-parallel conversion process is shown in the lower left
triangle of the matrix in Figure 2 (b). We normally perform
this operation on the upper triangle (as with the parallel
process), but in order to match the figure, we use the lower
triangle in our description. We start with position D(1,0)
and place it at position 0 of the signal. We then place D(2,0)
at position 1. We move right to D(2,1), place it at position 3
and travel away from the diagonal, placing D(3,0) at position
4. We continue this stair-step approach, moving our starting
point down the diagonal and adding points in a perpendicular
fashion until we reach the edge of the matrix (the movement
of the starting point is illustrated by the double arrow in
Figure 2 (b)).

When we apply these transformations to each windowed dis-
tance matrix, we simply ignore the values that fall outside
the window. We apply a 5th-level 1D Haar decomposition
to each signal and resample the final level of approximation
coefficients to contain 10 values. We concatenate the parallel
and anti-parallel signals and use the resulting 20 attributes
as our local descriptor.

3.3 Potential Applications
Given a database of protein structures, there are several tests
that can be used to evaluate the effectiveness of any represen-
tation. We evaluate our approach using k-nearest-neighbor
(KNN) and range-based query retrievals [1]. Applied to a
target database, a KNN search looks to find the k “near-
est,” neighbors to a given query. Range queries are similar
to KNN retrieval, except that instead of providing a value
for k, the user specifies a range, r and the search returns all
the objects that have a distance to the query of less than



r. In both cases, distance refers to the Euclidean distance
between attributes. Allowing the user to specify the range
means they have more fine-tuned control over the quality of
the results, which can be more effective when the number of
potential matches is either quite low or very high. The draw-
back is that the number of matches is now dependent on the
distance between the objects in the dataset.

4. DATASETS
To evaluate our representations, we conduct experiments on
three different datasets, comparing results with two of the
more recently-published techniques [4, 10]. In order to make
a valid comparison, we try to use the same datasets tested
in those works. Due to discrepancies or errors in the original
data files, there are some differences, which we note below.

The first two datasets were used by Aung and Tan in their
Protdex2 experiments [4]. The first of these two contains
200 proteins having less than 40% sequence homology and
were taken from version 1.59 of the SCOP database. 10
proteins belonging to the Globins family and 10 to the Ser-
ine/Threonin Kinases were selected. These 20 proteins com-
prise a set of queries to be tested against 180 proteins ran-
domly selected from the other families within SCOP. We
were unable to completely process 11 of these proteins, so
our variant, which we refer to as the Small set, contains 189
members. We use this dataset for our substructure match-
ing experiments. The second dataset, which we call the 33K
set, originally contained 34,055 members (again having less
than 40% sequence homology). 108 proteins belonging to
108 medium-sized families (having ≥ 40 members and ≤ 180
members) were chosen as representative queries. Our version
of this dataset contained 33,010 proteins and 107 queries.

The final dataset has been examined in a number of publica-
tions [6,8], most recently by Gao and Zaki [10]. Again taken
from the SCOP database (though a different version than
the one used in constructing the Small and 33K sets), this
set contains a total of 1810 proteins, with 10 proteins selected
from 181 different SuperFamilies. When running queries on
this set, 1 protein was randomly selected from each Super-
Family. We could not match 22 proteins, leaving us with a
total of 1798. Please note that, approximately 1600 proteins
from this dataset, which we call the 2K set, are present in
the 33K set.

5. EXPERIMENTAL RESULTS
We validate our approach with four different sets of experi-
ments. The first is designed to showcase the predictive abil-
ity of our technique by using it to classify selected query
proteins according to their SCOP labels. The next two illus-
trate the robustness of our feature vector by using it, given
a query protein, to retrieve a large number of structurally-
similar proteins (as defined by SCOP). Our final experiments
show how our window-based representation can be used to
search for specific substructure sequences. We conclude this
section with a performance analysis in terms of query execu-
tion time and overall memory usage.

All experiments were conducted on a 2.4 GHz Pentium 4 PC
with 1.5 GB RAM running Debian Linux on a 2.6.9 kernel
using a a k-d tree as our target data structure [5]. The k-
d tree is a generalization of the binary search tree. Both

start with a root node and place the data into left and right
subtrees based on the value of a particular attribute, or key.
This process is recursively repeated until the data is divided
into mutually exclusive subsets. While a binary search tree
uses the same key on all nodes on all subtrees, a k-d tree
will use a different key at each level. This leads to a data
structure that effectively partitions the data but still allows
the user to search for best matches without having to make
a large number of comparisons. Rather than re-implement
this data structure ourselves, we use k-d tree code obtained
from the Auton Lab4.

