
Dynamic View Selection for Time-Varying Volumes

Guangfeng Ji∗
The Ohio State University

Han-Wei Shen†

The Ohio State University

ABSTRACT

Animation is an effective way to show how time-varying phenom-
ena evolve over time. A key issue of generating a good animation is
to select ideal views through which the user can perceive the maxi-
mum amount of information from the time-varying dataset. In this
paper, we first propose an improved view selection method for static
data. The method measures the quality of a static view by analyzing
the opacity, color and curvature distributions of the corresponding
volume rendering images from the given view. Our view selection
metric prefers an even opacity distribution with a larger projection
area, a larger area of salient features’ colors with an even distribu-
tion, and more perceived curvatures. We use this static view selec-
tion method and a dynamic programming approach to select time-
varying views. The time-varying view selection maximizes the
information perceived from the time-varying dataset based on the
constraints that the time-varying view should show smooth changes
of direction and near-constant speed. We also introduce a method
that allows the user to generate a smooth transition between any two
views in a given time step, with the perceived information maxi-
mized as well. By combining the static and dynamic view selection
methods, the users are able to generate a time-varying view that
shows the maximum amount of information from a time-varying
data set.

CR Categories: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques; G.1.6 [Mathematics of
Computing]: Numerical Analysis—Optimization;

Keywords: dynamic view selection, information entropy, opti-
mization

1 INTRODUCTION

Visualization of time-varying data has been a challenging problem
due to the large size and the time varying nature of the underly-
ing datasets. Previously, researchers have proposed various tech-
niques [9, 25, 8, 18, 15] to allow for a better understanding of
the time-dependent features and their evolutions through high di-
mensional projection, feature tracking, and illustration. However,
the most general and commonly used method for visualizing time-
varying data is still animation, which is created by rendering each
static volume data in the time sequence. One problem for producing
animations for time-varying data is that the features of interest of-
ten evolve over time, with their shapes, positions, and orientations
changing continuously. To provide the user with the best visual-
ization of those features in an animation, it is very important to
select dynamic views that can follow those features so that a max-
imum amount of information throughout the time sequence can be
perceived. As a time-varying dataset is usually large in size and
time-consuming to render, selecting views by hand can be a daunt-
ing task if it is simply done by trial-and-error. To ensure that the

∗e-mail: jig@cse.ohio-state.edu
†e-mail: hwshen@cse.ohio-state.edu

large scale time-varying dataset can be explored in an efficient and
effective way, the process of view selection should be done auto-
matically as much as possible.

In the context of data visualization, researchers have considered
ways to automate the process of view selection [19, 3, 21, 22].
However, their focuses had not been on time-varying data, which
requires special treatments in order to maximize the amount of in-
formation embedded in the whole time sequence. In addition, cer-
tain important factors when selecting a good view for static data
such as the perceived colors, curvatures, and opacities in the final
image were not considered in their algorithms. In this paper, we
first present an improved static view selection technique to address
some issues that were not previously considered, and then use the
new static view selection method and a dynamic-programming op-
timization approach to find the best time-varying view. The goal
of identifying the optimal time-varying view is to maximize the
amount of information the user can perceive from the rendering
sequence, with constraints on movement of the views to ensure a
smooth viewing path. Our static view method measures the quality
of a view based on the opacity, color and curvature images gen-
erated by a volume rendering technique. The contribution of the
paper is as follows:

• An optimization approach that finds the best time-varying
view in a polynomial time within a search space of exponen-
tial size. The approach also takes into account the constraints
of the movement of the views.

• We properly design the probability function for the opacity
distribution and incorporate it into the opacity entropy evalu-
ation. Our opacity entropy prefers an image with a large pro-
jection area with an even opacity distribution. This technique
avoids some problems that can be encountered in [3].

• The color transfer function conveys important information for
volume rendering. We explicitly take into account the color
information by properly designing a probability function and
incorporating it into the color entropy evaluation.

• The curvature of the dataset contains essential geometric in-
formation about the dataset. We explicitly take the curvature
into account during the static view selection.

In this paper, we assume that all the view points are located on
the surface of a viewing sphere. At each view point the user looks at
the center of the sphere, where the volume is located. During view
selection, the view moves on the sphere, which means the distance
between the view and the volume center is fixed. We also assume
the viewing and projection parameters are appropriately set up so
that the projection of the volume from any view will not fall outside
the window.

The organization of the paper is as follows. In section II, we dis-
cuss the related work. In section III, we introduce our static view
selection method, which includes the evaluation of opacity entropy,
color entropy and information from curvatures. We also discuss
how to incorporate all the three factors into a utility function. In
section IV, we introduce our optimization method to perform time-
varying view selection in a polynomial time from an exponential-
size search space. We also give a method to select a dynamic path



between any two views which also maximizes the perceived infor-
mation. In section V, we present results to prove the effectiveness
of our method.

2 RELATED WORK

The study of view point evaluation can be dated back to 1976, when
Koenderink and van Doorn [12, 13] introduced the idea of aspect
graph to partition the viewing regions surrounding an object. The
node of the aspect graph is a stable view, around which the topol-
ogy of the object projection does not change within a small region.
The edge of the aspect graph represents a transition from a stable
view to an adjacent one. The aspect graph defines the minimum
number of views required to represent all the topologically differ-
ent projections of the object. After its introduction, aspect graph
has been studied intensively in computer vision, where many re-
searchers used aspect graph for object recognition [4, 5, 2].

In computer graphics, several methods have been proposed to
locate the optimal views for polygonal meshes. Kamada and
Kawai [10] defined a view to be optimal if it minimizes the number
of degenerated faces under orthogonal projection. Barral et al. [14]
extended the idea to cope with perspective projection. In [21, 22],
Vazquez et al.utilized the concept of information entropy from In-
formation Theory [16] to evaluate the quality of a viewpoint. The
relative visibility of each face is defined as its probability, and the
optimal view is found by maximizing the probability distribution
using the entropy function. Recently, Takahashi et al. [19] dis-
cussed view selection in the context of volume visualization. They
decompose the volume into a set of feature interval volume com-
ponents, and use the surface-based view point selection method
suggested in [21, 22] to find the optimal view for each of the
components. Then they calculate the globally optimal view by a
compromise between the locally optimal views of all the feature
components. In [3], Bordoloi and Shen took a volume rendering
approach and proposed that in a good view point, the visibility of
a voxel should be proportional to the noteworthiness value of the
voxel. The noteworthiness value, or the weight of the voxel can be
determined by factors such as the opacity and color of the voxel.
They also discussed view similarity and how to partition the view
space.

There is a rich literature in computer graphics and animation
about dynamic view selection [17, 1, 24, 7, 20]. Applicable tech-
niques range from direct orientation interpolation [17] to complex
view planning for complicated 3D scenes. Andujar et al. [1] pro-
posed a camera path planning method for walkthrough of complex
scene models. Their method is based on identifying the free-space
structure of the scene and an entropy-based measurement of the
relevance of a viewpoint. Wernert and Hanson [24] discussed the
camera path planning based on a personal ”guide” that keeps the
user oriented in the navigation space which also points to interest-
ing subject area. Hong et al. [7] studied how to select camera path
to navigate in the human colon. van. Wijk and Nuij [20] introduced
an elegant method to generate a smooth animation from one view
to the other by zooming and panning. There are two major differ-
ences between our work and the previous work. First we deal with
the problem of view selection for time-varying data where the un-
derlying phenomena are changing over time. Second our problem
involves a different scene setting from the previous work, where
our views move on a viewing sphere and look at the center of the
sphere. Our goal is to maximize the information perceived from the
time-varying data while following the view movement constraints.
In [3], Bordoloi and Shen considered the problem of finding a good
viewpoint for time-varying dataset. However, their method is to
find a static view point throughout the animation so that the user
can perceive the maximum summation of conditional entropy from
the time series. The conditional entropy is the relative entropy of

a datastep based on its previous step. Compared with the method,
our method tries to find a dynamic viewing path.

3 STATIC VIEW SELECTION

Figure 1: The figure to illustrate that the result from [3] should be
improved.

The essential problem any view selection technique tries to solve
is to find a good view point through which the users are able to
perceive the maximum amount of information from the underlying
scene. In the context of volume visualization, Takahashi et al. [19]
proposed a surface-based view point optimization algorithm where
the geometric properties of interval volumes faces are considered.
Their method produces good static views for data that can be de-
composed into different interval volumes. Bordoloi and Shen [3]
took a direct volume rendering approach without the need of inter-
mediate geometry. Their method generates good views in general
with the exception of some cases. For example, in figure 1, there
are two voxels in the scene, one with a weight of 0.7 and the other
0.3. Since their method prefers views from which the visibility of
the voxel is proportional to its weight, the voxel with weight 0.7
has to occlude the other voxel to some degree in order to achieve a
higher score for their entropy formula. However, these two voxels
are readily visible through some views such as V1. From this exam-
ple, we can see that if the visibility of a voxel can be maximized,
it does not have to be proportional to its weight. To remedy this
problem and consider additional important properties of the data,
we propose an image-based view selection method. Our method
measures the quality of a static view not only based on its opacity
and projection size (which is the primary criterion of some of the
previous algorithms), but also explicitly considers the color and cur-
vature distribution of the rendered images. Our motivation comes
from the fact that color and curvature convey very important infor-
mation about the underlying phenomenon in many applications.

3.1 Measurement of Opacity Distribution and Projection Size

Imagine a user is visualizing a volumetric dataset using a volume
rendering technique. Some voxels in the volume have higher opac-
ity values, meaning these voxels are more important. Less impor-
tant voxels are assigned with smaller opacities. Initially the user
may choose a view through which many opaque voxels are aligned
in the viewing direction and hence more occlusion occurs. In this
case, some pixels in the final image will have very high opacity val-
ues, while the opacity values at other pixels are low. The user real-
izes that this is not a good view, so s/he changes to a view where less
occlusion occurs in the volume, so that the user can see many vox-
els more clearly. In this case, the opacity value in the image will be
more evenly distributed. Besides this, the user may also generally
prefers a rendering image with a larger projection area. From this
example, it can be seen that an important factor that contributes to
the selection of good views is the distribution of opacity values and
the size of the projection area in the resulting image. An image with
an even opacity distribution and a large projection area should be
more favorable than one with a uneven opacity distribution and/or a



small projection area. A function is desired to reflect the property.
The Shannon entropy function [16] can be utilized to perform the
measurement.