We also wish to compare our technique with existing ap-
proaches, namely PSIST and Protdex2. We were able to
obtain the source code for PSIST5, but were unable to do
so for Protdex2. Thus, we evaluate our approach against
the results returned by PSIST and where appropriate, the
published results for Protdex2.

To evaluate PSIST, we generate the input features required
by the program and test our datasets. Unfortunately, while
we were able to obtain results with the 2K dataset, to pro-
cess the 33K dataset, PSIST required more memory than was
available on our machine (> 1.5 GB), and we were forced to
abort the tests. The PSIST algorithm allows the user to tune
a number of parameters, all of which have effects on both the
accuracy and computation time. Using the different parame-
ter values reported in the original work [10], we evaluated the
performance of the algorithm on the 2K dataset. We found
that the default settings yielded an accuracy equivalent to
those reported as the “best,” along with a drastic reduction
in running time. Thus, we report results obtained with the
program defaults.

5.1 Classification
We examine the predictive accuracy our technique by using
the k-d tree as a nearest-neighbor classifier. Given a protein,
we retrieve from the target database the three nearest neigh-
bors to that query. We then compare the SCOP labels of
the query and the retrieved proteins. If the labels of at least
two of the neighbors match, we say that the query has been
classified correctly (the query proteins are not included in
the target database). Similar classification experiments are
detailed in the paper on PSIST [10]. In that work, proteins
were only compared at the Class and SuperFamily level. We
also examine the accuracy of our method at the Fold and
Family levels. As one progresses down the SCOP hierarchy,
the protein structures become increasingly similar and the
distinctions between them more fine-grained. A truly useful
representation should not lose accuracy during this descent,
even though the classification problem itself becomes more
difficult. We examine the effect of our approach on both
the 33K and 2K datasets and compare against the results
returned by PSIST on the 2K dataset. Unfortunately, the
PSIST code only provides accuracy values for Class and Su-
perFamily so we do not have results for the Fold and Family
levels.

Table 1 shows the classification accuracy for our representa-

4http://www.autonlab.org
5We would like to thank F. Gao and M. Zaki for providing
the source code and for their assistance in interpreting the
results.



Table 1: Classification accuracy for PSIST and the
2D representation on the 2K dataset at different lev-
els of the SCOP hierarchy. Results are given for the
2D representation on the 33K dataset. Accuracy is
given as a percentage of correct classification.

Dataset Class Fold SuperFamily Family

2K - 2D 98.3 96.6 96.6 95.5
2K - PSIST 98.3 −− 93.9 −−
33K - 2D 100 92.5 91.5 89

Table 2: Number of unique groups for the 2K and
33K datasets at different levels of the SCOP hierar-
chy.

Dataset Class Fold SuperFamily Family

2K 4 133 181 281
33K 7 623 960 1632

tion on the 2K and 33K datasets at different levels of the
SCOP hierarchy. Our technique strategy provides excep-
tional performance at the Class level, and highly accurate
results as one progresses through the database. Our results
on the 2K dataset are equal to those of PSIST at the Class
level and almost 3% higher at the SuperFamily level. For the
Fold, SuperFamily and Family levels, our performance on the
33K dataset is about 5% lower than the values reported on
the 2K data. This is to be somewhat expected, though, as
the 33K dataset presents a much tougher classification chal-
lenge than the 2K data. At the Class level, we do see a higher
accuracy on the 33K dataset than the 2K dataset. This fact
is not as odd as it may appear, as the 2K dataset is not a
complete subset of the 33K dataset and they are evaluated
with different sets of query proteins.

There are a number of reasons why we typically expect to
see lower classification performance on the 33K data, espe-
cially at the lower levels of the SCOP hierarchy. First, the
dataset is roughly 18 times larger than the 2K set. Second,
there are many more potential classes or categories in the
33K dataset6. Table 2 provides the number of unique classes
for the 2K and 33K datasets for the different levels of the
SCOP hierarchy. At the SuperFamily level, the 2K dataset
contains 181 unique groups, one per query. The 33K dataset,
on the other hand, contains 960 unique SuperFamilies. The
108 query SuperFamilies represent just 11% of the total. At
the Family level, that percentage drops to less than 7.

5.2 Nearest-Neighbor Retrieval
For our nearest-neighbor retrieval tests, we again use SCOP
labels to determine whether a neighbor is correct. We ex-
amine the number of correct matches for k equal to 4, 10,
50 and 100. As before, these values have been used in pre-
vious retrieval experiments [10]. We evaluate the 2K and
33K datasets in our tests and compare against the 2K values
returned by PSIST.