In Information Theory, the Shannon entropy function is used to
measure the amount of information contained in a random sequence
of symbols. Suppose the symbols occur in the set {a0,a1, ...,an−1}
with the occurrence probability {p0, p1, ..., pn−1}, the average in-
formation of the sequence, called entropy, is defined as

H(x) =−
n−1

∑
i=0

pi · log2(pi) (1)

One nice property of the entropy function is that it is a concave
function. It only has one local maximum value, which is also the
global maximum value. It reaches this maximum value log2n when
p0 = p1 = ... = pn−1 = 1/n, that is, the distribution of the proba-
bility is perfectly even among all the symbols. As the probability
moves away from the perfectly even distribution along a straight
line in any direction, the probability becomes less and less evenly
distributed, and the value of the entropy function will also decrease.

The Shannon entropy function can be utilized to measure the
information contained in an opacity image. We now explain how
the probability is designed so that the entropy function gives a
higher value when the opacity value is more evenly distributed and
the projection area is larger, while it gives lower values otherwise.
Given an opacity image which contains n pixels with opacity value
{α0,α1, ...,αn−1}, we define the probability pi of the ith pixel as

pi =
αi

∑n−1
j=0 α j

(2)

The image entropy is calculated by equation 1. Although the
entropy is evaluated over all the image pixels, the background pix-
els actually do not contribute to the entropy. The reason is that the
opacity value of any background pixel is 0, so it will not affect the
probability and entropy contribution of any foreground pixel. Fur-
thermore, since 0 · log20 is defined as 0, background pixels will not
contribute to the final entropy value of the whole image. Therefore,
we can define the image entropy just over the foreground area. The
image entropy gets the maximum value when all the foreground
pixels occur in the same probability, that is, all the foreground pix-
els have the same opacity values.

The entropy function also takes into account the size of the pro-
jection area, which is the foreground of the image. The reason is
that the maximum entropy value of an image is log2 f , where f is
the size of the foreground. Therefore, the entropy of an image with
a large foreground area and even distribution gets a higher value
than one with smaller foreground areas. In summary, our opacity
entropy function prefers an image with a large projection area with
an even opacity distribution.

3.2 Measurement of Color Distribution

Opacity is just one factor that influences the selection of good
views. Another important factor that determines the quality of a
view is color. In volume rendering, colors are often assigned to
voxels by using a color transfer function. A well-designed color
transfer function should highlight salient features by using percep-
tually attentive colors, and map unimportant voxels to some less at-
tentive colors. The measurement of a view’s quality should keep the
fidelity of the color transfer function. This means that in the color-
mapped volume, even though some colors (the less attentive colors
assigned to unimportant voxels, for example) may occur more fre-
quently than some other colors (attentive colors assigned to salient
features, for example), the less frequently salient feature colors ac-
tually carry more information. Therefore a good volume rendering

image should contain more of these colors and thus more informa-
tion about the salient features. Furthermore, we always want to
highlight as many salient features as possible in the limited screen
area. If the volume contains multiple salient features, these features
should be mapped to the final images equally, i.e, the projected ar-
eas for different colors should be as even as possible among all the
features. Based on the analysis, it can be seen that a good view
should maximize the area of the salient colors while maintaining an
even distribution among these colors.

To measure the color distribution of the volume rendering image,
we also utilize the Shannon entropy function. The entropy function
and the probability evaluation should be designed so that the en-
tropy function gives a higher value for an image with more evenly
distributed and larger areas of salient colors, while gives lower val-
ues for images with less evenly distributed and/or smaller areas of
salient colors. Suppose there are n colors {C0,C1, ...Cn−1}, where
C1,C2, ...Cn−1 occurs in the color transfer function and C0 is the
background color (actually C0 can be a spectrum of colors, which
includes every pixel of the image which is not perceptually similar
to any of C1,C2, ...Cn−1). Given any pixel in the rendered image,
we can determine which feature it belongs to by measuring the per-
ceptual color distance between the pixel color and the feature color.
If it does not belong to any feature (either the feature it should be-
long to is highly occluded, or it comes from unimportant voxels), it
will be assigned to C0. Suppose the total window area is T and the
color areas of C1,C2, ...Cn−1 are A1,A2, ...An−1 respectively. The
area for C0 is then A0 = T −∑n−1

i=1 (Ai). The probability is defined
as

pi =
Ai

T
(3)

It is a probability definition since T = ∑n−1
i=0 (Ai). The color en-

tropy function is defined as in equation 1. We can see that the
entropy reaches its maximum value when A0 = A1 = ... = An−1,
that is, all the color areas are even. Due to the inclusion of A0,
large background area will incur small total salient color area, and
thus uneven probability distribution and small entropy value ac-
cordingly. Therefore, the entropy function and our probability def-
inition prefer larger total salient color area and more even distribu-
tion among all salient colors. It should be noted that the probability
definition can lead to a small undesired effect. This happens when
we see each of the salient colors and the background with the same
area, which reaches the maximum of the entropy. The entropy will
get smaller if the area of salient colors is enlarged, and this is un-
desired. However, this is less likely to happen in practice since the
background area for any given view is usually large enough so that
the volume rendering images from all the views can be projected
into the window. We can also intentionally increase the window
size to avoid the problem. Furthermore, even if the error occurs, it
can be as large as log(n)− log(n−1), which is a negligible number
for a relatively large n.

It is also noteworthy to mention that a perception-based color
space should be used during the determination of the feature a pixel
belongs to. We choose the CIELUV color model since it provides a
perceptually equal color space, i.e., the distance in CIELUV space
reflects the perceptual color difference. We also choose a lighting
model which involves only ambient and diffuse lighting calculation.
Specular lighting is not included since it can alter the color of pixel
by the color of the light. The color entropy evaluation works well
for a well-designed color transfer function where colors are used to
highlight different features. If a color transfer function just simply
assigns gray-scale or rainbow colors according to different values,
the color entropy may not reflect the feature information contained
in the view.



3.3 Measurement of Curvature Information

Opacity and color are two important factors that measure the quality
of a view. In addition to opacity and color, there are other properties
that also contribute to the information provided in a volume render-
ing image. One of such properties is the curvature. Low curvatures
imply flat areas and high curvatures mean highly irregular surfaces,
which often contain more information (If the volume is noisy, a
smoothing operation should be performed beforehand). Therefore,
it is important to take the curvature information into account during
the selection of good views.

One problem of considering curvature information in view selec-
tion is how to present the curvatures in a volume rendering image.
We achieve this with two steps. First we calculate the curvature at
each voxel position of the volume, using the method proposed by
Kindlmann et al. [11]. When the volume is rendered, the color of
a voxel is determined by its curvature. Voxels with high curvature
are assigned with high intensity colors, while voxels below a cer-
tain low-curvature threshold are assigned with the color (0,0,0).
The opacity of the voxel is determined independently, which can
be based on its original data value, or some other properties such
as the gradient. After the rendering is performed and the image is
generated, the intensity of the image reflects the amount of curva-
ture perceived from the visible part of the volume, that is, an image
with high intensity means that the user can see many high-curvature
voxels from that view.

3.4 The Final Utility Function

Opacity, color and curvature all contribute to the information per-
ceived from a rendering of the volume. We need a function to in-
corporate all the factors. This utility function [23] u from a view v
should have the following basic form:

u(v) = (opacity(v)+ color(v)+ curvature(v))/3 (4)

that is, the utility function should consider contribution from all the
factors. One problem with the utility function is that the opacity,
color and curvature contributions are not normalized. We should
normalize each of the factors into [0,1] before the summation. The
maximum value of the entropy function of an image with a projec-
tion size of n is log2n. So if we find the maximum projection size
M of the images among all the views, each of the entropies can be
normalized by dividing over log2M. The maximum value of the
color entropy is log2n, where n is the number of colors (see section
3.2). Therefore, the color entropy can be easily normalized by a di-
vision over log2n. The normalization of the curvature contribution
can also be easily done by a division over the maximum projection
size M, since the maximum intensity of each pixel is 1.

If we possess any prior knowledge of the volume, it is often
desirable to give different weights to different factors. The utility
function then have the following form:

u(v) = α ·opacity(v)+β · color(v)+ γ · curvature(v) (5)

where α +β + γ = 1. One scenario is that people often design very
sophisticated opacity transfer function, but use a simple gray-scale
or rainbow color transfer function. In this case, it is desirable to put
more weight into opacity(v) than color(v), since opacity conveys
more information. However, in another case where different colors
are used to highlight different features in a segmented volume, it is
desirable to put large weight to color(v). In practice, we can choose
proper weight for every factor based on the characteristic of the data
and transfer function and the nature of the application.

4 DYNAMIC VIEW SELECTION

In this section, a dynamic view selection algorithm is presented.
The goal of dynamic view selection is to allow the user to find
a viewing path which shows the maximum amount of informa-
tion from the time-varying dataset, and the path should show near-
constant angular velocity (all the views lie on the surface of a view-
ing sphere). We formulate this into the following three principles
that a good dynamic viewing path should follow:

• The view should move at a near-constant speed.

• The view should not change its direction abruptly.

• The information perceived from the time-varying data should
be maximized among all the viewing paths.

In the following subsections, we first discuss the issue of how to
select time-varying views that follow the three principles. Then we
present a method that allows the user to find a path between any two
views in a given timestep that maximizes the perceived information
while obeying the other two principles.

4.1 Time-Varying View Selection

The problem of time-varying view selection is that given a view
at t = 0, among all the possible paths along which the view can
move smoothly to the final timestep at a near-constant angular ve-
locity, find the path that gives the maximum perceived information.
If in average a view can move to one of n possible views at the
next timestep, and there are total t timesteps, the complexity of the
problem can be nt . This search space is exponentially large. It is
impractical to try all these paths and find the optimal one.