The results of our retrieval tests are presented in Table 3.

6Here we refer to “class” in the traditional classification
sense. We use Class when referring to the SCOP level of
the same name.

Table 3: Average number of proteins in matching
SuperFamily for varying values of k as returned in
nearest-neighbor query.

Dataset Queries k = 4 k = 10 k = 50 k = 100
2K - PSIST 181 3.75 7.04 7.50 7.74
2K - 2D 181 3.85 7.74 8.17 8.45
33K - 2D 107 3.75 8.59 29.4 42.5
33K - 2D 33K 3.86 8.93 32.7 51.5

Table 4: Average number of objects returned by a
range query for different range values (r).

Dataset r = 25 r = 50 r = 125

2K Match 2.87 3.79 5.43
(181 Queries) Total 2.87 3.79 5.43

33K Match 5.46 7.8 17.4
(107 Queries) Total 5.46 7.8 17.4

33K Match 16.6 28.0 56.2
(33K Queries) Total 16.6 28.0 56.2

Shown in the table are the average number of nearest-neighbors
that belong to the same SuperFamily as the query protein for
different values of k. On the 2K dataset, we return a larger
number of correct neighbors as PSIST for all the tested val-
ues of k. For k = 10 and larger, we retrieve an additional 0.7
correct neighbors. There is little performance gain for values
of k larger than 10, but that is because the target database
only contains 10 members for each SuperFamily. We also re-
port good performance on the 33K dataset. When k = 10,
the number of correct neighbors is between 8.5 and 9, de-
pending on the query load. As k increases, we continue to
return a larger number of nearest neighbors, increasing from
around 9 when k = 10, to approximately 30 and 40-50 when
k = 50 and k = 100, respectively. Performance tapers off to
some degree for large k, partly because many SuperFamilies
contain less than 50 members.

5.3 Range Queries
We test our approach for three different range values (25, 50
and 125) on the 2K and 33K datasets. We report the average
number of objects retrieved (total number of objects retrieved
divided by the total number of queries) as well as the average
number of matches among those objects. A match occurs
when the object and query belong to the same SuperFamily.
The results of this experiment are provided in Table 4.

As we can see, range queries are highly accurate, but the
number of retrievals is also highly variable. For instance,
when the range value is set to 25, we retrieve an average
of 2.87 objects on the 2K dataset, but 5.5 or 16.6 on the
33K dataset, depending on the number of queries. However,
even as the range value is increased to 125, our accuracy
still remains at 100% (average number of matches / average
number of retrievals). Considering that the 2K dataset only
contains 10 members per SuperFamily, and the 33K dataset
contains between 40 and 108, we are retrieving half of the
possible total with no error.



Table 5: Membership information for the substruc-
ture window datasets. For each window type, the
number of different families (F ) and size of the tar-
get database (n) are given. Each window type has an
associated query family, provided for which are the
SCOP ID and number of query and database mem-
bers.

Window SCOP Number of Number in
Type Family ID Queries Database
HHHHHHHHHH 56113 21 231
(F = 112, n = 4832) 46463 46 372

BBBBBBBBBB 51534 4 3
(F = 45, n = 333) 53851 4 17

−−BBBBBB−− 56113 2 6
(F = 76, n = 160) 51751 1 9

5.4 Substructure Matching
The results presented above illustrate the effectiveness of our
technique at matching protein structures based on global
similarity. Here we highlight the ability of our approach
to retrieve structure based on local similarity. To test our
proposed technique, we take the Small dataset and gener-
ate windowed distance matrices for all subsequences of size
10. For each matrix, we create a local descriptor using the
process described in Section 3.2.

The Small dataset contains 189 proteins, but there are over
44,000 windows of size 10. We select three different subse-
quences, HHHHHHHHHH, BBBBBBBBBB and−−BBBBBB−−
as our queries. There are 4899 HHHHHHHHHH windows,
341 BBBBBBBBBB and 163 −−BBBBBB−−. We select 67
of the HHHHHHHHHH windows, 8 of the BBBBBBBBBB,
and 3 from the −−BBBBBB−− group to act as queries. The
remaining windows serve as a target database. In this man-
ner, a separate database is created for each window type.

Having removed the query windows from the target database,
we repeat our classification experiments, retrieving 3 nearest
neighbors and comparing the SCOP labels to determine ac-
curacy. We provide information on the number members of
each Family in the query and target databases in Table 5.
While we test this method on the entire Small dataset, we
envision it being used as a refinement to the results of a
nearest-neighbor retrieval. Generating window-based feature
vectors on only a subset of the entire dataset would drasti-
cally reduce the number of overall features produced.