To solve the problem more efficiently, we can employ the
dynamic programming approach. Let’s first consider selecting
time-varying views with the first and third principles in mind,
that is, we want to find a time-varying view that moves at a
near-constant speed, and the information perceived from that path
is maximized out of all possible paths. Suppose the camera is
moving with speed V , with Vmin ≤ V ≤ Vmax. Vmin and Vmax are
used to bound the speed of the view so that when Vmin is close to
and Vmax, the view moves at a near-constant speed. We use Pi, j to
denote the position of the jth view at t = i, and MaxIn f o(Pi, j) is
the maximum amount of information perceived from Pi, j to some
view at the final timestep. The following recursive function holds:

MaxIn f o(Pi, j) = maxNumo fViews−1
k=0 {u(Pi, j)−Cost(Pi, j,Pi+1,k)

+MaxIn f o(Pi+1,k)}

where u(Pi, j) measures the information perceived at the view Pi, j .
Cost(Pi, j,Pi+1,k) measures the cost to move from Pi, j to Pi+1,k. If
the jth view point and the kth view are within [Vmin,Vmax], the cost
is 0, otherwise the cost is +∞. The equation basically says the
maximum amount of information perceived from Pi, j to some view
point at the final timestep will be equal to the sum of the infor-
mation perceived at Pi, j , and the maximum information perceived
from Pi+1,k to some view at the final time step. Pi+1,k represents a
view point at t = i + 1 that can be reached within [Vmin,Vmax] dis-
tance from Pi, j . We will consider all the views Pi+1,k at timestep
i + 1. The following C-style code performs the calculation of all
the MaxIn f o(Pi, j).

//Initialization
for (i=0; i<NumofViews; i++)

MaxInfo[NumofTimeSteps-1, i]=
u[NumofTimeSteps-1, i];



(a) (b)

Figure 2: An example of a partition of a view point’s local tangent
plane and one of the possible allowed turns encoded in matrix.

//Dynamic Programming
for (i=NumofTimesteps-2; i>=0; i--)

for (j=0;j<NumofViews; j++)
{

MaxInfo[i, j]=0;
for (k=0; k<NumofViews; k++)
{

double Info=u[i, j]-Cost(j,k)
+MaxInfo(i+1, k);
if (Info>MaxInfo[i, j])
{

MaxInfo[i, j]=Info;
NextViewIndex[i, j]=k;

}
}

}

The initial condition is MaxIn f o(Pn−1,i) = u(Pn−1,i) for i ∈
[0..Numo fViews− 1]. The dynamic programming process calcu-
lates all the MaxIn f o{Pi, j} backwards in time, according to the
recursive function. NextNodeIndex{Pi, j} records the view index at
the next timestep that gives the maximum information from Pi, j to
some view at the final timestep, and it can be used to recover the
time-varying path. The dynamic programming process finishes all
the computation in O(n · v2) time, where n is the number of total
timesteps, and v is the number of total views. This process only
takes a polynomial time complexity.

The above dynamic programming calculates an optimal path
based on the restriction that the view should move with the speed
within [Vmin,Vmax]. But it does not prohibit the view from making
sharp turns, which is undesirable when viewing the animation. It
is also impossible to use the information stored at NextViewIndex
to find the optimal path that does not make sharp turns, since
NextViewIndex only records the optimal paths that move at a
near-constant speed. To address this problem, at each view point on
the viewing sphere, we partition its local tangent plane into many
different regions, and restrict the allowed turns. Figure 2 illustrates
a partition of eight regions and a matrix that encodes the allowed
turns. We use MaxIn f o(Pi, j,r) to denote the maximum amount
of information perceived from Pi, j to some view point at the final
timestep, and Pi, j was entered from region r from its previous view.
Then the following recursive function holds:

MaxIn f o(Pi, j,r) = maxr=0..Numo f Regions−1,k∈Regionr{u(Pi, j)
−Cost(Pi, j,Pi+1,k)+MaxIn f o(Pi+1,k,s)}

The following C-like code calculates all the MaxIn f o(Pi, j,r):

\\Initialization
for (i=0; i<NumofViews; i++)

for (j=0; j<NumofRegions; j++)

MaxInfo[NumofTimeSteps-1, i, j]=
u[NumofTimeSteps-1, i];

\\Dynamic Programming
for (i=NumofTimesteps-2; i>=0; i--)

for (j=0; j<NumofViews; j++)
for (r=0; r<NumofRegions; r++)
{

MaxInfo[i, j, r]=0;
for (all ks that are in region r)
{

int o=FindRegionNum(k, j);
if (!AllowedTurn[r, o])

continue;
int s=FindRegionNum(j, k);
double Info=u[i, j]-Cost(j, k)
+MaxInfo(i+1, k, s);
if (Info>MaxInfo[i, j, r])
{

MaxInfo[i, j, r]=Info;
NextViewIndex[i, j, r]=k;
NextRegionIndex[i, j, r]=s;

}
}

}

where o is the region number leaving the jth view and s is the re-
gion number entering the kth view at the next timestep. o and s
can be easily determined based on the the projection to local tan-
gent plane at the jth and kth view respectively. NextViewIndex
and NextRegionIndex record the view and region index at the next
timestep that offers the maximum information to some view at the
final timestep. These two data structures can be used to recover the
path. The dynamic programming process finishes all the compu-
tation in O(n · r · v2) time, where n is the number of timesteps, v
is the number of views, and r is the number of regions. This pro-
cess only takes a polynomial time complexity. After the dynamic
programming is done, given the initial view at t = 0, the results
stored at MaxIn f o, NextViewIndex and NextRegionIndex can be
used to find the maximum perceived information and the optimal
time-varying view associated with the initial view.

4.2 Viewing Path Between any Two Views in a Given Timestep

Another case of dynamic view selection is to find a viewing path
between any two viewpoints in a given timestep. This viewing path
should also follow the three principles, i.e., moves between these
two viewpoints smoothly with a near-constant angular velocity, and
maximizes the perceived data information at the same time. This
technique can be very useful to showcase a static dataset. When
generating an animation, keyframes are usually specified by the
user, and intermediate frames are generated by interpolation. If dif-
ferent viewpoints are assigned in the different keyframes, spherical
linear interpolation (SLERP) is a common technique to interpolate
the intermediate view positions. SLERP does give a viewing path
with constant angular velocity, but it does not take the perceived
information into consideration. Next we will explain how we max-
imize the perceived information and take all three principles into
consideration.

Given any two views on a viewing sphere, there are an infinite
number of paths that connect these two views. One factor in our de-
sign of the dynamic path is that it should follow the general direc-
tion of the SLERP path, since the SLERP path is the shortest path
that connects the two points with constant angular velocity. There-
fore, we only allow the view to move at the neighboring views of
the SLERP path (as shown in figure 3). We also need to put re-
striction on the direction of the allowed movement so that the view



(a) (b) (c) (d) (e)

Figure 4: The figure shows the static view selection results based on opacity entropy for the shockwave dataset. (a) shows the worst view, (b)
is the best view, and (c) and (d) are the opacity images for (a) and (b) respectively. (e) plots the change of opacity entropy with respect to
different viewing angles where the shockwave is rotated around the vertical axis in a full circle.

Figure 3: The solid curve is the SLERP path. Our algorithm will
consider all the neighbors of the SLERP path that lie within the
dotted area. All the neighbors are parameterized by u and v.

will not go back and forth in a circular manner. We achieve this
by parameterizing all the neighbors relative to the SLERP path, as
illustrated in figure 3. A movement is allowed only if the u param-
eter is increasing and the v parameter difference is within a thresh-
old. We call these paths monotonic paths. We can also enforce the
direction change by adopting the local coordinates and the admis-
sible turn matrix in figure 2. When evaluating the quality of differ-
ent paths, the summation of information should not be used, since
some paths can go through more view points than others. One good
criterion can be the average information. The pseudo code below
illustrates how to use the propagation method similar to the single-
source shortest path algorithm to find the optimal path.

ActiveSet={Source viewpoint S};
PathLength=0;
PathInfo[S,PathLength]=u(S);

Initialize all other PathInfos to a minimum value;
NextActiveSet=empty;
while(ActiveSet is not empty)
{

PathLength++;
for each view V in ActiveSet

for each neighbor N of V
if (the movement from V to N is monotonic)
{

Path[N, PathLength]=max(Path[N,
PathLength], u(V)+Path[V, PathLength-1]);
Put N in NextActiveSet;

}
ActiveSet=NextActiveSet;

}

For all the PathInfo[D, n] where D is the destination

Find the one with the maximum average
information and it will be the optimal path.

Notice the above process only runs on the neighborhood of the
SLERP path. It finishes in O(N2) time, where N is the number of
neighbors along the SLERP path.

5 RESULTS AND DISCUSSION

We have implemented and tested both the static and dynamic view
selection algorithms on a Pentium IV 1.4GHz machine with an
nVidia GeForce 6800 graphics card. Our view selection algorithms
take as input the opacity, color and curvature images rendered from
the dataset, which can be generated by any volume rendering tech-
nique. In our implementation, we choose a hardware-based volume
slicing technique with 3D texture mapping to generate those im-
ages. 256 sample views were used for each dataset, and these views
are evenly distributed on the viewing sphere.

The test result for the 512×64×64 shockwave dataset is shown
in figure 4. The opacity entropy value is used during the test to
show its effectiveness in determining view quality. Figure 4 (a)
shows the worst view which has the smallest opacity entropy, and
figure 4 (b) shows the best view with the highest opacity entropy.
Figure 4 (c) and (d) illustrate the opacity images of the worst and
best views respectively. It took 6.92 seconds to compute the opac-
ity entropy values for the 256 views and find the best and worst
views, and the size of the opacity image is 256×256. By using the
entropy function and the proposed probability function, our opac-
ity entropy evaluation takes both the opacity distribution and the
projection area into consideration, and the opacity entropy prefers
an image with an even opacity distribution and a larger projection
area. To illustrate how the opacity entropy varies according to dif-
ferent viewing angles, the view is rotated along the vertical axis (Y
axis) in a complete circle. Figure 4 (e) plots the change of opacity
entropy with respect to different views.

We also used the 128× 128× 80 tooth data to test the view se-
lection algorithm based on the opacity entropy, and the result is
shown in figure 5. Figure 5 (a) shows the worst view with the small-
est opacity entropy, and figure 5 (b) shows the best view with the
largest opacity entropy. Figure 5 (c) and (d) are their opacity im-
ages. It took 7.18 seconds to compute the opacity entropy values
for the 256 views and find the best and worst views, and the size
of the opacity image is 256×256. The variation of opacity entropy
with respect to different views is also plotted in the Figure 5 (e),
where the viewing angle is rotated incrementally around the X axis.