The results of our substructure classification experiments are
presented in Table 6. Our local representation performs very
well, misclassifying only one query out of 78. Despite the
fact that the datasets contained a relatively large number of
families (Table 5), we were able to choose the correct one in
almost every case.

5.5 Performance
In this section we provide an analysis of query execution time
and memory usage of the tested methods. For PSIST, we
use our own measurements. With Protdex2, we rely on the
information provided in the original paper.

Table 6: Accuracy for three different substructure
windows at the Family level. Values represent per-
centage of correct classification on a 3-NN classifier.

Window Family Accuracy

HHHHHHHHHH 56113 100
46463 100

BBBBBBBBBB 51534 75
53851 100

−−BBBBBB−− 56113 100
51751 100

Table 7: Execution time (in seconds) for various
database and KNN query workloads (k = 100)

Database Number of Total Query Time
Size Queries Time Time per Query

33,010 33,010 160 135 0.004
33,010 107 8 3 0.03
1798 - 2D 181 2 < 1 < 0.006
1798 - PSIST 181 107 92 0.51

Query Execution Time
Here we provide results on the running time for our KNN ex-
periments where k equals 100, the longest of all our retrieval
tests. We list these values in Table 7. The numbers in the
Total Time column include the time necessary to read both
datasets (target and query) into memory, build the k-d tree,
execute the queries, and write the results to disk. The column
labeled Query Time gives just the time spent conducting the
queries.

On the 33K dataset, it was reported that the Protdex2 algo-
rithm required a total of 14 minutes to execute 108 queries
on a computer with a 1.6 GHz Pentium 4 and 256 MB of
RAM [4]. The results in an average query time of almost 8
seconds (note: this was a different machine than our testbed).
In our experiments, on the 2K dataset, PSIST required roughly
0.51 seconds per query. On the same machine, our method
requires only 3 seconds to execute all queries, a 168-fold de-
crease in running time. In addition, we see that increasing
the number of queries actually reduces the average time spent
on an individual query. Querying the entire 33K dataset
against itself increases the total number of queries by a fac-
tor of 308. The total query time, however, only increases by
a factor of 45. Thus, we see a reduction in the average time
per query, from 0.03 seconds to just 0.004.

Memory Usage
In addition, our representation is much less memory-intensive
than PSIST and at least comparable to Protdex2. Memory
usage is not reported in the Protdex2 results, but since the
test system had only 256 MB of main memory, one can as-
sume that to be an upper bound. On the 2K dataset, PSIST
requires roughly 80MB of memory, compared with around 12
MB for our technique. With 33,000 proteins, PSIST requests
1.6 GB of memory, maxing out our test machine and forcing
us to abort the experiments. Our wavelet representation cou-
pled with the k-d tree requires just 80 MB to process the same
dataset. The 33K dataset is roughly 18 times larger than the
2K set. PSIST requests 20 times the memory, which would
imply a linear relationship between the size of the dataset



Figure 3: Memory usage (in MB) of the 2D wavelet
approach versus PSIST on the 2K and 33K datasets.

and the memory required to process it. Our approach on
the other hand, shows sublinear growth. An 18-fold increase
in the size of the dataset leads to just a 7-fold increase in
memory usage. Figure 3 provides a graphical representation
of these relationships. This indicates that our representation
is very scalable, and can easily be deployed as a simple, but
accurate, system for determining structure similarity.

6. CONCLUSIONS AND FUTURE WORK
We present two methods of protein representation that allow
for quick and efficient structure queries. We provide imple-
mentations for retrieving proteins based on the similarity of
either their global shape or smaller substructures, an option
that is not provided in any of the leading strategies. When
viewed against current techniques, our method is superior in
accuracy and more importantly, can answer user queries in a
fraction of the time.

In the future, we plan to test and refine our substructure
matching technique. While not immediately obvious, we
would like to determine whether one can obtain meaningful
results if we allow substructure matching with gaps in the
query sequence. In addition, we plan to evaluate the use of
space-filling curves [19] as a sampling method to see how they
perform compared to our combined parallel/anti-parallel ap-
proach.

Thus far, we have focused only on finding similarity among
solved protein structures. We do not feel that our technique
is limited solely to this task, however. Two more potential
applications include defect tracking in molecular dynamics
(MD) simulations and the modeling of protein folding path-
ways [12,16]. MD simulations are used to model the behavior
of spurious atoms as they move through a lattice of a base
material, often silicon. Given a set of simulation frames, we
could apply our algorithm to create a sequence describing
that set, which could then be compared against others. Be-
ing able to characterize the behavior of these defects would
be a boon to those who work in the manufacture of semicon-
ductors.