We used the 1283 vortex dataset to show the effectiveness of the
color entropy function. The data set contains many components and
we use the color transfer function to highlight components which
may go through topological changes in future timesteps. Other



(a) (b) (c) (d) (e)

Figure 5: The figure shows the static view selection results based on opacity entropy for the tooth dataset. (a) shows the worst view, (b) is
the best view, and (c) and (d) are the opacity images for (a) and (b) respectively. (e) plots the change of opacity entropy with respect to the
viewing angle when the tooth is rotated around the X axis in a full circle.

(a) (b) (c)

Figure 6: The figure shows the static view selection results based on
color entropy for the vortex dataset. (a) shows the worst view, (b) is
the best view, and (c) plots the change of color entropy with respect
to different viewing angles when the vortex is rotated around the Y
axis in a full circle.

(a) (b) (c)

Figure 7: The figure shows the dynamic view selection results for the
TSI dataset. (a) shows the worst view, (b) is the best view, and (c)
plots the change of the final information with respect to the viewing
angle when the TSI dataset is rotated around the vertical axis in a
full circle.

components are assigned a gray-scale color. Figure 6 (a) shows the
worst view with the smallest color entropy, and figure 6 (b) shows
the best view. It can been easily seen that figure 6 (b) conveys more
information about the topologically important features than figure 6
(a). In figure 6 (a), the total projection area of the highlighted fea-
tures is small, and the projection area ratio among the highlighted
features is very uneven. This leads to a very small color entropy
value. In contrast, in figure 6 (b), the highlighted features have a
large projection area and an even projection area distribution, and
therefore a large value for the color entropy. It took 16.3 seconds
to compute the color entropy values for the 256 views and find the
best and worst views, and the size of the color image is 256×256.
Figure 6 (c) plots the change of color entropy with respect to differ-
ent views where the viewing angle is rotated incrementally around
the Y axis.

Figure 7 gives the view-selection result for the Terascale Su-
pernova Initiative (TSI) dataset. The dataset is to model the core

Figure 8: The figure shows two paths which move from one view
point to the other. The right path is generated by SLERP interpola-
tion with an average information of 0.51. The left path is generated
by our method. The path is smooth and gives an average information
of 0.56.

collapse of supernovae and was generated by collaboration among
Oak Ridge National Lab and eight universities. In the paper, we
visualize the entropy scalar component of the dataset, which is de-
rived from pressure and density scalar values. When exploring the
dataset, we used the rainbow color transfer function. In our view
selection test, two factors, curvature and opacity, are considered in
the calculation of view information. We want to design a utility
function which puts more weight for views that show more jagged
area. Therefore, in our design, we set the coefficients for curva-
ture and opacity to 0.8 and 0.2 respectively. Figure 7 (a) shows
the worst view, and figure 7 (b) is the best view. It is obvious that
figure 7 (b) shows more detailed information about the jagged area
than Figure 7 (a). It took 18.7 seconds to evaluate the curvature in-
formation and opacity entropy for all the 256 views and find the best
and worst views, and the size of the image is 256× 256. To show
how the view utility function varies, figure 7 (c) plots the change
of utility value with respect to different views, where the view is
rotated incrementally around the vertical (Y) axis.

We also used the TSI dataset to test our dynamic view selection
algorithm. The supernova is a very dynamic phenomenon where
the features are morphing and rotating rapidly in space. Our pre-
vious static view selection shows that from some views very little
information about the phenomenon can be perceived. If the view for
an animation is fixed, much of the phenomenon would be occluded
for many timesteps (see figure 9 (f)-(i)). Recall that the goal of our
algorithm is to find a viewing path with the maximum amount of
information and also follow the constraint that the camera moves
at a near-constant angular velocity. We used our static view selec-
tion to calculate the view information of every view point at every
timestep and used our dynamic programming algorithm to find the
best path. All the timesteps use the same view point set on the



(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 9: The figure shows the dynamic view selection result for the TSI dataset. (a) shows the path of the time-varying view, which exhibits
constant angular velocity. (b)-(e) show four snapshots captured by our time-varying view. (h)-(i) show the image from the original static view
at the timestep corresponding to (b)-(e) respectively.

sphere. Figure 9 (a) shows the best path in which viewpoint P0,0
moves in time with the speed within (0.9, 1.2) (The radius of the
viewing sphere is 1). Although the supernova phenomenon is mor-
phing rapidly, we still perceive a maximum amount of information
following our dynamic viewing path. It took 4.31 seconds for the
dynamic programming process to find the optimal path. Figure 9
(a) shows part of the path, which demonstrates near-constant angu-
lar velocity (the distance in figure 9 (a) is distorted). Furthermore,
following the path, the overall information perceived from the time-
varying data is maximized. Figure 9 (b)-(e) show four snapshots of
the time-varying dataset captured by the time-varying view path,
and figure 9 (f)-(i) show the images seen from the original view at
the timesteps corresponding to (b)-(e) respectively. The user can
apparently see more turbulent side of the phenomenon all the time
from the time-varying views.

We also used the TSI dataset to show a viewing path selected
from any two views in a given timestep. The TSI dataset at t = 0 is
used, and figure 8 shows both the SLERP and the optimized paths.
It took 0.08 seconds to find the optimized path. The average infor-
mation perceived by the SLERP path is 0.51, while the optimized
path gives 0.56.

6 CONCLUSION AND FUTURE WORK

In this paper, we present methods for both static and dynamic view
selection. Our static view selection algorithm analyzes opacity,
color and curvature images generated from different view points.
We properly design the probability functions and use entropy to
evaluate opacity and color distributions. Our algorithm also prefers
a view which shows high curvature information. Depending on the
characteristic of the data set and the opacity and color transfer func-
tion, and the nature of the application, we can design different util-
ity functions to assign different weights to the three factors. Based
on our static view selection and dynamic programming, our dy-
namic view selection method maximizes the information perceived
from the time-varying dataset following a near-constant angular ve-
locity path. The optimization is achieved in a polynomial time. Our
results show the effectiveness of the static and dynamic view selec-

tion.
In addition to dynamic view point planning, another important

parameter for animation would be lighting design. Gunhold [6]
discussed light source placement for static polygonal meshes. We
would like to conduct the research for lighting design for time-
varying polygonal and volumetric data in our future work.

REFERENCES

[1] C. Andujar, P. Vazquez, and M. Fairen. Way-finder: Guided tours through complex walkthrough models. Com-
puter Graphics Forum, 23(3):488–508, 2004.

[2] T. Arbel and F. Ferrie. Viewpoint selection by navigation through entropy maps. In Proceeding of International
Conference on Computer Vision, pages 248–254, 1999.

[3] Udeepta D. Bordoloi and Han-Wei Shen. View selection for volume rendering. In IEEE Visualization Conference
2005, pages 487–494, 2005.

[4] C.M. Cyr and B.B. Kimia. 3d object recognition using shape similarity-based aspect graph. In Proceeding of
International Conference on Computer Vision, pages 254–261, 2001.

[5] K.D. Gremban and K.Ikeuchi. Planning multiple observation for object recognition. International Journal of
Computer Vision, 12(2/3):137–172, 1994.

[6] Stefan Gumhold. Maximum entropy light source placement. In IEEE Visualization Conference 2002, pages
275–282, 2002.

[7] Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. Virtual voyage: Interactive naviga-
tion in the human colon. Computer Graphics, 31:27–34, 1997.

[8] Guangfeng Ji, Han-Wei Shen, and Rephael Wenger. Volume tracking using higher dimensional isocontouring.
In IEEE Visualization Conference 2003, pages 209–216, 2003.

[9] Alark Joshi and Penny Rheingans. Illustration-inspired techniques for visualizing time-varying data. In IEEE
Visualization Conference 2005, pages 86–93, 2005.

[10] T. Kamada and S. Kawai. A simple method for computing general position in displaying three-dimensional
objects. Proceeding of International Conference on Computer Vision, 41(1):248–254, 1988.

[11] Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, and Torsten Moller. Curvature-based transfer functions for
direct volume rendering: Methods and applications. In IEEE Visualization Conference 2003, pages 513–520,
2003.

[12] J.J. Koenderink and A.J. van Doorn. The sigularities of the visual mapping. Biological Cybernetics, 24:51–59,
1976.

[13] J.J. Koenderink and A.J. van Doorn. The internal representation of solid shape with respect to vision. Biological
Cybernetics, 32:211–216, 1979.

[14] G. Dorme P. Barral and D. Plemenos. Scene understanding techniques using a virtual camera. In Proceeding of
Eurographics 2000, 2000.

[15] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing features and tracking their evolution. IEEE Com-
puter, 27(7):20–27, 1994.

[16] Claude E. Shannon. A mathematical theory of communication. In Bell System Technical Journal, pages 379–423
& 623–656, 1948.

[17] K. Sheomake. Animation with quaternion curves. Computer Graphics, 19:245–254, 1985.
[18] Deborah Silver and Xun Wang. Volume tracking. In IEEE Visualization Conference 1996, pages 157–164, 1996.
[19] Shigeo Takahashi, Issei Fujishiro, Yuriko Takeshima, and Tomoyuki Nishita. A feature-driven approach to

locating optimal viewpoints for volume visualization. In IEEE Visualization Conference 2005, pages 495–502,
2005.

[20] Jarke J. van Wijk and Wim A.A. Nuij. Smooth and efficient zooming and panning. In IEEE Symposium on
Information Visualization 2003, pages 15–23, 2003.

[21] Pere-Pau Vazquez, Miquel Feixas, Mateu Sbert, and Wolfgang Heidrich. Viewpoint selection using viewpoint
entropy. In Vision Modeling and Visualization Conference 2001, 2001.

[22] Pere-Pau Vazquez, Miquel Feixas, Mateu Sbert, and Wolfgang Heidrich. Automatic view selection using view-
point entropy and its application to image-based modeling. Computer Graphics Forum, 22(4):689–700, 2003.

[23] John von. Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton University
Press, 1944.

[24] E.A. Wernert and A.J. Hanson. A framework for assisted exploration with collaboration. In IEEE Visualization
Conference 1999, pages 241–248, 1999.

[25] Jonathan Woodring, Chaoli Wang, and Han-Wei Shen. High dimensional direct rendering of time-varying
voulmes. In IEEE Visualization Conference 2003, pages 417–424, 2003.