It is well established that the amino acid sequence of a pro-
tein determines its final structure. What is unknown, how-
ever, is the true nature of the role that the primary structure
plays in the folding process. In addition, the intermediate
steps that a protein undergoes as it transitions from an un-
folded chain to its final formed structure remain a mystery.

On occasion, a protein will “misfold,” resulting in an abnor-
mal shape. These abnormalities can lead to diseases such
as Alzheimer’s, Cystic Fibrosis, and Creutzfeldt-Jakob’s (the
human equivalent of Bovine Spongiform Encephalopathy or
Mad Cow). As a result, there has been tremendous effort
to understand the protein folding process, through computer
simulations like Folding@Home. As these programs grow in
popularity, they will generate a tremendous amount of sim-
ulation data. Fast and efficient characterization techniques
such as the one proposed here will be crucial if there is to be
any hope at processing the results of these simulations in a
timely fashion.

7. REFERENCES
[1] D. Aha and D. Kibler. Instance-based learning algorithms.

Machine Learning, 6:37–66, 1991.
[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.

Lipman. Basic local alignment search tool. J. of Mo. Biol.,
215:403–410, 1990.

[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,
Z. Anang, W. Miller, and D. J. Lipman. Gapped blast and
psi-blast: A new generation of protein database search
programs. Nucleic Acids Research, 25:3389–3402, 1997.

[4] Z. Aung and K.-L. Tan. Rapid 3d protein structure database
searching using information retrieval techniques.
Bioinformatics, pp. 1045–1052, 2004.

[5] J. L. Bentley. Multidimensional binary search trees used for
associate searching. Comm. ACM, 18(9):509–517, 1975.

[6] A. Bhattacharya, T. Can, T. Kahveci, A. Singh, and Y. Wang.
Progress: Simultaneous searching of protein databases by
sequence and structure. In PSB 2004, vol. 9, pp. 264–275. 2004.

[7] T. Can and Y. Wang. Ctss: A robust and efficient method for
protein structure alignment based on local geometrical and
biological features. In IEEE CSB 2003, pp. 169–179. IEEE,
2003.

[8] O. Çamoğlu, T. Kahveci, and A. Singh. Towards index-based
similarity search for protein structure databases. In IEEE CSB
2003), pp. 148–158, 2003.

[9] P.-H. Chi, G. Scott, and C.-R. Shyu. A fast protein structure
retrieval system using image-based distance matrices and
multidimensional index. In IEEE BIBE 2004. IEEE, 2004.

[10] F. Gao and M. Zaki. Psist: Indexing protein structures using
suffix trees. In IEEE CSB 2005, August 2005. IEEE.

[11] L. Hammel and J. Patel. Searching on the secondary structure of
protein sequences. In VLDB, pp. 634–645, 2002.

[12] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande.
Folding@home and genome@home: Using distributed computing
to tackle previously intractable problems in computational
biology. Computational Genomics. 2002.

[13] T. Madej, J.-F. Gibrat, and S. Bryant. Threading a database of
protein cores. Protein Struct. Funct. Genet., pp. 356–369, 1995.

[14] S. Mallat. A Wavelet Tour of Signal Processing. Academic,
New York, 2nd ed., 1999.

[15] K. Marsolo and S. Parthasarathy. Alternate representation of
distance matrices for characterization of protein structure. In
IEEE ICDM 2005), 2005.

[16] S. Mehta, S. Barr, A. Choy, H. Yang, S. Parthasarathy,
R. Machiraju, and J. Wilkins. Dynamic classification of
anomalous structures in molecular dynamics simulation data. In
SIAM 2005, 2005.

[17] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol,
247:536–540, 1995.

[18] K.-S. Oh and A. Makinouchi. Image classification and retrieval
based on wavelet-som. In DANTE 1999, 1999.

[19] L. Platzman and J. Bartholdi. Spacefilling curves and the planar
travelling salesman problem. J. Assoc. Comput. Mach,
46:719–737, 1989.

[20] Z. Tan and A. K. H. Tung. Clustering substructure from
sequential 3d protein database. In ICDE 2004, Boston, 2004.

[21] S. Tata and J. Patel. Piqa: An algebra for querying protein data
sets. In SSDBM, pp. 141–150, 2003.

[22] J. Wang, J. Li, and G. Wiederhold. Simplicity:
Semantics-sensitive integrated matching for picture libraries.
IEEE TPAMI, 23(9):947–963, 2001.


